Hw 2 Dug  2[17

Recurrent Neural
Networks




Recurrent Neural Network

e /1, hidden state Yt
° th input h, * * * * * * *
e Y. output . R , X

Ny : - f f f f i f f
° Yl" hl‘ =f(ht—17 Xt, 9) X(t)

e h_,:initial state t=0

Time

Fully-connect NN vs. RNN
e RNN can be viewed as repeated applying fully-connected NNs

o h, = o, (WX, + WDh,_, + b D)
° Yt — GZ(W(Z)hz + b(z)) Q

* 01, 0, are activation functions (sigmoid, RelLU, tanh, etc)




Practical issues of RNN

Linear RNN derlvatlon
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Practical issues of RNN: training

Gradient explosion and gradient vanishing
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Techniques for avoiding gradient explosion

e Gradient clipping
e |dentity initialization

e Truncated backprop through time
e Only backprop for a few stens
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Preserve Long-Term Memory

e Difficult for RNN to preserve long-term memory

e The hidden state A, is constantly being written (short-term memory)
e Use a separate cell to maintain long-term memory
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Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, "97)
e RNN architecture for learning long-term dependencies

e 0. layer with sigmoid activation
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Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, "97)
e Core idea: maintain separate state /1, and cell ¢, (memory)
— —
o ht: full update every step
M
* ¢,: only partially update through gates
“e ¢ layer outputs importance ([0,1]) for each entry and only modify those
entries of ¢,
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Long Short-Term Memory Network

Forget gate f,
e f, outputs whether we want to “forget” things in c,
e Compute ¢,_; © f, (element-wise)
e (i) = 0O: want to forget c,(i)
e (i) = 1: we want to keep the information in ¢ (i)

fe =0 Wg-[hi—1,2¢] + by)




Long Short-Term Memory Network

Input gate 1,
e [, extracts useful information from X, to update memory
e ¢,: information from X, to update memory
e i.: which dimension in the memory should be updated by X,
o i&—;_l: we want to use the infarmation in ¢,(j) to upda,te memory
e i,(t) = 0:¢,(j) should not contribute to memory
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Long Short-Term Memory Network

Memory update

ec,=f0c_+10C¢,

o f, forget gate; i, input date

e f, © c,_q: drop useless information in old memory

* [, © C,: add selected new information from current input



Long Short-Term Memory Network

Qutput gate o,
e Next hidden state i, = 0, © tanh(c,)
e tanh(c,): non-linear transformation over all past information
* 0,: choose important dimensions for the next state
° 0(j) = 1 :tanh(c,())) is important for the next state
e 0(j) = 0 :tanh(c,())) is not important

I T

Canh> Ot = 0 (WO [ht_1,$t] + bo)
0y X) — —_——
- htcz oy * tanh (C})
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Long Short-Term Memory Network
& ® 6

e h, = 0, © tanh(c,) 1 t

ec,=f0c_;+1,07¢, 4 blo—e \>[ N

e N [0 (@] [0] R N
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Remarks:

1. No more matrix multiplications for ¢,
2. LSTM does not have guarantees for gradient explosion/vanishing

3. LSTM is the dominant architecture Wling from’13-"16.
4. Why tanh i e
o- ¢




LSTM Variant

Peephold Connections (Gers & Schmidhuber '00)
 Allow gates to take in ¢, information
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LSTM Variant

Simplified LSTM
e Assumei, =1 —f,
e Only two gates are needed: fewer parameters
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LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. '14)
e Merge h, and ¢,;: much fewer parameters
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LSTM application: language model

e Autoregressive language model: P(X;0) = HthlP(Xt | X.; 0)
- ZX

e X: a sentence

e Sequential generation
e LSTM language model

* X,: word at position t.

e Y.: softmax over all words
e Data: a collection of texts:—

o Wiki

P(WI1"The") P(WI"...quick") P(WI"..brown") P(W]I"..fox")

| Softmax l I Softmax I | Softmax I | Softmax '
A A v v
—h RNN h+—{ RNN I-hz—-l RNN I-hs—-l RNN I»h,‘—»

IlThell llquickll Ilbrownll llfoxll




LSTM application: text classification

Bi-directional LSTM and them run softmax on the final hidden state.

‘ SPAM
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INBOX
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Y(O) Y(1) Y(2) Y(T 2) Y(T 1) Y(T)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
; E h,(inf)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
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Attention Mechanism
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Machine Translation

e Before 2014: Statistical Machine Translation (SMT)
e Extremely complex systems that require massive human efforts
e Separately designed components
e A |ot of feature engineering
e Lots of linguistic domain knowledge and expertise

e Before 2016:
e Google Translate is based on statistical machine learning

e What happened in 2014?
e Neural machine translation (NMT)



Sequence to Sequence Model

e Neural Machine Translation (NMT)
e Learning to translate via a single end-to-end neural network.

e Source Ianguage sentence X, target Ianguage sentence Y =f(X; Q)
R

e Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)
e Two RNNs: f,, .and f,,.

e Encoderj,, .

e Takes X as input, and output the initial hidden state for decoder

e Can use bidirectional RNN
e Decoder f,,.:
e It takes in the hidden state from f,, . to generate Y

e Can use autoregressive language model



Sequence to Sequence Model

The sequence-to-sequence model

Target sentence (output)

Encoding of the source sentence. r A N\
Provides initial hidden state , . .
for Decoder RNN. he hit me with a pie <END>
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Source sentence (input)

Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.




Training Sequence to Sequence Model

e Collect a huge paired dataset and train it end-to-end via BPTT
e Loss induced by MLE P(Y | X) = P(Y | f,,.(X))

= negative log = negative log = negative log
1 T prob of “he” prob of “with” prob of <END>
D)/ S (7} PRy Ay A [ Ry Ay A 2

t=1 A N N A A 3
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N N N N

A

~
-
-~
Cd

P o
= &
CE o o o o o o o 8_
2 oo >{e1o181 8|18 ®
O o] |o| [(o] |o] |e| [o] |o -
(&)

c =
— P
il a m’  entarté <START> he hit me  with a pie
\ J \ J

Y Y
Source sentence (from corpus) Target sentence (from corpus)

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.




Deep Sequence to Sequence Model

e Stacked seqg2seq model

Translation
generated
Encoder:
Builds up } Decoder
sentence
meaning
Source Feeding in
last word

sentence



Machine Translation

e 2016: Google switched Google Translate from SMT to NMT
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Alighment

e Alignment: the word-level correspondence between X and Y
e Can have complex long-term dependencies

Morgen ich nach Kanada||zur Konferen:z
Tomorrow will fly to the conference||in Canada
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Issue in Seq2Seq

e Alignment: the word-level correspondence between X and Y
e The information bottleneck due to the hidden state &
e We want each Y, to also focus on some X; that it is alighed with

Encoding of the
source sentence.

This needs to capture all Target sentence (output)
information about the e A N\
source sentence. he  hit me with a pie <END>
Information bottleneck!
— o
e
= —
o [ () é‘/ (0] (0] (@) (0] (@) 0] @)
- o] |.|® Jol Jeo| .ol Jo| .Jol |o| Jo
5o [ [ 10| “|O o 10| |0 @) (@)
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L
il a m’  entarté <START> he hit me  with a pie
N J
Y

Source sentence (input)
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Seq2Seq with Attention

e NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, '15)
e Coreidea:

e When decoding Y,, consider both hidden states and alighment:

e Hidden state: i, = f;,.(Y;_,) -
e Alignment: connect to a portion of X

—

e When portion of X to focus on?
e Learn a softmax weight overX attention dlstrlbutlon©
D
P (X; |ht) how much attention to put on word X
N~

Attentlon output i, = Zfenc(Xl Xic)) - ,;(X | 7_y)

e Use i,_; and h,, to compute Yt
; Co—




Seq2Seq with Attention

dot product
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Seq2Seq with Attention

Attention

Encoder

scores

RNN

dot product
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Source sentence (input)
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Seq2Seq with Attention

Attention

Encoder

scores

RNN

dot product
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il a m’  entarté <START>
1\ J
Y

Source sentence (input)

NNY Japodag



Seq2Seq with Attention

dot product

Attention
scores

$= [ L
| .
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Lu . T T
il a m’  entarté <START>
1\ J
Y

Source sentence (input)

NNY 42p03=2(



Seq2Seq with Attention

Attention

Attention

Encoder

distribution

scores

RNN

On this decoder timestep, we’re

mostly focusing on the first
{ / encoder hidden state (“he”)

Take softmax to turn the scores
into a probability distribution

() (] (<) O
(©) (] N O ()
| |O® O O
O (] (<] (@)
il a m’  entarté <START>
1\ J
Y

Source sentence (input)

NNY J9p023(



Seq2Seq with Attention

Attention o Use the attention distribution to take a
output weighted sum of the encoder hidden

c e states.
S 2 {: .............
+ 5
c 9
521 ]
250 = —= = The attention output mostly contains

© information from the hidden states that

received high attention.

Attention
scores

/ 'éﬁw/

RNN

Encoder

Q —> 0000

()
()
()
(*]
entarté <START>

\ J

Source sentence (input)

NNY 19p023Q



Seq2Seq with Attention

Attention
distribution

Attention

Encoder

scores

RNN

Attention
output

~

Q —> 0000

entarte

3

J

Y
Source sentence (input)

<START>

Concatenate attention output
with decoder hidden state, then
use to compute J; as before

NNY 42p02a(



Seq2Seq with Attention

Attention

Decoder RNN
—
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Seq2Seq with Attention

me

Attention

Decoder RNN
—M

A

output
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Seq2Seq with Attention

with

AN

Attention

Decoder RNN
—M

output
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Seq2Seq with Attention

pie

Attention

Decoder RNN
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Seq2Seq with Attention

Summary
e Input sequence X, encoder f,, ., and decoder f,,.
® fone(X) produces hidden states A", hy", ..., hy'"
e On time step 7, we have decoder hidden state 7,
e Compute attention score ¢; = h,' h*"
e Compute attention distribution a; = P, (X;) = softmax(e;)
, Attention output: ;" = Z o;h "
i

* Y, ~ g(hy, hyys 0)

e Sample an output using both A, and &} ¢



Attention

e |t significantly improves NMT.

e |t solves the @Le_nﬂck_pr_oblem and the long-term dependency issue.
e Also hWanishing problem. 2z 25 o2
-@)vides some interpretability |

e Understanding which word the RNN encoder focuses on 2

.
e Attention is a general technique entarte :.!-

e Given a set of vector values V; and vector query g
e Attention computes a weighted sum of values depending on ¢

Other use cases:

e Attention can be viewed as a module.

* |n encoder and decoder (more on this later)
e A representation of a set of points

e Pointer network (Vinyals, Forunato, Jaitly "15)
e Deep Sets (Zaheer et al., "17)
e Convolutional neural networks

e To include non-local information in CNN (Non-local network, “18)




Attention

e Representation learning:
e A method to obtain a fixed representation corresponding to a query g from

an arbitrary set of representations { V,} % - T
) —
.9) (A ¢

e Attention distribution: a; = SOﬁmaX(f(Vi

, Attention output: v, = 2 a;V;

e Attent variant: f(v;, q)
e Multiplicative attention: f(v;, q) = q' Wh;, W is a weight matrix
e Additive attention: f(v;, q) = uTtanh(lel- + W,q)



A
Wt R
e Obtain g, v,, k, from X, 1/(/ @ Q 5 &

e q,=WiX;v, = W"'X; k, = WkX (position encoding omitted)
0 W‘I WY, W¥ are Iearnable weight matrices

o Ui = softmax(ql. j), out; = Z a; Vi

Key-query-value attention

e |ntuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

XQ = XQKTXT
KT XT E IRTXT

N

softmax| xQKTXT | xy =
output € RT*4



Attention is all you need (Vsawani ’17)

e A pure attention-based architecture for sequence modeling
e No RNN at all! o

e Basic component: self-attention, ¥ = f¢,(X; 0) crose
e X, uses attention on entire X sequence becouse

e Y, computed from X, and the attention output s s

too too

e Computing Y, ired red
* Key K, k,, value Vp query.g, from(X, | |
(kza Vis Qz) =8 (Xt’ 0) F ’ F

self-attention

e Attention dlstrlbutlon @_SMCJ’\
: 1 41 V1 kz 42 V2 k3 q3 v3 kr qr vr
, Attention output ouf; = 2 at] ] (9 Y \+/

The The
animal
didn’t
cross
the
street

because

t
] self-attention

o Y, = g,(out;0)

1'\E}'v1 ky g2 vo k3 q3 vs kr qr vr
w1 Wy W3 Wr

The chef who food



Issues of Vanilla Self-Attention

e Attention is order-invariant
f\

e Lack of non-linearities
e All the weights are simple weighted average

~—

e Capability of autoregressive modeling
"o In generation tasks, the model cannot “look at the future’

e e.g. Text generation:

e Y, can only depend on X, _,
e But vanilla self-attention requires the entire sequence

)



Position Encoding

¢ Vanilla self-attention

(kt’ Vi q,) = gl(Xta 0)
o ;= softmax(q )

. Attention output out, = Z Q iV

—_— ]

e |dea: position encoding:

* p;: an embedding vector (feature) of position i
¢ (kta Vp Qt) — gl([Xapt ) )

S——————

e |n practice: Additive is sufficient: k, « k +p.q, < q,+p, v, <V, + p,;
(k¥ G,) = 81(X;; 0) T —e &

e p,is only included in the first layer

—

= o



Position Encoding

p, design 1: Sinusoidal position representation
* Pros:

e simple

e naturally models “relative position”

e Easily applied to long sequences
e Cons:

e Not learnable

e Generalization poorly to sequences longer than training data

T T
£l LY

Posi

Heatmap of plij

/sing/100002*1/d)\
cos(i/100002*1/4)
pPi = *

Dimension

d
sin(i/lOOOOZ*Z/ 4

Kcos(i/100002*5/d)/

Index in the sequence



Position Encoding

p, design 2: Learned representation

e Assume maximum length L, learn a matrix p € RT p;is acolumn of p
e Pros:

e Flexible

e Learnable and more powerful
e Cons:

e Need to assume a fixed maximum length L

e Does not work at all for length above L



Combine Self-Attention with Nonlinearity

e Vanilla self-attention
e No element-wise activation (e.g., ReLU, tanh)
e Only weighted average and softmax operator

e Fix:
e Add an MLP to process out;
e m; = MLP(out;) = W,ReLU(W,out, + b,) + b,
e Usually do not put activation layer before softmaax

A . i
FF FF FF FF
f ! ! f

self-attention

I S

FF FF FF FF
1 ! , !
self-attention
. . . LN .
Wy Wy W3 WT

The chef who food



Masked Attention

* In language model decoder: P(Ythiq)
e out, cannot look at future X._,

e Masked attention
» Computee; ; = qiTkj as usuall
e Mask out e;, ; by setting ¢;,,; = — o0
Ol -M)« —x
e M is a fixed 0/1 mask matrix

e Then compute a; = softmax(e;)
e Remarks:

e M = 1 for full self-attention
e Set M for arbitrary dependency ordering

raw attention weights mask

Yy Yys  Ys U:  YUs  Yg




Transformer

Transformer-based sequence-to-sequence modeling

[predictions!]

— )
Decoder

t

[ )

[ )

[ )

%

[decoder attends t
to encoder states] °

¢
Transformer
Decoder

-

[input sequence] [output sequence]




Key-query-value attention

e Obtain g,, v,, k, from X,
e g, = WiX;v, = WX, k, = W*X, (position encoding omitted)
o W9, WY, WX are learnable weight matrices

_ T7,\. _
o Ui = softmax(ql. kj), out; = 2 a; iv;
k

e Intuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

XQ = XQKTXT
KT XT E IRTXT

P

softmax| xQKTXT | xy =
output € R7*4



Multi-headed attention

e Standard attention: single-headed attention
e X. € R% Q,K, Ve R
e We only look at a single position j with
high o; ;
e What if we want to look at different j for
different reasons?
 |dea: define /& separate attention heads

e /1 different attention distributions, keys,
values, and queries

e OV, K, Vl € R for 1 <?¢<h

l,]

#Params Unchanged!

Single-head attention
(just the query matrix)

X XQ
Q:

 _ NTLEY p1tf — a4
, @ = softmax((q; ) 'k ); out; = Z & Vi
J

Multi-head attention

(just two heads here)

X XQ; X0,
1@z =




Multi-headed attention

e Standard attention: single-headed attention
e X. € R% Q,K, Ve R
e We only look at a single position j with
high o; ;
e What if we want to look at different j for
different reasons?
 |dea: define /& separate attention heads

e /1 different attention distributions, keys,
values, and queries

e OV, K, Vl € R for 1 <?¢<h

J

£ INTLEN it — 217
, @ = softmax((q; ) 'k ); out; = Z @i Vi
J

Utterance Level Representation

W 2

Attention 3

Wiz Wp3 W3z Wiz Wsz  Wgs Wn3

Attention 2

Wiz Wi Wiy Wiy Wiy Wgy Wn2
,—r" A]\\ Attention 1
m-wm- T B O “pm-
Wi1 Wi1 Wzg Wiy Wsqp Wey Wn1
hys I Head 3
hy, I Head 2
hiq I Head 1

hl h2 h3 h4 hS h6 hN
\

' Sequence of Encoded Representations or Hidden States -




Transformer

Output
Transformer-based sequence-to-sequence model Probabilties
e Basic building blocks: self-attention -
e Position encoding ==
. Forward
® Post-processing MLP N m—
. 4 1 R Add & Norm
e Attention mask —{(AddE Nom ) It Head
Feed Attention
Forward ¥ ¥ Nx
 S——
e Enhancements: o | e
e Key-query-value attention e " Rtention
e Multi-headed attention ===
: e e Sostion o
* Architecture modifications: Eroodng QS QS
e Residual connection 2l zoupty
e Layer normalization ] ]
Inputs Outputs

(shifted right)



Transformer

Machine translation with transformer

BLEU Training Cost (FLOPs)

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3-10" 14-.10%
ConvS2S [9] 25.16  40.46 9.6-10"® 1.5-10%
MoE [32] 26.03  40.56 2.0-101% 1.2.10%0
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 2630  41.16 1.8-10%  1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-1017  1.2-10%
Transformer (base model) 27.3 38.1 3.3.10'%

Transformer (big) 28.4 41.8 2.3.101




Transformer

e Limitations of transformer: Quadratic computation cost
e Linear for RNNs

e Large cost for large sequence length, e.g., L > 10*

e Follow-ups:
e Large-scale training: transformer-XL; XL-net (‘20)
* Projection tricks to O(L): Linformer ('20)
e Math tricks to O(L): Performer (‘20)
e Sparse interactions: Big Bird (‘20)
e Deeper transformers: DeepNet ('22)



Transformer for Images

e Vision Transformer ('21)
e Decompose an image to 16x16 patches and then apply transformer encoder

Transformer Encoder

A

Vision Transformer (ViT)

L x

MLP
Head

MLP

|

Norm

Transformer Encoder

1
]
|
]

.e I
)
]
| F
I

3 | .
e - 09 1) DL | | (R

)
)
|
)
1

* Extra learnable

[class] embedding Linear Projection of Flattened Patches
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Transformer for Images

e Swin Transformer ('21)

e Build hierachical feature maps at different resolution
e Self-attention only within each block
e Shifted block partitions to encode information between blocks
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Figure 2. An illustration of the shifted window approach for com-



CNN vs. RNN vs. Attention
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Summary

e Language model & sequence to sequence model:
e Fundamental ideas and methods for sequence modeling

e Attention mechanism
e So far the most successful idea for sequence data in deep learning
e A scale/order-invariant representation
e Transformer: a fully attention-based architecture for sequence data
e Transformer + Pretraining: the core idea in today’s NLP tasks

e LSTM is still useful in lightweight scenarios



Other architectures




Graph Neural Networks
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Graph Neural Networks




Geometric Deep Learning
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