
Recurrent Neural
Networks

Recurrent Neural Network

• :	hidden	state	
• :	input	
• :	output	
• 	
• :	initial	state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

Fully-connect	NN	vs.	RNN	
• RNN	can	be	viewed	as	repeated	applying	fully-connected	NNs	
• 	
• 	
• 	are	activation	functions	(sigmoid,	ReLU,	tanh,	etc)

ht = σ1(W (1)Xt + W (11)ht−1 + b(1))
Yt = σ2(W (2)ht + b(2))
σ1, σ2

Practical issues of RNN

Linear	RNN	derivation	

Practical issues of RNN: training

Gradient	explosion	and	gradient	vanishing	

Techniques for avoiding gradient explosion

• Gradient	clipping	

• Identity	initialization	

• Truncated	backprop	through	time	
• Only	backprop	for	a	few	steps	

Preserve Long-Term Memory

• Difficult	for	RNN	to	preserve	long-term	memory	
• The	hidden	state	 	is	constantly	being	written	(short-term	memory)	
• Use	a	separate	cell	to	maintain	long-term	memory	

ht

Long Short-Term Memory Network

LSTM	(Hochreitcher	&	Schmidhuber,	’97)	
• RNN	architecture	for	learning	long-term	dependencies	
• :	layer	with	sigmoid	activation	σ

Long Short-Term Memory Network

LSTM	(Hochreitcher	&	Schmidhuber,	’97)	
• Core	idea:	maintain	separate	state	 	and	cell	 	(memory)	
• :	full	update	every	step	
• :	only	partially	update	through	gates	

• 	layer	outputs	importance	()	for	each	entry	and	only	modify	those	
entries	of	 	

ht ct
ht
ct

σ [0,1]
ct

Long Short-Term Memory Network

Forget	gate	 	
• 	outputs	whether	we	want	to	“forget”	things	in	 	

• Compute	 	(element-wise)	
• :	want	to	forget	 	
• :	we	want	to	keep	the	information	in	 	

ft
ft ct

ct−1 ⊙ ft
ft(i) → 0 ct(i)
ft(i) → 1 ct(i)

Long Short-Term Memory Network

Input	gate	 	
• 	extracts	useful	information	from	 	to	update	memory	

• :	information	from	 	to	update	memory	
• :	which	dimension	in	the	memory	should	be	updated	by	 	

• :	we	want	to	use	the	information	in	 	to	update	memory	
• :	 	should	not	contribute	to	memory	

it
it Xt

c̃t Xt
it Xt

it(j) → 1 c̃t(j)
it(t) → 0 c̃t(j)

Long Short-Term Memory Network

Memory	update	
• 	
• 	forget	gate;	 	input	date	
• :	drop	useless	information	in	old	memory	
• :	add	selected	new	information	from	current	input	

ct = ft ⊙ ct−1 + it ⊙ c̃t
ft it
ft ⊙ ct−1
it ⊙ c̃t

Long Short-Term Memory Network

Output	gate	 	
• Next	hidden	state	 	

• :	non-linear	transformation	over	all	past	information	
• :	choose	important	dimensions	for	the	next	state	

• 	is	important	for	the	next	state	
• 	is	not	important	

ot
ht = ot ⊙ tanh(ct)

tanh(ct)
ot

ot(j) → 1 : tanh(ct(j))
ot(j) → 0 : tanh(ct(j))

Long Short-Term Memory Network

• 	
• 	
• 	

ht = ot ⊙ tanh(ct)
ct = ft ⊙ ct−1 + it ⊙ c̃t
Yt = g(ht)

Remarks:	
1. No	more	matrix	multiplications	for	 	
2. LSTM	does	not	have	guarantees	for	gradient	explosion/vanishing	
3. LSTM	is	the	dominant	architecture	for	sequence	modeling	from	’13	-	’16.	
4. Why	tanh	

ct

LSTM Variant

Peephold	Connections	(Gers	&	Schmidhuber	’00)	
• Allow	gates	to	take	in	 	information	ct

LSTM Variant

Simplified	LSTM	
• Assume	 	
• Only	two	gates	are	needed:	fewer	parameters	

it = 1 − ft

LSTM Variant

Gated	Recurrent	Unit	(GRU,	Cho	et	al.	’14)	
• Merge	 	and	 :	much	fewer	parameters	ht ct

LSTM application: language model

• Autoregressive	language	model:	 	
• :	a	sentence	
• Sequential	generation	

• LSTM	language	model	
• :	word	at	position	 .	
• :	softmax	over	all	words	

• Data:	a	collection	of	texts:	
• Wiki	

P(X; θ) = ΠL
t=1P(Xt ∣ Xi<t; θ)

X

Xt t
Yt

LSTM application: text classification

Bi-directional	LSTM	and	them	run	softmax	on	the	final	hidden	state.	

Attention Mechanism

Machine Translation

• Before	2014:	Statistical	Machine		Translation	(SMT)	
• Extremely	complex	systems	that	require	massive	human	efforts	
• Separately	designed	components	
• A	lot	of	feature	engineering	
• Lots	of	linguistic	domain	knowledge	and	expertise	

• Before	2016:	
• Google	Translate	is	based	on	statistical	machine	learning	

• What	happened	in	2014?	
• Neural	machine	translation	(NMT)

Sequence to Sequence Model

• Neural	Machine	Translation	(NMT)	
• Learning	to	translate	via	a	single	end-to-end	neural	network.	
• Source	language	sentence	 ,	target	language	sentence	 	

• Sequence	to	Sequence	Model	(Seq2Seq,	Sutskever	et	al.	,	‘14)	
• Two	RNNs:	 	and	 	
• Encoder	 :	

• Takes	 	as	input,	and	output	the	initial	hidden	state	for	decoder	
• Can	use	bidirectional	RNN	

• Decoder	 :	
• It	takes	in	the	hidden	state	from	 	to	generate	 	
• Can	use	autoregressive	language	model

X Y = f(X; θ)

fenc fdec
fenc
X

fdec
fenc Y

Sequence to Sequence Model

Training Sequence to Sequence Model

• Collect	a	huge	paired	dataset	and	train	it	end-to-end	via	BPTT	
• Loss	induced	by	MLE	P(Y |X) = P(Y | fenc(X))

Deep Sequence to Sequence Model

• Stacked	seq2seq	model

Machine Translation

• 2016:	Google	switched	Google	Translate	from	SMT	to	NMT

Alignment

• Alignment:	the	word-level	correspondence	between	X	and	Y	
• Can	have	complex	long-term	dependencies

Issue in Seq2Seq

• Alignment:	the	word-level	correspondence	between	X	and	Y	
• The	information	bottleneck	due	to	the	hidden	state	 	
• We	want	each	 	to	also	focus	on	some	 	that	it	is	aligned	with

h
Yt Xi

Seq2Seq with Attention

• NMT	by	jointly	learning	to	align	and	translate	(Bahdanau,	Cho,	Bengio,	’15)	
• Core	idea:	

• When	decoding	 ,	consider	both	hidden	states	and	alignment:	
• Hidden	state:	 	
• Alignment:	connect	to	a	portion	of	 	

• When	portion	of	 	to	focus	on?	
• Learn	a	softmax	weight	over	 :	attention	distribution	 	
• :	how	much	attention	to	put	on	word	 	

• Attention	output	 	

• Use	 	and	 	to	compute	

Yt
ht = fdec(Yi<t)

X
X

X Patt
Patt(Xi |ht) Xi

hatt = ∑
i

fenc(Xi |Xj<i) ⋅ Patt(Xi |ht−1)

ht−1 hatt Yt

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Summary	
• Input	sequence	 ,	encoder	 ,	and	decoder	 	
• 	produces	hidden	states	 	
• On	time	step	 ,	we	have	decoder	hidden	state	 	
• Compute	attention	score	 	
• Compute	attention	distribution	 	

• Attention	output:	 	

• 	
• Sample	an	output	using	both	 	and	

X fenc fdec
fenc(X) henc

1 , henc
2 , …, henc

N
t ht

ei = h⊤
t henc

i
αi = Patt(Xi) = soimax(ei)

henc
att = ∑

i

αihenc
i

Yt ∼ g(ht, henc
att ; θ)

ht henc
att

Attention

• It	significantly	improves	NMT.	
• It	solves	the	bottleneck	problem	and	the	long-term	dependency	issue.	
• Also	helps	gradient	vanishing	problem.	
• Provides	some	interpretability	

• Understanding	which	word	the	RNN	encoder	focuses	on		

• Attention	is	a	general	technique	
• Given	a	set	of	vector	values	 	and	vector	query	 	
• Attention	computes	a	weighted	sum	of	values	depending	on	 	

Other	use	cases:	
• Attention	can	be	viewed	as	a	module.	
• In	encoder	and	decoder	(more	on	this	later)	
• A	representation	of	a	set	of	points	

• Pointer	network	(Vinyals,	Forunato,	Jaitly	’15)		
• Deep	Sets	(Zaheer	et	al.,	’17)	

• Convolutional	neural	networks	
• To	include	non-local	information	in	CNN	(Non-local	network,	’18)

Vi q
q

Attention

• Representation	learning:	
• A	method	to	obtain	a	fixed	representation	corresponding	to	a	query	 	from	
an	arbitrary	set	of	representations	 	

• Attention	distribution:	 	

• Attention	output:	 	

• Attent	variant:	 	
• Multiplicative	attention:	 ,	 	is	a	weight	matrix	
• Additive	attention:	

q
{Vi}

αi = soimax(f(vi, q))
vatt = ∑

i

αivi

f(vi, q)
f(vi, q) = q⊤Whi W

f(vi, q) = u⊤tanh(W1vi + W2q)

Key-query-value attention

• Obtain	 	from	 	
• ;	 ;	 	(position	encoding	omitted)	

• 	are	learnable	weight	matrices	

• 	

• Intuition:	key,	query,	and	value	can	focus	on	different	parts	of	input

qt, vt, kt Xt
qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = soimax(q⊤
i kj); outi = ∑

k

αi, jvj

Attention is all you need (Vsawani ’17)

• A	pure	attention-based	architecture	for	sequence	modeling	
• No	RNN	at	all!	

• Basic	component:	self-attention,	 	
• 	uses	attention	on	entire	 	sequence	
• 	computed	from	 	and	the	attention	output	

• Computing	 	
• Key	 ,	value	 ,	query	 	from	 	

• 	
• Attention	distribution	 	

• Attention	output	 	

• 	

Y = fSA(X; θ)
Xt X
Yt Xt

Yt
kt vt qt Xt
(kt, vt, qt) = g1(Xt; θ)

αt, j = soimax(q⊤
t kj)

outt = ∑
j

αt, jvj

Yt = g2(outt; θ)

Issues of Vanilla Self-Attention

• Attention	is	order-invariant	

• Lack	of	non-linearities	
• All	the	weights	are	simple	weighted	average	

• Capability	of	autoregressive	modeling	
• In	generation	tasks,	the	model	cannot	“look	at	the	future”	
• e.g.	Text	generation:	

• 	can	only	depend	on	 	
• But	vanilla	self-attention	requires	the	entire	sequence

Yt Xi<t

Position Encoding

• Vanilla	self-attention	
• 	
• 	

• Attention	output	 	

• Idea:	position	encoding:	
• :	an	embedding	vector	(feature)	of	position	 	
• 	

• In	practice:	Additive	is	sufficient:	 ;	
	

• 	is	only	included	in	the	first	layer

(kt, vt, qt) = g1(Xt; θ)
αt, j = soimax(q⊤

t kj)
outt = ∑

j

αt, jvj

pi i
(kt, vt, qt) = g1([Xt, pt]; θ)

kt ← k̃t + pt, qt ← q̃t + pt, vt ← ṽt + pt
(k̃t, ṽt, q̃t) = g1(Xt; θ)

pt

Position Encoding

	design	1:	Sinusoidal	position	representation	
• Pros:		

• simple	
• naturally	models	“relative	position”	
• Easily	applied	to	long	sequences	

• Cons:	
• Not	learnable	
• Generalization	poorly	to	sequences	longer	than	training	data

pt

Position Encoding

	design	2:	Learned	representation	
• Assume	maximum	length	 ,	learn	a	matrix	 ,	 	is	a	column	of	 	
• Pros:		

• Flexible	
• Learnable	and	more	powerful	

• Cons:	
• Need	to	assume	a	fixed	maximum	length	 	
• Does	not	work	at	all	for	length	above	 	

pt
L p ∈ ℝd×T pt p

L
L

Combine Self-Attention with Nonlinearity

• Vanilla	self-attention	
• No	element-wise	activation	(e.g.,	ReLU,	tanh)	
• Only	weighted	average	and	softmax	operator	

• Fix:	
• Add	an	MLP	to	process	 	
• 	
• Usually	do	not	put	activation	layer	before	softmaax	

outi
mi = MLP(outi) = W2ReLU(W1outi + b1) + b2

Masked Attention

• In	language	model	decoder:	 	
• 		cannot	look	at	future	 	

• Masked	attention	
• Compute	 	as	usuall	
• Mask	out	 	by	setting	 	

• 	
• 	is	a	fixed	0/1	mask	matrix	

• Then	compute	 	
• Remarks:	

• 	for	full	self-attention	
• Set	 	for	arbitrary	dependency	ordering	

P(Yt |Xi<t)
outt Xi>t

ei, j = q⊤
i kj

ei>j ei>j = − ∞
e ⊙ (1 − M) ← − ∞
M

αi = soimax(ei)

M = 1
M

Transformer

Transformer-based	sequence-to-sequence	modeling	

Key-query-value attention

• Obtain	 	from	 	
• ;	 ;	 	(position	encoding	omitted)	

• 	are	learnable	weight	matrices	

• 	

• Intuition:	key,	query,	and	value	can	focus	on	different	parts	of	input

qt, vt, kt Xt
qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = soimax(q⊤
i kj); outi = ∑

k

αi, jvj

Multi-headed attention

• Standard	attention:	single-headed	attention	
• ,	 	
• We	only	look	at	a	single	position	 	with	
high	 	

• What	if	we	want	to		look	at	different	 	for	
different	reasons?	

• Idea:	define	 	separate	attention	heads	
• 	different	attention	distributions,	keys,	
values,	and	queries	

• 	for	 	

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = soimax((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jv

ℓ
j

Multi-headed attention

• Standard	attention:	single-headed	attention	
• ,	 	
• We	only	look	at	a	single	position	 	with	
high	 	

• What	if	we	want	to		look	at	different	 	for	
different	reasons?	

• Idea:	define	 	separate	attention	heads	
• 	different	attention	distributions,	keys,	
values,	and	queries	

• 	for	 	

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = soimax((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jv

ℓ
j

Transformer

Transformer-based	sequence-to-sequence	modeling	

• Basic	building	blocks:	self-attention	
• Position	encoding	
• Post-processing	MLP	
• Attention	mask	

• Enhancements:	
• Key-query-value	attention	
• Multi-headed	attention	
• Architecture	modifications:	

• Residual	connection	
• Layer	normalization	

Transformer

Machine	translation	with	transformer	

Transformer

• Limitations	of	transformer:	Quadratic	computation	cost	
• Linear	for	RNNs	
• Large	cost	for	large	sequence	length,	e.g.,	 	

• Follow-ups:	
• Large-scale	training:	transformer-XL;	XL-net	(‘20)	
• Projection	tricks	to	 :	Linformer	('20)	
• Math	tricks	to	 :	Performer	(‘20)	
• Sparse	interactions:	Big	Bird	(‘20)	
• Deeper	transformers:	DeepNet	(’22)	

L > 104

O(L)
O(L)

Transformer for Images

• Vision	Transformer	(’21)	
• Decompose	an	image	to	16x16	patches	and	then	apply	transformer	encoder	

Transformer for Images

• Swin	Transformer	(’21)	
• Build	hierachical	feature	maps	at	different	resolution	

• Self-attention	only	within	each	block	
• Shifted	block	partitions	to	encode	information	between	blocks	

CNN vs. RNN vs. Attention

Summary

• Language	model	&	sequence	to	sequence	model:	
• Fundamental	ideas	and	methods	for	sequence	modeling	

• Attention	mechanism	
• So	far	the	most	successful	idea	for	sequence	data	in	deep	learning	
• A	scale/order-invariant	representation	
• Transformer:	a	fully	attention-based	architecture	for	sequence	data	
• Transformer	+	Pretraining:	the	core	idea	in	today’s	NLP	tasks	

• LSTM	is	still	useful	in	lightweight	scenarios	

Other architectures

Graph Neural Networks

Graph Neural Networks

Geometric Deep Learning

