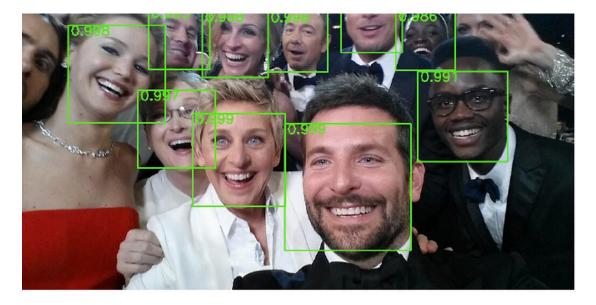
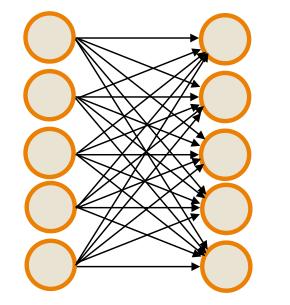
Convolutional Neural Networks

Neural Network Architecture

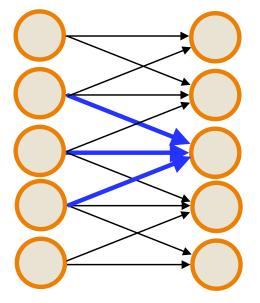
Objects are often **localized in space** so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.



Similarly, to identify edges or other local structure, it makes sense to only look at **local information**



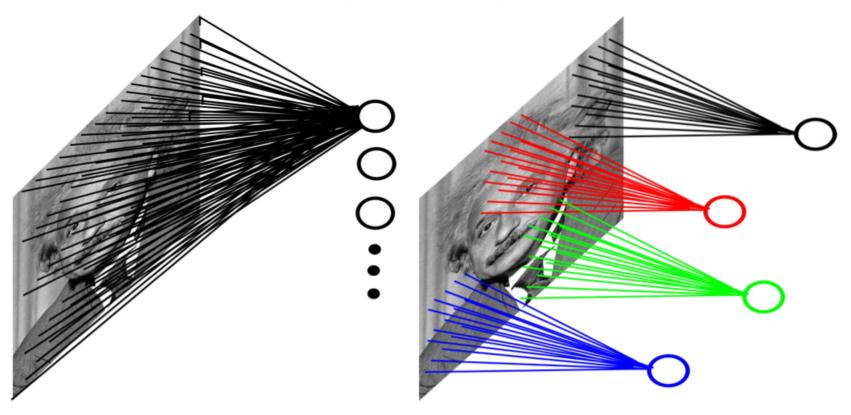
VS.



2d Convolution Layer

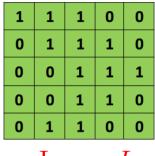
Example: 200x200 image

- Fully-connected, 400,000 hidden units = 16 billion parameters
- Locally-connected, 400,000 hidden units 10x10 fields = 40 million params
- Local connections capture local dependencies



Convolution of images (2d convolution)

$$(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$



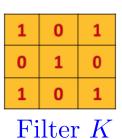
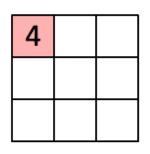


Image I

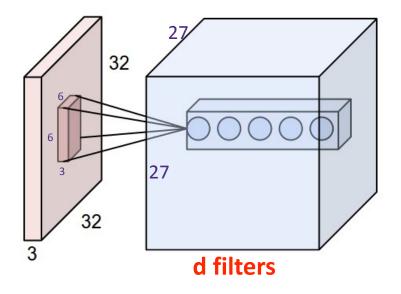
1 _×1	1 _×0	1 _×1	0	0
0 _{×0}	1 _×1	1 _×0	1	0
0 _{×1}	0 _×0	1 _×1	1	1
0	0	1	1	0
0	1	1	0	0

Image



Convolved Feature I * K

Stacking convolved images



Repeat with d filters!

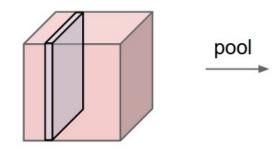
Pooling

Pooling reduces the dimension x and can be interpreted as "This filter had a high response in this general region"

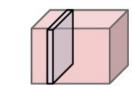
Single depth slice

max pool with 2x2 filters and stride 2

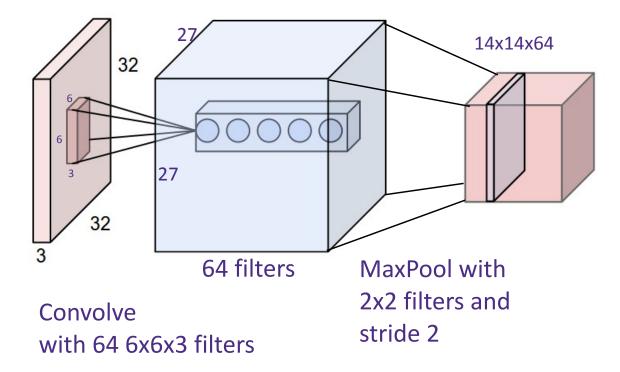
6	8
3	4



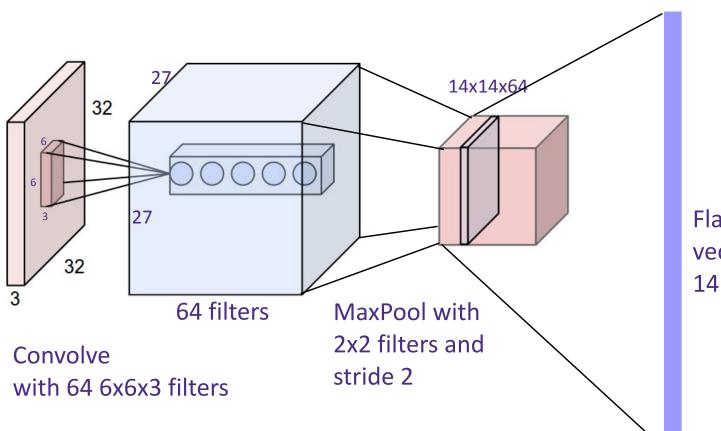
У



Pooling Convolution layer

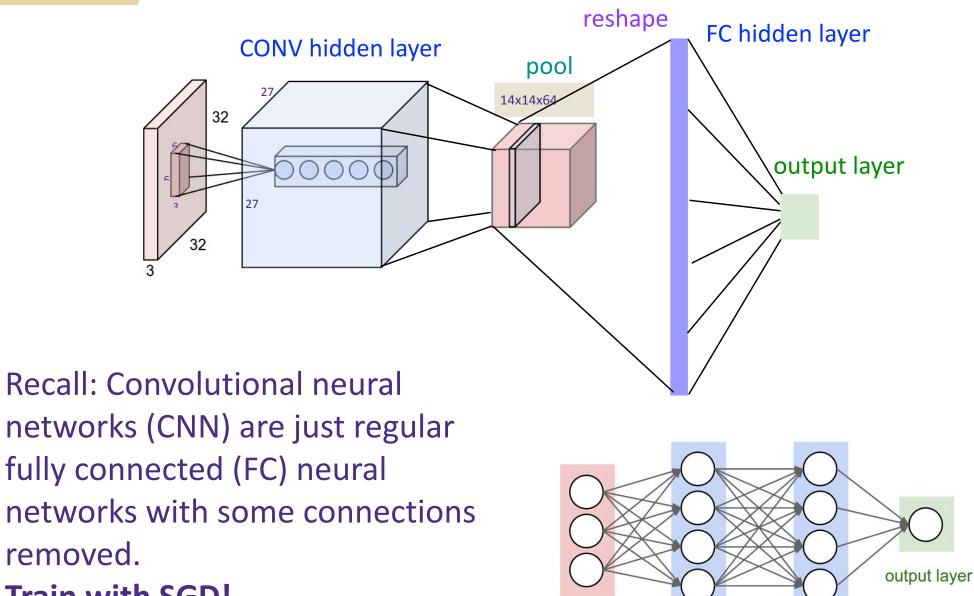


Flattening



Flatten into a single vector of size 14*14*64=12544

Training Convolutional Networks

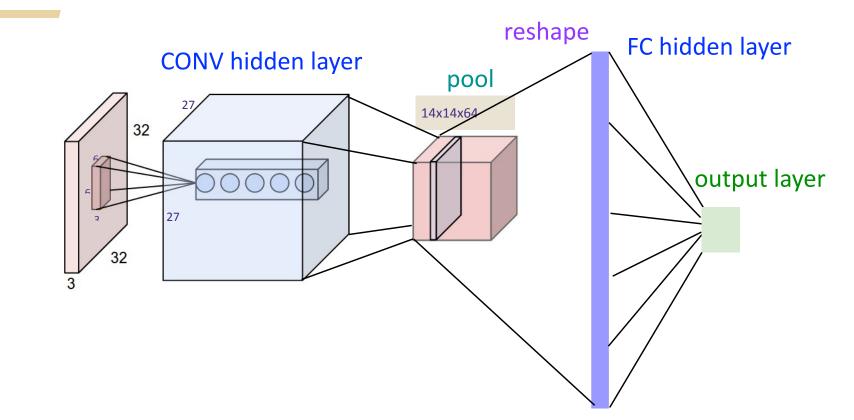


input layer

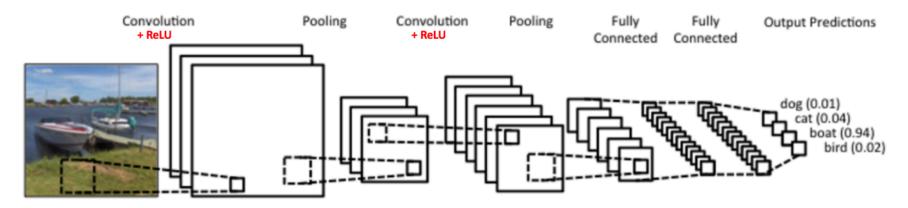
Train with SGD!

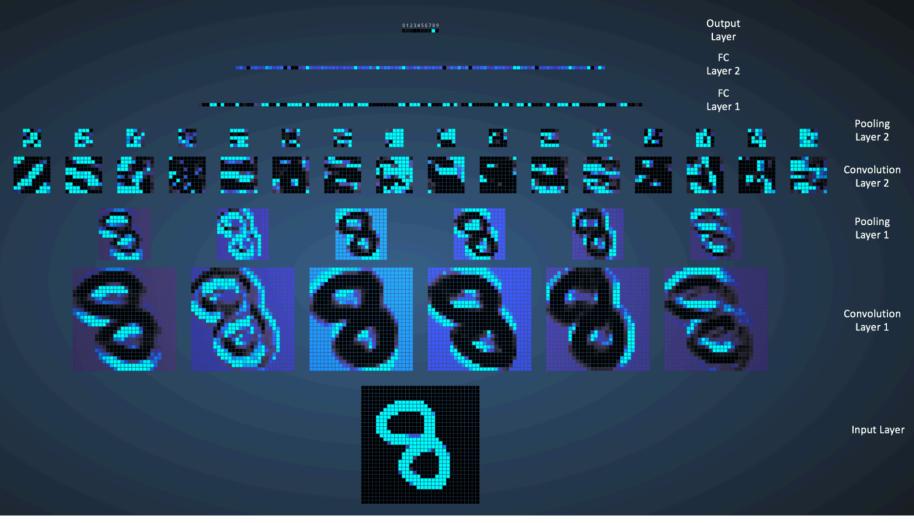
hidden layer 1 hidden layer 2

Training Convolutional Networks

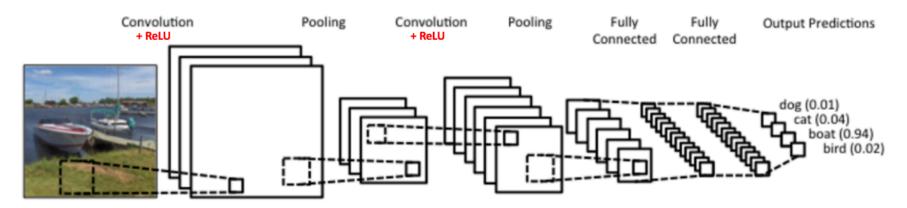


Real example network: LeNet





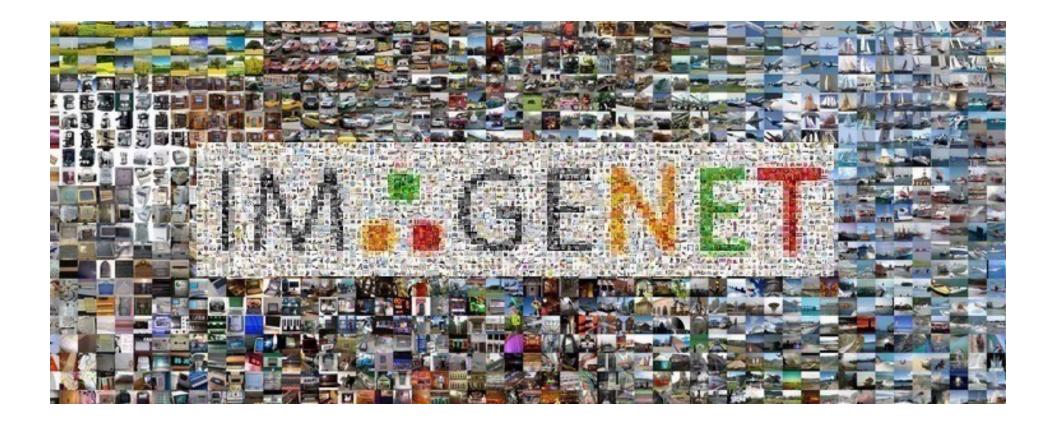
Real example network: LeNet



Famous CNNs

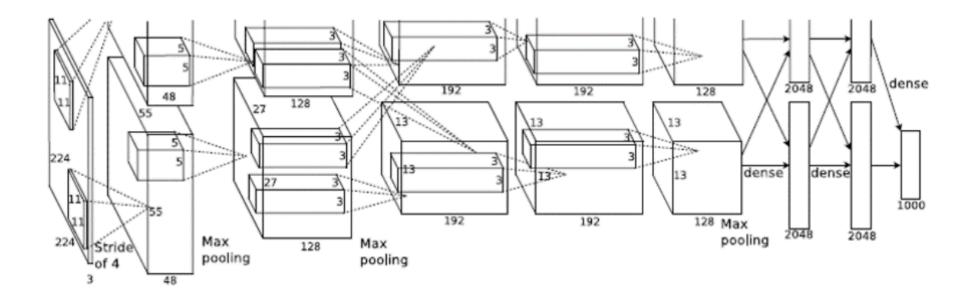
ImageNet Dataset

~14 million images, 20k classes

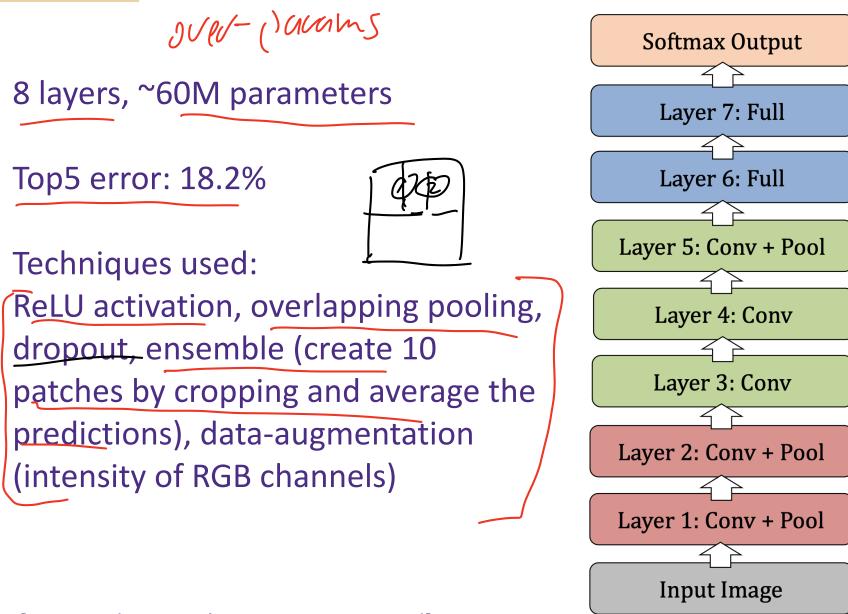


Deng et al. "Imagenet: a large scale hierarchical image database" '09

Breakthrough on ImageNet: ~the beginning of deep learning era



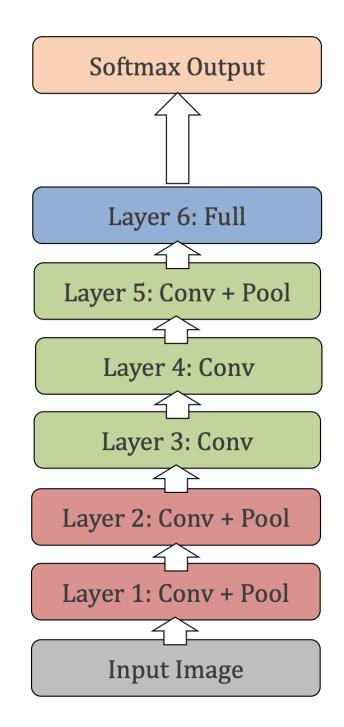
Krizhevsky, Sutskever, Hinton "ImageNet Claasification with Deep Convolutional Neural Networks", NIPS 2012. TPst of Aucud



Remove top fully-connected layer 7

Drop ~16 million parameters

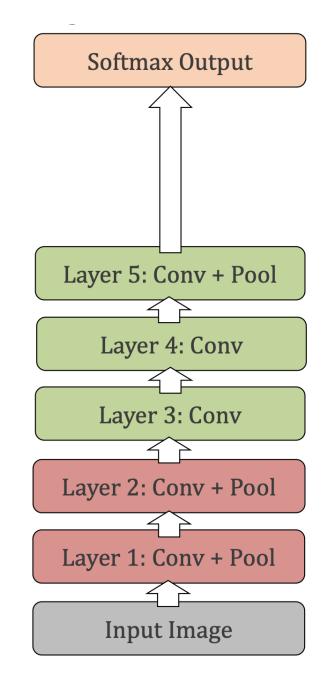
1.1% drop in performance



Remove both fully connected layers 6 and 7

Drop ~50 million parameters

5.7% drop in performance

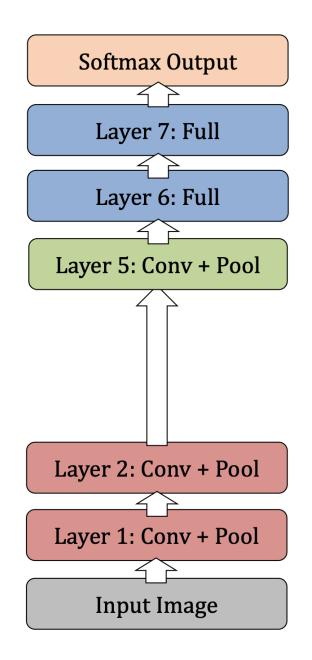


AlexNet

Remove upper convolutio / feature extractor layers (layer 3 and 4)

Drop ~1 million parameters

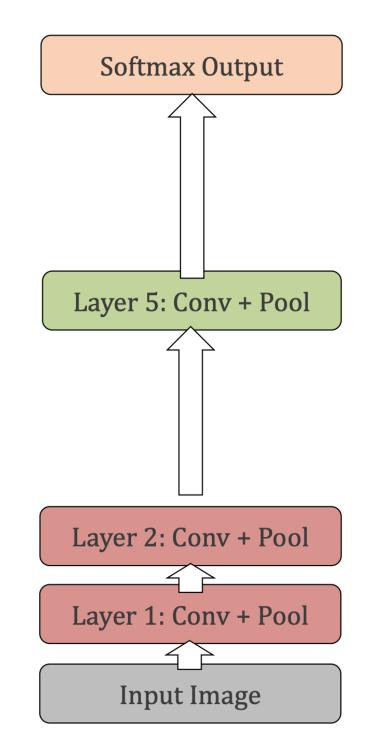
3% drop in performance



Remove top fully connected layer 6,7 and upper convolution layers 3,4.

33.5% drop in performance.

Depth of the network is the key.



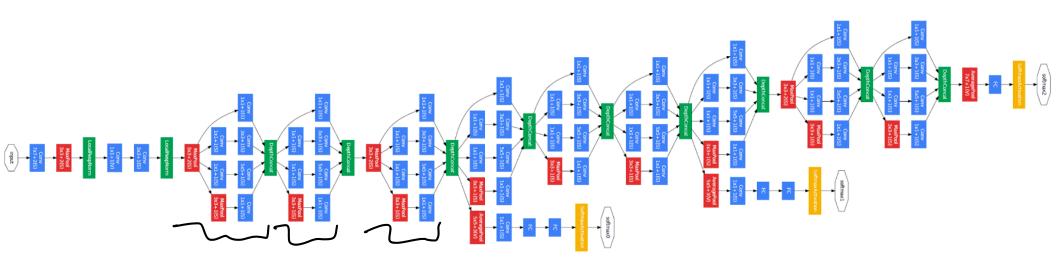
Motivation: multiscale nature of images

7×7,5×5 (×1,3×3

Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]



Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]

Inception Module



Multiple filter scales at each layer

Dimensionality reduction to keep computational requirements down

[Going Deep with Convolutions, Szegedy et al. '14]

Residual Networks

Motivation: extremely deep nets are hard to train (gradient explosion/ vanishing) *Jewning decay*

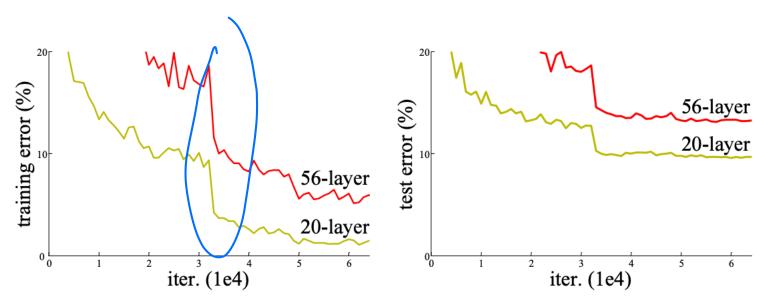
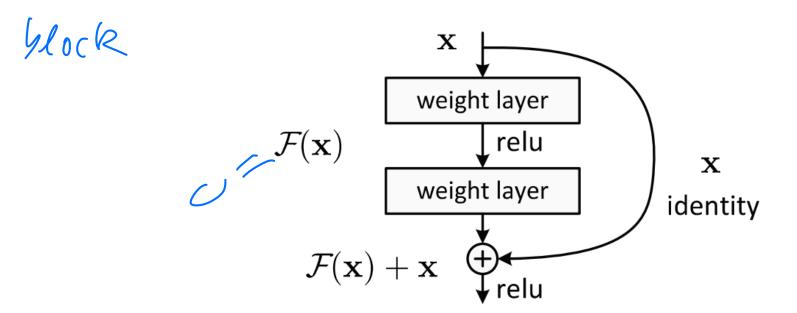


Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

[He, Zhang, Ren, Sun, '16]

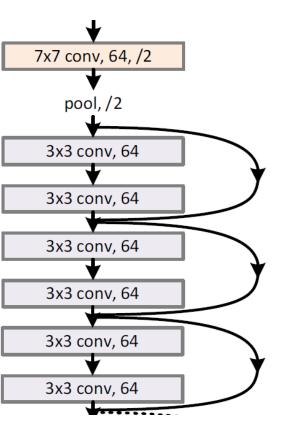
Idea: identity shortcut, skip one or more layers.

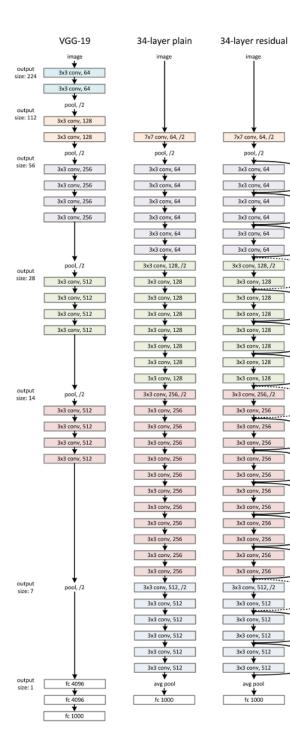
Justification: network can easily simulate shallow network ($F \approx 0$), so performance should not degrade by going deeper.



[He, Zhang, Ren, Sun, '16]

Residual Networks 3.57% top-5 error on ImageNet • First deep network with > 100 layers. • Widely used in many domains (AlphaGo) 7x7 conv, 64, /2 pool, /23x3 conv, 64





[He, Zhang, Ren, Sun, '16]

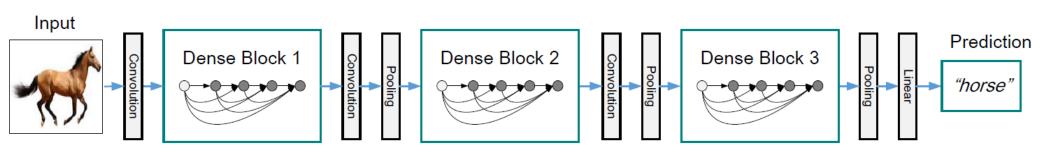
Densely Connected Network

Idea: explicit forward output of layer to all future layers (by concatenation)

Intuition: helps vanishing gradients, encourage reuse features (reduce parameter count)

Issues: network maybe too wide, need to be careful about memory consumption

Zhang Ren Sun '16



 H_{2}

Neural Architecture / Hyper-Parameter Search

Many design choices:

- Number of layers, width, kernel size, pooling, connections, etc.
- Normalization, learning rate, batch size, etc.

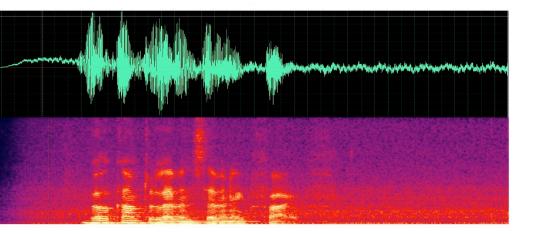
Strategies:

- Grid search
- Random search [Bergestra & Bengio '12]
- Bandit-based [Li et al. '16]
- Gradient-based (DARTS) [Liu et al. '19]
- Neural tangent kernel [Xu et al. '21]

Recurrent Neural Networks

Sequence Data

andid



time Sevies

检测语言 英语 中文 德语 ✓	↔ 中文(简体) 英语 日语 ∨	
Deep learning is a popular area in AI.	G × 深度学习是AI的热门领域。	☆
	Shēndù xuéxí shì Al de rèmén lĭngyù.	
. ↓	38 / 5000 📖 🌒	Ē / <

HMM, PUMPP

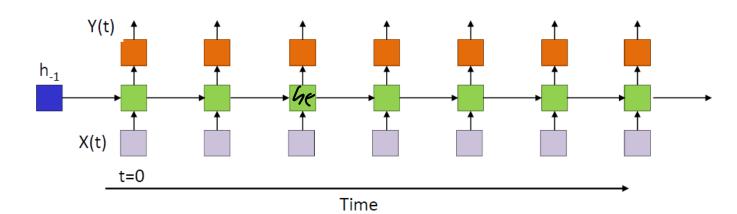
State-Space Model

- h_t : hidden state
- X_t : input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$ h_{-1} : initial state



Recurrent Neural Network

- h_t : hidden state
- X_t : input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



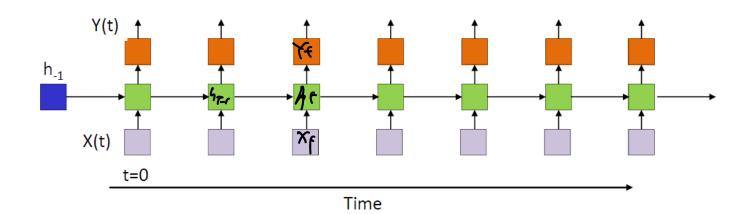
Fully-connect NN vs. RNN

- *h_t*: a vector summarizes all past inputs (a.k.a. "memory")
- h_{-1} affects the entire dynamics (typically set to zero)
- X_t affects all the outputs and states after t
- Y_t depends on X_0, \ldots, X_t

$$F(: (X_0, \cdots, X_{\tau}) \rightarrow (Y_0, \cdots, Y_{\tau})$$

Recurrent Neural Network

- h_t : hidden state
- X_t : input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



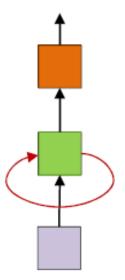
Fully-connect NN vs. RNN

• RNN can be viewed as repeated applying fully-connected NNs

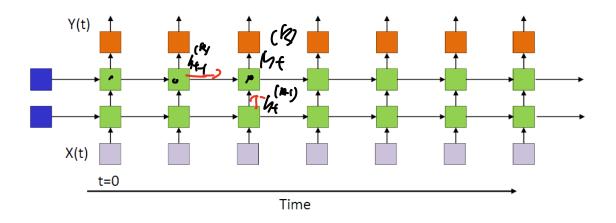
•
$$h_t = \sigma_1(\underline{W^{(1)}X_t} + \underline{W^{(11)}h_{t-1}} + \underline{b^{(1)}})$$

•
$$Y_t = \sigma_2(\underline{W^{(2)}}h_t + \underline{b^{(2)}})$$

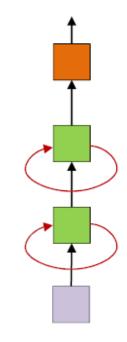
• σ_1, σ_2 are activation functions (sigmoid, ReLU, tanh, etc)



Recurrent Neural Network



- Stack K layers of fully-connected NN
- $h_t^{(k)}$: hidden state
- X_t : input
- Y_t : output
- $h_t^{(1)} = f_1^{(1)}(h_{t-1}^{(1)}, X_t; \theta)$
- $h_t^{(k)} = f_1^{(k)}(h_{t-1}^{(k)}, h_t^{(k-1)}; \theta)$ $Y_t = f_2(h_t^{(K)}; \theta)$
- $h_{-1}^{(k)}$: initial states



Training Recurrent Neural Network

- h_t : hidden state
- X_t : input
- *Y_t*: output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state

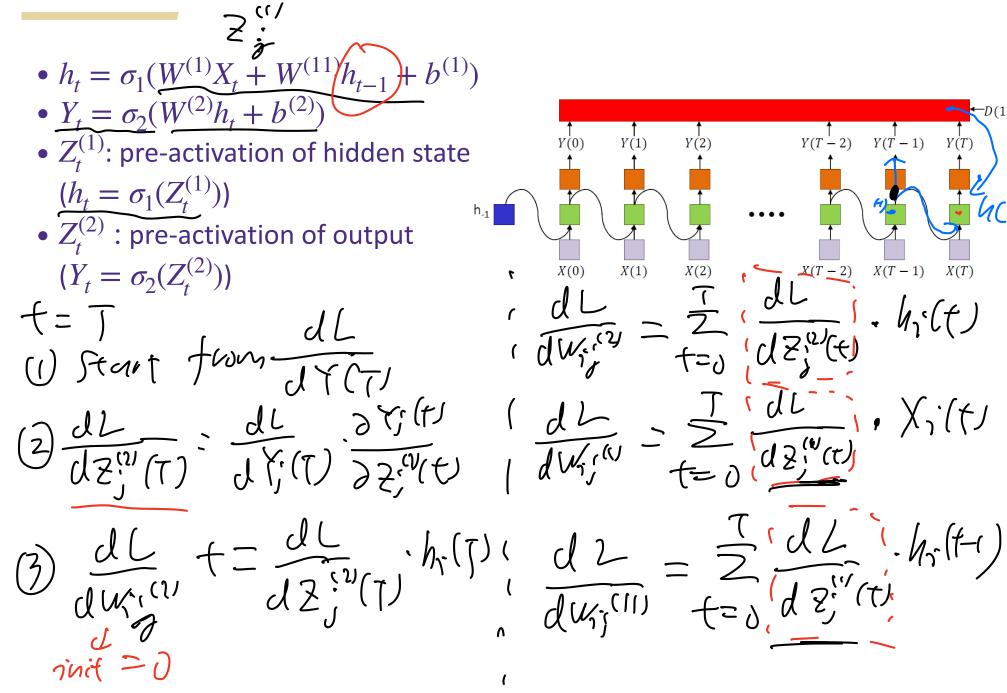
 $h_{-1} \xrightarrow{Y(0)} X(1) \xrightarrow{Y(1)} X(2) \xrightarrow{Y(2)} Y(T-2) \xrightarrow{Y(T-1)} Y(T) \xrightarrow{Y(T)} \xrightarrow{Y(T$

• Data: $\{(X_t, D_t)\}_{t=1}^T$ (RNN can handle more general data format) • Loss $L(\theta) = \sum_{t=1}^T \ell(Y_t, D_t)$

- Goal: learn θ by gradient-based method
 - Back propagation

V4= Y4

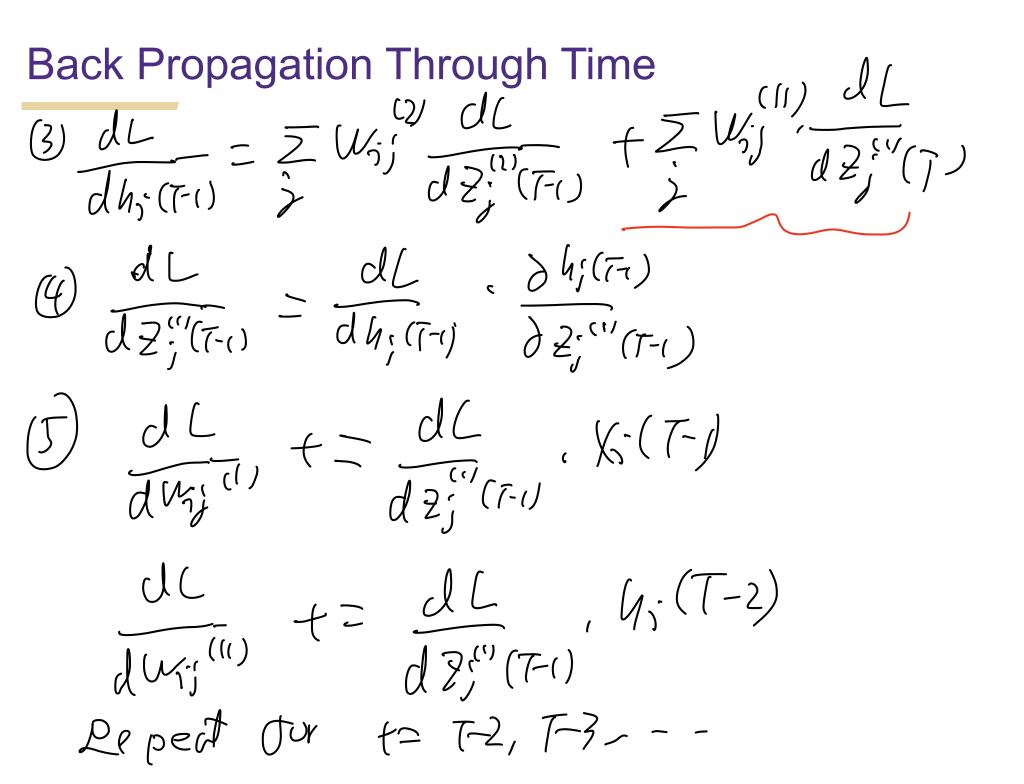
Back Propagation Through Time



Y(T - 1)

Y(T)

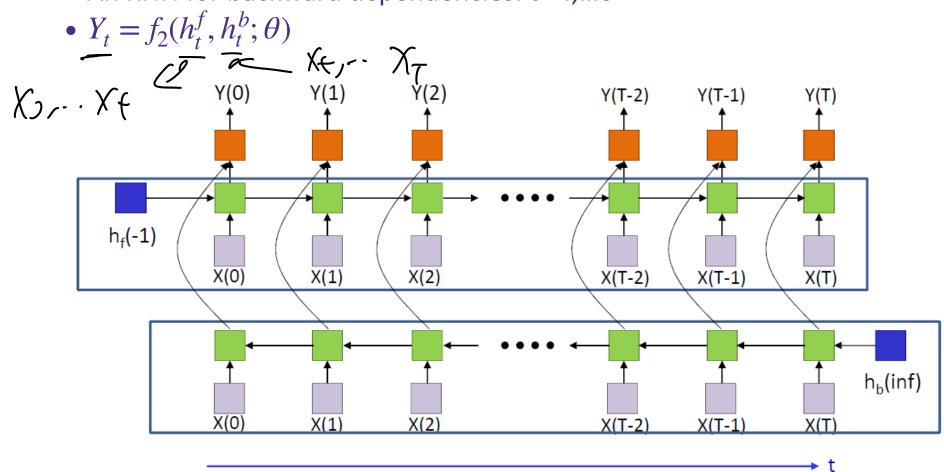
Back Propagation Through Time $(\mathcal{F})\frac{JL}{dh_{i}(\tau)} = \frac{Z}{2}\frac{dL}{dz_{j}^{(1)}(\tau)} = \frac{Z}{2}\frac{J}{dz_{j}^{(1)}(\tau)} = \frac{Z$ $(5) \frac{dL}{dz_{j}^{(\prime)}(\tau)} = \frac{dL}{dh_{j}(\tau)} \frac{\partial h_{j}(\tau)}{\partial z_{j}^{(\prime)}(\tau)} \frac{dL}{dh_{j}(\tau)} \cdot \frac{\partial h_{j}(\tau)}{\partial z_{j}^{(\prime)}(\tau)} \frac{dL}{dh_{j}(\tau)} \cdot \frac{\partial h_{j}(\tau)}{\partial z_{j}^{(\prime)}(\tau)}$ $() \frac{dL}{dw_{ij}} + = \frac{dL}{dz_{ij}} \cdot \frac{\chi_{i}(\tau)}{\sqrt{dz_{ij}}} + \frac{dL}{dz_{ij}} \cdot \frac{dL}{d$ Step T-1 $\begin{array}{ccc} \mathcal{H}ep & 7-1 \\ \mathcal{O} & \frac{dL}{dT(T-1)} & \frac{dL}{dZ_{j}^{12}(T-1)} & = \frac{dL}{dY_{j}(T-1)} & \frac{\partial f_{j}(T-1)}{\partial Z_{j}^{10}(T-1)} \end{array}$ $t = \frac{dL}{dI_{i}(T-1)} \cdot h_{j}(T-1)$ \mathcal{J}



Extensions

What if Y_t depends on the entire inputs?

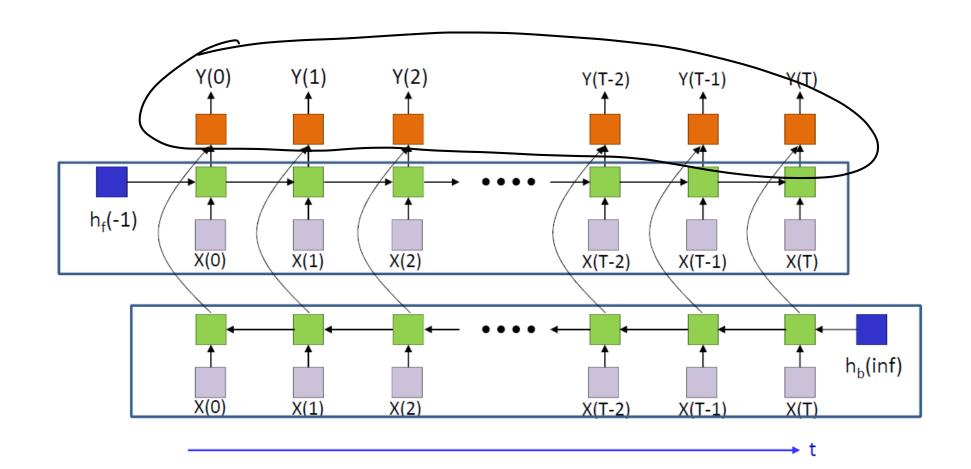
- Biredictional RNN:
 - AN RNN for forward dependencies: t= 0,...,T
 - An RNN for backward dependencies: t= T,...0



Extensions

RNN for sequence classification (sentiment analysis)

- $Y = \max Y_t$
- Cross-entropy loss



Practical issues of RNN

$$\mathcal{G}(\mathcal{Z}) = \mathcal{Z}$$

Linear RNN derivation

· hf = W (1 / ht -1 + W ... X7 · UR = WCY. XR + IN COULABE = W. V. K + W.(() / W. K K-1 + W. (() / k-2) $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot \mathcal{K}_{j}$ $= (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+j} \cdot h_{-l} + \sum_{j=0}^{k} (\mathcal{W}^{(l)})^{p+l} \cdot h_{-l$

Practical issues of RNN: training

Gradient explosion and gradient vanishing

- 21 = W (11) ht, + W (1) Xt · ht = 6(2t) $\frac{\partial LR}{\partial h} \rightarrow (W^{(n)})^{k} \frac{\partial k}{\partial h}$ - $L_{\mathbf{k}}(\mathbf{G}) = L(\mathbf{Y}_{\mathbf{k}}, \mathbf{P}_{\mathbf{K}})$ < forgetting Cris large 21 small > 1 -) exp

Techniques for avoiding gradient explosion

- Gradient clipping
- Identity initialization
- Truncated backprop through time
 - Only backprop for a few steps

