Recurrent Neural Networks

Recurrent Neural Network

- h_t : hidden state
- X_t: input
- *Y_t*: output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state

Fully-connect NN vs. RNN

- RNN can be viewed as repeated applying fully-connected NNs
- $h_t = \sigma_1(W^{(1)}X_t + W^{(11)}h_{t-1} + b^{(1)})$
- $Y_t = \sigma_2(W^{(2)}h_t + b^{(2)})$
- σ_1, σ_2 are activation functions (sigmoid, ReLU, tanh, etc)

Practical issues of RNN

Linear RNN derivation

Practical issues of RNN: training

Gradient explosion and gradient vanishing

Techniques for avoiding gradient explosion

- Gradient clipping
- Identity initialization
- Truncated backprop through time
 - Only backprop for a few steps

Preserve Long-Term Memory

- Difficult for RNN to preserve long-term memory
 - The hidden state h_t is constantly being written (short-term memory)
 - Use a separate cell to maintain long-term memory

LSTM (Hochreitcher & Schmidhuber, '97)

- RNN architecture for learning long-term dependencies
- σ : layer with sigmoid activation

LSTM (Hochreitcher & Schmidhuber, '97)

- Core idea: maintain separate state h_t and cell c_t (memory)
- *h_t*: full update every step
- *c_t*: only *partially* update through gates
 - σ layer outputs importance ([0,1]) for each entry and only modify those entries of c_t

Forget gate f_t

• f_t outputs whether we want to "forget" things in c_t

- Compute $c_{t-1} \odot f_t$ (element-wise)
- $f_t(i) \rightarrow 0$: want to forget $c_t(i)$
- $f_t(i) \rightarrow 1$: we want to keep the information in $c_t(i)$

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Input gate i_t

- i_t extracts useful information from X_t to update memory
 - \tilde{c}_t : information from X_t to update memory
 - i_t : which dimension in the memory should be updated by X_t
 - $i_t(j) \rightarrow 1$: we want to use the information in $\tilde{c}_t(j)$ to update memory
 - $i_t(t) \rightarrow 0$: $\tilde{c}_t(j)$ should not contribute to memory

 $i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$ $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$

Memory update

- $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
- f_t forget gate; i_t input date
- $f_t \odot c_{t-1}$: drop useless information in old memory
- $i_t \odot \tilde{c}_t$: add selected new information from current input

Output gate o_t

- Next hidden state $h_t = o_t \odot \tanh(c_t)$
 - $tanh(c_t)$: non-linear transformation over all past information
 - *o_t*: choose important dimensions for the next state
 - $o_t(j) \rightarrow 1$: tanh $(c_t(j))$ is important for the next state
 - $o_t(j) \rightarrow 0$: tanh $(c_t(j))$ is not important

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

- $h_t = o_t \odot \tanh(c_t)$
- $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
- $Y_t = g(h_t)$

Remarks:

- 1. No more matrix multiplications for c_t
- 2. LSTM does not have guarantees for gradient explosion/vanishing
- 3. LSTM is the dominant architecture for sequence modeling from '13 '16.
- 4. Why tanh

LSTM Variant

Peephold Connections (Gers & Schmidhuber '00)

• Allow gates to take in c_t information

LSTM Variant

Simplified LSTM

- Assume $i_t = 1 f_t$
- Only two gates are needed: fewer parameters

LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. '14)

• Merge h_t and c_t : much fewer parameters

LSTM application: language model

- Autoregressive language model: $P(X; \theta) = \prod_{t=1}^{L} P(X_t \mid X_{i < t}; \theta)$
 - X: a sentence
 - Sequential generation
- LSTM language model
 - *X_t*: word at position *t*.
 - *Y_t*: softmax over all words
- Data: a collection of texts:
 - Wiki

LSTM application: text classification

Bi-directional LSTM and them run softmax on the final hidden state.

Attention Mechanism

Machine Translation

- Before 2014: Statistical Machine Translation (SMT)
 - Extremely complex systems that require massive human efforts
 - Separately designed components
 - A lot of feature engineering
 - Lots of linguistic domain knowledge and expertise
- Before 2016:
 - Google Translate is based on statistical machine learning
- What happened in 2014?
 - Neural machine translation (NMT)

Sequence to Sequence Model

- Neural Machine Translation (NMT)
 - Learning to translate via a **single end-to-end** neural network.
 - Source language sentence X, target language sentence $Y = f(X; \theta)$
- Sequence to Sequence Model (Seq2Seq, Sutskever et al., '14)
 - Two RNNs: f_{enc} and f_{dec}
 - Encoder *f*_{enc}:
 - Takes X as input, and output the initial hidden state for decoder
 - Can use bidirectional RNN
 - Decoder f_{dec} :
 - It takes in the hidden state from f_{enc} to generate Y
 - Can use autoregressive language model

Sequence to Sequence Model

Training Sequence to Sequence Model

- Collect a huge paired dataset and train it end-to-end via BPTT
- Loss induced by MLE $P(Y|X) = P(Y|f_{enc}(X))$

Seq2seq is optimized as a single system. Backpropagation operates "end-to-end".

Deep Sequence to Sequence Model

Stacked seq2seq model

Machine Translation

• 2016: Google switched Google Translate from SMT to NMT

Alignment

- Alignment: the word-level correspondence between X and Y
- Can have complex long-term dependencies

Issue in Seq2Seq

- Alignment: the word-level correspondence between X and Y
 - The information bottleneck due to the hidden state h
 - We want each Y_t to also focus on some X_i that it is aligned with

- NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, '15)
- Core idea:
 - When decoding Y_t , consider both hidden states and alignment:
 - Hidden state: $h_t = f_{dec}(Y_{i < t})$
 - \bullet Alignment: connect to a portion of X
 - When portion of *X* to focus on?
 - Learn a softmax weight over X: attention distribution P_{att}
 - $P_{att}(X_i | h_t)$: how much attention to put on word X_i Attention output $h_{att} = \sum f_{enc}(X_i | X_{j < i}) \cdot P_{att}(X_i | h_{t-1})$
 - Use h_{t-1} and h_{att} to compute Y_t

Decoder RNN

Decoder RNN

Decoder RNN

Summary

- Input sequence X, encoder f_{enc} , and decoder f_{dec}
- $f_{enc}(X)$ produces hidden states $h_1^{enc}, h_2^{enc}, ..., h_N^{enc}$
- On time step t, we have decoder hidden state h_t
- Compute attention score $e_i = h_t^{\top} h_i^{enc}$
- Compute attention distribution $\alpha_i = P_{att}(X_i) = \text{softmax}(e_i)$ • Attention output: $h_{att}^{enc} = \sum \alpha_i h_i^{enc}$
- $Y_t \sim g(h_t, h_{att}^{enc}; \theta)$
 - Sample an output using both h_t and h_{att}^{enc}

Attention

- It significantly improves NMT.
- It solves the bottleneck problem and the long-term dependency issue.
- Also helps gradient vanishing problem.
- Provides some interpretability
 - Understanding which word the RNN encoder focuses on
- Attention is a general technique
 - Given a set of vector values V_i and vector query q
 - Attention computes a weighted sum of values depending on \boldsymbol{q}

Other use cases:

- Attention can be viewed as a module.
- In encoder and decoder (more on this later)
- A representation of a set of points
 - Pointer network (Vinyals, Forunato, Jaitly '15)
 - Deep Sets (Zaheer et al., '17)
- Convolutional neural networks
 - To include non-local information in CNN (Non-local network, '18)

Attention

- Representation learning:
 - A method to obtain a fixed representation corresponding to a query q from an arbitrary set of representations $\{V_i\}$
 - Attention distribution: $\alpha_i = \operatorname{softmax}(f(v_i, q))$ • Attention output: $v_{att} = \sum \alpha_i v_i$
- Attent variant: $f(v_i, q)$
 - Multiplicative attention: $f(v_i, q) = q^{\top} W h_i$, W is a weight matrix
 - Additive attention: $f(v_i, q) = u^{\mathsf{T}} \operatorname{tanh}(W_1 v_i + W_2 q)$

Key-query-value attention

- Obtain q_t , v_t , k_t from X_t • $q_t = W^q X_t$; $v_t = W^v X_t$; $k_t = W^k X_t$ (position encoding omitted) • W^q , W^v , W^k are learnable weight matrices • $\alpha_{i,j} = \operatorname{softmax}(q_i^{\mathsf{T}} k_j)$; $out_i = \sum_k \alpha_{i,j} v_j$
- Intuition: key, query, and value can focus on different parts of input

Attention is all you need (Vsawani '17)

- A pure attention-based architecture for sequence modeling
 - No RNN at all!
- Basic component: self-attention, $Y = f_{SA}(X; \theta)$
 - X_t uses attention on entire X sequence
 - Y_t computed from X_t and the attention output
- Computing Y_t
 - Key k_t , value v_t , query q_t from X_t
 - $(k_t, v_t, q_t) = g_1(X_t; \theta)$
 - Attention distribution $\alpha_{t,j} = \operatorname{softmax}(q_t^\top k_j)$
 - Attention output $out_t = \sum \alpha_{t,j} v_j$
 - $Y_t = g_2(out_t; \theta)$

Issues of Vanilla Self-Attention

• Attention is order-invariant

- Lack of non-linearities
 - All the weights are simple weighted average

- Capability of autoregressive modeling
 - In generation tasks, the model cannot "look at the future"
 - e.g. Text generation:
 - Y_t can only depend on $X_{i < t}$
 - But vanilla self-attention requires the entire sequence

Position Encoding

- Vanilla self-attention
 - $(k_t, v_t, q_t) = g_1(X_{\underline{t}}; \theta)$
 - $\alpha_{t,j} = \operatorname{softmax}(q_t^{\top} k_j)$ • Attention output $out_t = \sum_{i} \alpha_{t,j} v_j$
- Idea: position encoding:
 - p_i : an embedding vector (feature) of position i
 - $(k_t, v_t, q_t) = g_1([X_t, p_t]; \theta)$
- In practice: Additive is sufficient: $k_t \leftarrow \tilde{k}_t + p_t, q_t \leftarrow \tilde{q}_t + p_t, v_t \leftarrow \tilde{v}_t + p_t;$ $(\tilde{k}_t, \tilde{v}_t, \tilde{q}_t) = g_1(X_t; \theta)$
- p_t is only included in the first layer

Position Encoding

 $p_t \operatorname{design} 1:$ Sinusoidal position representation

- Pros:
 - simple
 - naturally models "relative position"
 - Easily applied to long sequences
- Cons:
 - Not learnable
 - Generalization poorly to sequences longer than training data

Heatmap of $p_i^T p_j$

Position Encoding

p_t design 2: Learned representation

- Assume maximum length L, learn a matrix $p \in \mathbb{R}^{d \times T}$, p_t is a column of p
- Pros:
 - Flexible
 - Learnable and more powerful
- Cons:
 - Need to assume a fixed maximum length ${\cal L}$
 - Does not work at all for length above ${\cal L}$

Combine Self-Attention with Nonlinearity

- Vanilla self-attention
 - No element-wise activation (e.g., ReLU, tanh)
 - Only weighted average and softmax operator
- Fix:
 - Add an MLP to process *out_i*
 - $m_i = MLP(out_i) = W_2 \text{ReLU}(W_1 out_i + b_1) + b_2$
 - Usually do not put activation layer before softmaax

Masked Attention

- In language model decoder: $P(Y_t | X_{i < t})$
 - out_t cannot look at future $X_{i>t}$
- Masked attention
 - Compute $e_{i,j} = q_i^{\top} k_j$ as usuall
 - Mask out $e_{i>j}$ by setting $e_{i>j} = -\infty$
 - $e \odot (1 M) \leftarrow -\infty$
 - *M* is a fixed 0/1 mask matrix
 - Then compute $\alpha_i = \operatorname{softmax}(e_i)$
 - Remarks:
 - M = 1 for full self-attention
 - Set *M* for arbitrary dependency ordering

raw attention weights

mask

Transformer-based sequence-to-sequence modeling

Key-query-value attention

- Obtain q_t , v_t , k_t from X_t • $q_t = W^q X_t$; $v_t = W^v X_t$; $k_t = W^k X_t$ (position encoding omitted) • W^q , W^v , W^k are learnable weight matrices • $\alpha_{i,j} = \operatorname{softmax}(q_i^{\mathsf{T}} k_j)$; $out_i = \sum_k \alpha_{i,j} v_j$
- Intuition: key, query, and value can focus on different parts of input

Multi-headed attention

- Standard attention: single-headed attention
 - $X_t \in \mathbb{R}^d$, $Q, K, V \in \mathbb{R}^{d \times d}$
 - We only look at a single position j with high $\alpha_{\!i,j}$
 - What if we want to look at different j for different reasons?
- Idea: define h separate attention heads
 - *h* different attention distributions, keys, values, and queries

•
$$Q^{\ell}, K^{\ell}, V^{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}$$
 for $1 \leq \ell \leq h$
• $\alpha_{i,j}^{\ell} = \operatorname{softmax}((q_i^{\ell})^{\top} k_j^{\ell}); out_i^{\ell} = \sum_j \alpha_{i,j}^{\ell} v_j^{\ell}$

#Params Unchanged!

Multi-headed attention

- Standard attention: single-headed attention
 - $X_t \in \mathbb{R}^d$, $Q, K, V \in \mathbb{R}^{d \times d}$
 - We only look at a single position j with high $\alpha_{\!i,j}$
 - What if we want to look at different j for different reasons?
- Idea: define h separate attention heads
 - *h* different attention distributions, keys, values, and queries

•
$$Q^{\ell}, K^{\ell}, V^{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}$$
 for $1 \leq \ell \leq h$
• $\alpha_{i,j}^{\ell} = \operatorname{softmax}((q_i^{\ell})^{\top} k_j^{\ell}); out_i^{\ell} = \sum_j \alpha_{i,j}^{\ell} v_j^{\ell}$

Transformer-based sequence-to-sequence model

- Basic building blocks: self-attention
 - Position encoding
 - Post-processing MLP
 - Attention mask
- Enhancements:
 - Key-query-value attention
 - Multi-headed attention
 - Architecture modifications:
 - Residual connection
 - Layer normalization

Machine translation with transformer

-				-	
Model	BLEU		Training Cost (FLOPs)		
	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4\cdot10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5\cdot10^{20}$	
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2\cdot10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2\cdot10^{21}$	
Transformer (base model)	27.3	38.1	3.3 •	$3.3\cdot10^{18}$	
Transformer (big)	28.4	41.8	$2.3\cdot 10^{19}$		

- Limitations of transformer: Quadratic computation cost
 - Linear for RNNs
 - Large cost for large sequence length, e.g., $L > 10^4$
- Follow-ups:
 - Large-scale training: transformer-XL; XL-net ('20)
 - Projection tricks to O(L): Linformer ('20)
 - Math tricks to O(L): Performer ('20)
 - Sparse interactions: Big Bird ('20)
 - Deeper transformers: DeepNet ('22)

Transformer for Images

- Vision Transformer ('21)
 - Decompose an image to 16x16 patches and then apply transformer encoder

Transformer for Images

- Swin Transformer ('21)
 - Build hierachical feature maps at different resolution
 - Self-attention only within each block
 - Shifted block partitions to encode information between blocks

CNN vs. RNN vs. Attention

Summary

- Language model & sequence to sequence model:
 - Fundamental ideas and methods for sequence modeling
- Attention mechanism
 - So far the most successful idea for sequence data in deep learning
 - A scale/order-invariant representation
 - Transformer: a fully attention-based architecture for sequence data
 - Transformer + Pretraining: the core idea in today's NLP tasks
- LSTM is still useful in lightweight scenarios

Other architectures

Graph Neural Networks

arbitrary ordering of nodes

permutation-equivariant

$$\mathbf{F}(\mathbf{P}\mathbf{X}, \mathbf{P}\mathbf{A}\mathbf{P}^{\top}) = \mathbf{P}\mathbf{F}(\mathbf{X}, \mathbf{A})$$

Geometric Deep Learning

Perceptrons Function regularity

CNNs Translation

Group-CNNs Translation+Rotation

DeepSets / Transformers Permutation

GNNs Permutation

Intrinsic CNNs Local frame choice