Recurrent Neural Networks
Recurrent Neural Network

- h_t: hidden state
- X_t: input
- Y_t: output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1}: initial state

Fully-connect NN vs. RNN

- RNN can be viewed as repeated applying fully-connected NNs
- $h_t = \sigma_1(W^{(1)}X_t + W^{(11)}h_{t-1} + b^{(1)})$
- $Y_t = \sigma_2(W^{(2)}h_t + b^{(2)})$
- σ_1, σ_2 are activation functions (sigmoid, ReLU, tanh, etc)
Practical issues of RNN

Linear RNN derivation

\[h_t = W_{11} h_{t-1} + W_{12} x_t \]

\[= \left(\begin{array}{c} h_t \\ X_t \end{array} \right) = \left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right) Z \left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right) + \sum_{i=0}^{k-2} \left(W_{11} \right)^{k-2-i} w_{12} x_t \]

If $\sum_{i=0}^{k-2} \left(W_{11} \right)^{k-2-i} < 1$ \(\rightarrow\) exp small

\(\Rightarrow\) forgetting X_t for i small
Practical issues of RNN: training

Gradient explosion and gradient vanishing

\[\frac{\partial L}{\partial h_0} \propto \left(W^{(1)} \right)^k \frac{r}{\left(1 - \delta'(z_k) \right)} \quad \text{forgetting problem} \]
Techniques for avoiding gradient explosion

- Gradient clipping
- Identity initialization
- Truncated backprop through time
 - Only backprop for a few steps
Preserve Long-Term Memory

- Difficult for RNN to preserve long-term memory
 - The hidden state h_t is constantly being written (short-term memory)
 - Use a separate cell to maintain long-term memory
Long Short-Term Memory Network

LSTM (Hochreiter & Schmidhuber, ’97)
• RNN architecture for learning long-term dependencies
• σ: layer with sigmoid activation
Long Short-Term Memory Network

LSTM (Hochreiter & Schmidhuber, ’97)

- Core idea: maintain separate state \(h_t \) and cell \(c_t \) (memory)
- \(h_t \): full update every step
- \(c_t \): only partially update through gates
- \(\sigma \) layer outputs importance \(([0,1])\) for each entry and only modify those entries of \(c_t \)
Long Short-Term Memory Network

Forget gate f_t

- f_t outputs whether we want to “forget” things in c_t
 - Compute $c_{t-1} \odot f_t$ (element-wise)
 - $f_t(i) \rightarrow 0$: want to forget $c_t(i)$
 - $f_t(i) \rightarrow 1$: we want to keep the information in $c_t(i)$

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$
Long Short-Term Memory Network

Input gate i_t
- i_t extracts useful information from X_t to update memory
- \tilde{c}_i: information from X_t to update memory
- i_t: which dimension in the memory should be updated by X_t
 - $i_t(j) \to 1$: we want to use the information in $\tilde{c}_i(j)$ to update memory
 - $i_t(t) \to 0$: $\tilde{c}_i(j)$ should not contribute to memory

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$
Long Short-Term Memory Network

Memory update
- \(c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t \)
- \(f_t \) forget gate; \(i_t \) input date
- \(f_t \odot c_{t-1} \): drop useless information in old memory
- \(i_t \odot \tilde{c}_t \): add selected new information from current input
Long Short-Term Memory Network

Output gate o_t

- Next hidden state $h_t = o_t \odot \tanh(c_t)$
 - $\tanh(c_t)$: non-linear transformation over all past information
 - o_t: choose important dimensions for the next state
 - $o_t(j) \rightarrow 1$: $\tanh(c_t(j))$ is important for the next state
 - $o_t(j) \rightarrow 0$: $\tanh(c_t(j))$ is not important

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t \times \tanh(C_t)$$
Long Short-Term Memory Network

- $h_t = o_t \odot \tanh(c_t)$
- $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
- $Y_t = g(h_t)$

Remarks:
1. No more matrix multiplications for c_t
2. LSTM does not have guarantees for gradient explosion/vanishing
3. LSTM is the dominant architecture for sequence modeling from ’13 - ’16.
4. Why tanh
LSTM Variant

Peephold Connections (Gers & Schmidhuber ’00)
- Allow gates to take in c_t information

$$f_t = \sigma (W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f)$$
$$i_t = \sigma (W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i)$$
$$o_t = \sigma (W_o \cdot [C_t, h_{t-1}, x_t] + b_o)$$
LSTM Variant

Simplified LSTM

- Assume $i_t = 1 - f_t$
- Only two gates are needed: fewer parameters

$$C_t = f_t \cdot C_{t-1} + (1 - f_t) \cdot \tilde{C}_t$$
LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. ’14)

- Merge h_t and c_t: much fewer parameters

\[
\begin{align*}
&z_t = \sigma (W_z \cdot [h_{t-1}, x_t]) \\
&r_t = \sigma (W_r \cdot [h_{t-1}, x_t]) \\
&\tilde{h}_t = \tanh (W \cdot [r_t \cdot h_{t-1}, x_t]) \\
&h_t = (1 - z_t) \cdot h_{t-1} + z_t \cdot \tilde{h}_t
\end{align*}
\]
LSTM application: language model

- Autoregressive language model: $P(X; \theta) = \prod_{t=1}^{L} P(X_t | X_{i<t}; \theta)$
 - X: a sentence
 - Sequential generation
- LSTM language model
 - X_t: word at position t.
 - Y_t: softmax over all words
- Data: a collection of texts:
 - Wiki
LSTM application: text classification

Bi-directional LSTM and then run softmax on the final hidden state.
Attention Mechanism
Machine Translation

• Before 2014: Statistical Machine Translation (SMT)
 • Extremely complex systems that require massive human efforts
 • Separately designed components
 • A lot of feature engineering
 • Lots of linguistic domain knowledge and expertise

• Before 2016:
 • Google Translate is based on statistical machine learning

• What happened in 2014?
 • Neural machine translation (NMT)
Sequence to Sequence Model

- Neural Machine Translation (NMT)
 - Learning to translate via a **single end-to-end** neural network.
 - Source language sentence X, target language sentence $Y = f(X; \theta)$

- Sequence to Sequence Model (Seq2Seq, Sutskever et al., ‘14)
 - Two RNNs: f_{enc} and f_{dec}
 - Encoder f_{enc}:
 - Takes X as input, and output the initial hidden state for decoder
 - Can use bidirectional RNN
 - Decoder f_{dec}:
 - It takes in the hidden state from f_{enc} to generate Y
 - Can use autoregressive language model
Sequence to Sequence Model

The sequence-to-sequence model

Encoding of the source sentence. Provides initial hidden state for Decoder RNN.

Source sentence (input)

Decoder RNN is a Language Model that generates target sentence, conditioned on encoding.

Note: This diagram shows test time behavior: decoder output is fed in as next step’s input.
Training Sequence to Sequence Model

- Collect a huge paired dataset and train it end-to-end via BPTT
- Loss induced by MLE $P(Y|X) = P(Y|f_{enc}(X))$

$J = \frac{1}{T} \sum_{t=1}^{T} J_t = J_1 + J_2 + J_3 + J_4 + J_5 + J_6 + J_7$

$J_1 = \text{negative log prob of } \text{“he”}$

$J_2 = \text{negative log prob of } \text{“with”}$

$J_7 = \text{negative log prob of } \text{<END>}$

Seq2seq is optimized as a **single system**. Backpropagation operates “end-to-end”.
Deep Sequence to Sequence Model

• Stacked seq2seq model
Machine Translation

- 2016: Google switched Google Translate from SMT to NMT
Alignment

- Alignment: the word-level correspondence between X and Y
- Can have complex long-term dependencies
Issue in Seq2Seq

- Alignment: the word-level correspondence between X and Y
- The information bottleneck due to the hidden state h
- We want each Y_t to also focus on some X_i that it is aligned with
Seq2Seq with Attention

- NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15)
- Core idea:
 - When decoding Y_t, consider both hidden states and alignment:
 - Hidden state: $h_t = f_{dec}(Y_{i<t})$
 - Alignment: connect to a portion of X
 - When portion of X to focus on?
 - Learn a softmax weight over X: attention distribution P_{att}
 - $P_{att}(X_i | h_t)$: how much attention to put on word X_i
 - Attention output $h_{att} = \sum_i f_{enc}(X_i | X_{j<i}) \cdot P_{att}(X_i | h_{t-1})$
 - Use h_{t-1} and h_{att} to compute Y_t
Seq2Seq with Attention

Encoder RNN

Source sentence (input)

il a m' entarté <START>

Attention scores

dot product

Decoder RNN
Seq2Seq with Attention
Seq2Seq with Attention
Seq2Seq with Attention

Encoder RNN

Attention scores

Decoder RNN

Source sentence (input)

dot product
Seq2Seq with Attention

On this decoder timestep, we’re mostly focusing on the first encoder hidden state (“he”)

Take softmax to turn the scores into a probability distribution

Source sentence (input)

ila'mentarté<START>
Use the attention distribution to take a **weighted sum** of the encoder hidden states.

The attention output mostly contains information from the hidden states that received high attention.
Seq2Seq with Attention

Concatenate attention output with decoder hidden state, then use to compute \hat{y}_1 as before.

Source sentence (input)
Seq2Seq with Attention

Encoder RNN

Attention scores

Attention distribution

Attention output

Source sentence (input)

Decoder RNN

hit

\hat{y}_2
Seq2Seq with Attention

Encoder RNN

Attention scores

Attention distribution

Attention output

Decoder RNN

Source sentence (input)
Seq2Seq with Attention
Seq2Seq with Attention

Encoder RNN

Attention scores

Attention distribution

Source sentence (input)

Decoder RNN

Attention output

\hat{y}_6

pie

$<\text{START}>$, he, hit, me, with, a
Seq2Seq with Attention

Summary

- Input sequence X, encoder f_{enc}, and decoder f_{dec}
- $f_{enc}(X)$ produces hidden states $h_1^{enc}, h_2^{enc}, \ldots, h_N^{enc}$
- On time step t, we have decoder hidden state h_t
- Compute attention score $e_i = h_t^\top h_i^{enc}$
- Compute attention distribution $\alpha_i = P_{att}(X_i) = \text{softmax}(e_i)$
- Attention output: $h_{att}^{enc} = \sum_i \alpha_i h_i^{enc}$
- $Y_t \sim g(h_t, h_{att}^{enc}; \theta)$
 - Sample an output using both h_t and h_{att}^{enc}
Attention

- It significantly improves NMT.
- It solves the bottleneck problem and the long-term dependency issue.
- Also helps gradient vanishing problem.
- Provides some interpretability
 - Understanding which word the RNN encoder focuses on

Attention is a general technique
- Given a set of vector values V_i and vector query q
- Attention computes a weighted sum of values depending on q

Other use cases:
- Attention can be viewed as a module.
- In encoder and decoder (more on this later)
- A representation of a set of points
 - Pointer network (Vinyals, Forunato, Jaitly ’15)
 - Deep Sets (Zaheer et al., ’17)
- Convolutional neural networks
 - To include non-local information in CNN (Non-local network, ’18)
Attention

- Representation learning:
 - A method to obtain a fixed representation corresponding to a query q from an arbitrary set of representations $\{V_i\}$
 - Attention distribution: $\alpha_i = \text{softmax}(f(v_i, q))$
 - Attention output: $v_{\text{att}} = \sum_i \alpha_i v_i$

- Attent variant: $f(v_i, q)$
 - Multiplicative attention: $f(v_i, q) = q^T W h_i$, W is a weight matrix
 - Additive attention: $f(v_i, q) = u^T \text{tanh}(W_1 v_i + W_2 q)$
Key-query-value attention

- Obtain q_t, v_t, k_t from X_t
- $q_t = W^q X_t; \quad v_t = W^v X_t; \quad k_t = W^k X_t$ (position encoding omitted)
 - W^q, W^v, W^k are learnable weight matrices
- $\alpha_{i,j} = \text{softmax}(q_i^T k_j); \quad \text{out}_i = \sum_k \alpha_{i,j} v_j$
- Intuition: key, query, and value can focus on different parts of input

\[
XQ = XQK^T X^T \quad \in \mathbb{R}^{T \times T}
\]

All pairs of attention scores!

\[
\text{softmax} \left(XQK^T X^T \right) XV = \text{output} \in \mathbb{R}^{T \times d}
\]
Attention is all you need (Vsawani ’17)

- A pure attention-based architecture for sequence modeling
 - No RNN at all!
- Basic component: self-attention, $Y = f_{SA}(X; \theta)$
 - X_t uses attention on entire X sequence
 - Y_t computed from X_t and the attention output
- Computing Y_t
 - Key k_t, value v_t, query q_t from X_t
 - $(k_t, v_t, q_t) = g_1(X_t; \theta)$
 - Attention distribution $\alpha_{t,j} = \text{softmax}(q_t^T k_j)$
 - Attention output $\text{out}_t = \sum_j \alpha_{t,j} v_j$
 - $Y_t = g_2(\text{out}_t; \theta)$
Issues of Vanilla Self-Attention

• Attention is order-invariant

• Lack of non-linearities
 • All the weights are simple weighted average

• Capability of autoregressive modeling
 • In generation tasks, the model cannot “look at the future”
 • e.g. Text generation:
 • Y_t can only depend on $X_{i<t}$
 • But vanilla self-attention requires the entire sequence
Position Encoding

• Vanilla self-attention
 • \((k_t, v_t, q_t) = g_1(X_t; \theta) \)
 • \(\alpha_{t,j} = \text{softmax}(q_t^T k_j) \)
 - Attention output \(out_t = \sum_j \alpha_{t,j} v_j \)

• Idea: position encoding:
 • \(p_i \): an embedding vector (feature) of position \(i \)
 • \((k_t, v_t, q_t) = g_1([X_t, p_t]; \theta) \)

• In practice: Additive is sufficient:
 - \(k_t \leftarrow \tilde{k}_t + p_t, q_t \leftarrow \tilde{q}_t + p_t, v_t \leftarrow \tilde{v}_t + p_t; \)
 - \((\tilde{k}_t, \tilde{v}_t, \tilde{q}_t) = g_1(X_t; \theta) \)

• \(p_t \) is only included in the first layer
Position Encoding

p_i design 1: Sinusoidal position representation

- **Pros:**
 - simple
 - naturally models “relative position”
 - Easily applied to long sequences

- **Cons:**
 - Not learnable
 - Generalization poorly to sequences longer than training data

$$p_i = \begin{pmatrix}
\sin(i/10000^{2*1/d}) \\
\cos(i/10000^{2*1/d}) \\
\vdots \\
\sin(i/10000^{2*d/2/d}) \\
\cos(i/10000^{2*d/2/d})
\end{pmatrix}$$
Position Encoding

p_t design 2: **Learned representation**

- Assume maximum length L, learn a matrix $p \in \mathbb{R}^{d \times T}$, p_t is a column of p
- **Pros:**
 - Flexible
 - Learnable and more powerful
- **Cons:**
 - Need to assume a fixed maximum length L
 - Does not work at all for length above L
Combine Self-Attention with Nonlinearity

- Vanilla self-attention
 - No element-wise activation (e.g., ReLU, tanh)
 - Only weighted average and softmax operator

- Fix:
 - Add an MLP to process out_i
 - $m_i = \text{MLP}(\text{out}_i) = W_2\text{ReLU}(W_1\text{out}_i + b_1) + b_2$
 - Usually do not put activation layer before softmax
Masked Attention

- In language model decoder: $P(Y_t | X_{<t})$
 - out_t cannot look at future $X_{>t}$

- Masked attention
 - Compute $e_{i,j} = q_i^T k_j$ as usual
 - Mask out $e_{i,j}$ by setting $e_{i,j} = -\infty$
 - $e \odot (1 - M) \leftarrow -\infty$
 - M is a fixed 0/1 mask matrix
 - Then compute $\alpha_i = \text{softmax}(e_i)$
 - Remarks:
 - $M = 1$ for full self-attention
 - Set M for arbitrary dependency ordering
Transformer

Transformer-based sequence-to-sequence modeling
Key-query-value attention

- Obtain q_t, v_t, k_t from X_t
- $q_t = W^q X_t; v_t = W^v X_t; k_t = W^k X_t$ (position encoding omitted)
 - W^q, W^v, W^k are learnable weight matrices
- $\alpha_{i,j} = \text{softmax}(q^T_i k_j); \text{out}_i = \sum_k \alpha_{i,j} v_j$

- Intuition: key, query, and value can focus on different parts of input
Multi-headed attention

• Standard attention: single-headed attention
 - \(X_t \in \mathbb{R}^d, Q, K, V \in \mathbb{R}^{d \times d} \)
 - We only look at a single position \(j \) with high \(\alpha_{i,j} \)
 - What if we want to look at different \(j \) for different reasons?

• Idea: define \(h \) separate attention heads
 - \(h \) different attention distributions, keys, values, and queries
 - \(Q^\ell, K^\ell, V^\ell \in \mathbb{R}^{d \times \frac{d}{h}} \) for \(1 \leq \ell \leq h \)
 - \(\alpha_{i,j}^\ell = \text{softmax}(q_i^\ell k_j^\ell) \); \(\text{out}_i^\ell = \sum_j \alpha_{i,j}^\ell v_j^\ell \)
Multi-headed attention

- Standard attention: single-headed attention
 - \(X_t \in \mathbb{R}^d \), \(Q, K, V \in \mathbb{R}^{d \times d} \)
 - We only look at a single position \(j \) with high \(\alpha_{i,j} \)
 - What if we want to look at different \(j \) for different reasons?
- Idea: define \(h \) separate attention heads
 - \(h \) different attention distributions, keys, values, and queries
 - \(Q^\ell, K^\ell, V^\ell \in \mathbb{R}^{d \times \frac{d}{h}} \) for \(1 \leq \ell \leq h \)
 - \(\alpha_{i,j}^\ell = \text{softmax}((q_i^\ell)^	op k_j^\ell) \); \(\text{out}_i^\ell = \sum_j \alpha_{i,j}^\ell v_j^\ell \)
Transformer

Transformer-based sequence-to-sequence model

- Basic building blocks: self-attention
 - Position encoding
 - Post-processing MLP
 - Attention mask

- Enhancements:
 - Key-query-value attention
 - Multi-headed attention
 - Architecture modifications:
 - Residual connection
 - Layer normalization
Transformer

Machine translation with transformer

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
<th>Training Cost (FLOPs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EN-DE</td>
<td>EN-FR</td>
</tr>
<tr>
<td>ByteNet [18]</td>
<td>23.75</td>
<td></td>
</tr>
<tr>
<td>Deep-Att + PosUnk [39]</td>
<td></td>
<td>39.2</td>
</tr>
<tr>
<td>GNMT + RL [38]</td>
<td>24.6</td>
<td>39.92</td>
</tr>
<tr>
<td>ConvS2S [9]</td>
<td>25.16</td>
<td>40.46</td>
</tr>
<tr>
<td>MoE [32]</td>
<td>26.03</td>
<td>40.56</td>
</tr>
<tr>
<td>Deep-Att + PosUnk Ensemble [39]</td>
<td></td>
<td>40.4</td>
</tr>
<tr>
<td>GNMT + RL Ensemble [38]</td>
<td>26.30</td>
<td>41.16</td>
</tr>
<tr>
<td>ConvS2S Ensemble [9]</td>
<td>26.36</td>
<td>41.29</td>
</tr>
<tr>
<td>Transformer (base model)</td>
<td>27.3</td>
<td>38.1</td>
</tr>
<tr>
<td>Transformer (big)</td>
<td>28.4</td>
<td>41.8</td>
</tr>
</tbody>
</table>
Transformer

- Limitations of transformer: Quadratic computation cost
 - Linear for RNNs
 - Large cost for large sequence length, e.g., $L > 10^4$

- Follow-ups:
 - Large-scale training: transformer-XL; XL-net (‘20)
 - Projection tricks to $O(L)$: Linformer (‘20)
 - Math tricks to $O(L)$: Performer (‘20)
 - Sparse interactions: Big Bird (‘20)
 - Deeper transformers: DeepNet (‘22)
Transformer for Images

- Vision Transformer (’21)
 - Decompose an image to 16x16 patches and then apply transformer encoder
Transformer for Images

- Swin Transformer (’21)
 - Build hierarchical feature maps at different resolution
 - Self-attention only within each block
 - Shifted block partitions to encode information between blocks

Figure 2. An illustration of the shifted window approach for com-
CNN vs. RNN vs. Attention

Convolution

Recurrence

Self-Attention
Summary

• Language model & sequence to sequence model:
 • Fundamental ideas and methods for sequence modeling

• Attention mechanism
 • So far the most successful idea for sequence data in deep learning
 • A scale/order-invariant representation
 • Transformer: a fully attention-based architecture for sequence data
 • Transformer + Pretraining: the core idea in today’s NLP tasks

• LSTM is still useful in lightweight scenarios
Other architectures

- GNN
- CNN
- RNN
- DeepSets
- transformer
Graph Neural Networks

Adjacency matrix $n \times n$

Feature matrix $n \times d$

arbitrary ordering of nodes
Graph Neural Networks

permutation-equivariant

\[F(PX, PAP^T) = PF(X, A) \]
Geometric Deep Learning

Perceptrons
Function regularity

CNNs
Translation

Group-CNNs
Translation + Rotation

DeepSets / Transformers
Permutation

GNNs
Permutation

Intrinsic CNNs
Local frame choice