Reminder: midterm evaluation
 Separation between NN and kernel

- For approximation and optimization, neural network has no advantage over kernel. Why NN gives better performance: generalization.
- [Allen-Zhu and Li '20] Construct a class of functions \mathscr{F} such that $y=f(x)$ for some $f \in \mathscr{F}$:
- no kernel is sample-efficient;
- Exists a neural network that is sample-efficient.

Separation between NN and kernel
Defy Kernel method is a linear method with embedding $\phi: D^{d} \rightarrow H$ Hilbert spare
\Rightarrow it turns an element $f \in H$ into a prediction function

$$
\hat{y}=\langle f, \phi(x)\rangle
$$

The method uses n samples, $\left\{x_{i}\right\}_{i=1}^{n}, x_{i} \in R^{d}$ observes $\left\{y_{i}\right\}_{i=1}^{n}$

$$
f \in \operatorname{span}\left(\phi\left(x_{i}\right)\right)_{i=1}^{n}, \text { if }[n]
$$

$e-y, \underset{f}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left\langle f, \phi\left(x_{i}\right)\right)^{2} f \lambda\|f\|_{n}\right.$
$u_{\text {: }}$ \# of samples
Separation between NN and kernel
The \exists a dad of functions $\rho \leq\left\{C: D^{d} \rightarrow R\right\}$ and a distribution M over D^{d} sit.
i) \forall Kernel method, $\forall c \in C$, given $y_{i}=C\left(x_{i}\right)$, if $\mathbb{E}_{x \sim M}\left[(c(x)-\langle f, \phi(x)\rangle)^{2}\right] \leqslant \frac{1}{9}$ then $n \geqslant 2^{d-1}$ exp la cue
ii) \exists simple procedure sit. it can output rae C as long as $n \geqslant d$ this procedure can be simulated by a neural netwak trained by gradient shallow descent

Separation between NN and kernel
Pf: M: unit distribution over $\{1,-1\}^{d}, 2^{d}$ elements

$$
C=\left\{C_{S}=\prod_{s \in S} x_{s}, S C\{1, \cdots, d\}\right\}
$$

pact ii) chases a basis

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-1 \\
\vdots \\
1 \\
e_{1}
\end{array}\right)\left(\begin{array}{c}
-1 \\
\vdots \\
1 \\
e_{2}
\end{array}, \cdots,\left(\begin{array}{c}
1 \\
\vdots \\
-1 \\
e_{d}
\end{array}\right.\right. \\
& \left.x=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
-1 \\
\vdots
\end{array}\right)\right)^{2} d-x_{i n} \\
& \Rightarrow y_{i}=c\left(e_{i}\right) \text {, it } i \in S \Rightarrow y_{i}=-1 \\
& i \& \delta \Rightarrow 4 i=1
\end{aligned}
$$

\Rightarrow whether i is in δ or not \Rightarrow identify $S_{5} \Rightarrow$ recover C_{5}

Separation between NN and kernel
Part i) C is a basis for $\left\{f:\{-1,1\}^{d} \rightarrow R\right\}$ with vesper t to distrime tim an by, symuncter of
(*) $\mathbb{E}_{x \sim M}\left[C_{S^{-}}(x) \cdot C_{-^{-1}}(x)\right]= \begin{cases}0 & \text { if } \delta \neq \delta^{\prime} \\ 1 & \text { if } \delta=5^{-1}\end{cases}$

$$
S_{1} \int^{-1} \subset\{1, \cdots, d\}
$$

Goal: to compute

$$
\left.\mathbb{E}_{x-\mu}\left[\left(C_{-5}(x)-<f, \phi(x)\right\rangle\right)^{2}\right]
$$

since $f \in \sin n\left(\phi\left(x_{i}\right)\right)_{i=1}^{n}$

$$
[d]=\{1, \ldots, d\} \quad=\sum_{S<[d]}^{2} \lambda i
$$

$$
\begin{aligned}
& \Rightarrow f=\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right), f(x)=\left\langle t_{d} \phi(x)\right) \\
& =\sum_{i=1}^{u_{i}} a_{i}\left\langle\phi\left(x_{i}\right), \phi(x)\right\rangle \\
& x(-)\langle\epsilon(x), \Phi(x)\rangle \\
& =\Sigma \lambda_{i} i, S \cdot C_{5}(x)
\end{aligned}
$$

Separation between NN and kernel
by assumption, error $\leq \frac{1}{9}$
$=>$

$$
\left(1-\sum_{i=1}^{n} a_{i} \lambda_{i}, f^{-*}\right)^{2} \leq \frac{1}{9}
$$

frow $u \geqslant 2^{d}$

$$
Q \sum_{\delta=\delta^{*}}\left(\sum_{i=1}^{y} u_{i} \lambda_{i}, \delta\right)^{2} \leq \frac{1}{y}
$$

by linear algebra

$$
\begin{aligned}
& \mathbb{E}_{x \sim M}\left[\left(C_{f^{*}}(f)-\langle f, \phi(x)\rangle\right)^{2}\right]: \text { evoou } \\
& =\mathbb{E}_{x \sim M} \sim\left(C_{-\delta \psi}(x)-\sum_{S \subset[D} \sum_{i=1}^{n} a_{i} \cdot \lambda_{i} i \cdot \delta\left(C_{\delta}(x)\right)^{2}\right] \\
& =\left(1-\sum_{i=1}^{4} a_{i j} \lambda_{i}, \delta_{\delta}\right)^{2}+\sum_{\delta \neq \delta^{*}}\left(\sum_{i=1}^{n} a_{i} \lambda_{i j}, \delta^{\prime}\right)^{2} \\
& \text { (use }\{(s\} \text { is a basis r(ousperety (*)) }
\end{aligned}
$$

Separation between NN and kernel
Notations:

$$
\begin{aligned}
& \Lambda_{: 2}^{d} \times 4 \quad\left(u \leq 2^{d}\right) \\
& \Lambda_{f_{i}, i}=\lambda_{i}, \delta \\
& A: u \times 2^{d}
\end{aligned}
$$

$$
A_{i}, S^{*}=a ;, s^{*}, \quad S^{*} C[d]
$$

$$
\Omega=1 A=2^{d} \times 2^{d} \text { of rankin }
$$

diamond $\left(1-\Omega_{s^{*}}, \delta^{*}\right) \leq \frac{1}{4} \rightarrow \Omega_{s^{*}, \delta_{d}^{*}}^{2} \geqslant \frac{4}{4}$
off-dinasual

Separation between NN and kernel

$$
\begin{aligned}
& \Omega=\operatorname{diag}(\Omega)+\Omega^{\prime}, \Omega^{\prime}: \text { offdicogoud } \\
& \left(1 \Omega^{\prime} l_{F}^{2} \leqslant \frac{2^{9}}{9}\right.
\end{aligned}
$$

$\Rightarrow \Omega^{\prime}$ has at must $\frac{2^{d}}{4}$ eiserualue) $\geqslant \frac{2}{3}$

$$
=\sum \operatorname{eig}^{2}\left(\Omega^{\prime}\right)
$$

\Rightarrow cousidpe subspare of Ω^{\prime} with eigenvalue $<\frac{2}{3}$ which has dimension at lease $\frac{3}{4}-2^{d}$
$\forall x \in$ this spare

$$
\begin{aligned}
& \forall \times \in\|\Omega \times\| \|_{2}=\left\|\left(\operatorname{diag}(\Omega)+\Omega^{\prime}\right) \times\right\| \|_{2} \\
& \geqslant\|\operatorname{diag}(\Omega) \times\|_{2}-\left\|\Omega^{\prime} \times\right\|_{2} \\
&\left.7 \frac{2}{3}\|x\|_{2}-\frac{2}{3}\|x\|_{2}=\right) \\
& \Rightarrow \operatorname{ran}\left(<(\Omega) \geqslant \frac{3}{4} \cdot 2^{d} \Rightarrow n \geqslant \frac{3}{4} \cdot 2^{d} \geqslant 2^{d-1} \cap\right.
\end{aligned}
$$

Convolutional Neural Networks

Multi-layer Neural Network

$$
\begin{aligned}
& a^{(1)}=x \\
& z^{(2)}=\Theta^{(1)} a^{(1)} \\
& a^{(2)}=g\left(z^{(2)}\right) \\
& \vdots \\
& z^{(l+1)}=\Theta^{(l)} a^{(l)} \\
& a^{(l+1)}=g\left(z^{(l+1)}\right) \\
& \vdots \\
& \hat{y}=a^{(L+1)}
\end{aligned}
$$

$$
L(y, \hat{y})=y \log (\hat{y})+(1-y) \log (1-\hat{y})
$$

$$
g(z)=\frac{1}{1+e^{-z}}
$$

Binary
Logistic Regression

Neural Network Architecture

depth

The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by allowable edges.

Neural Network Architecture

The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by allowable edges.

We say a layer is Fully Connected (FC) if all linear mappings from the current layer to the next layer are permissible.

$$
\mathbf{a}^{(k+1)}=g\left(\Theta \mathbf{a}^{(k)}\right) \quad \text { for any } \Theta \in \mathbb{R}^{n_{k+1} \times n_{k}}
$$

A lot of parameters!! $\quad n_{1} n_{2}+n_{2} n_{3}+\cdots+n_{L} n_{L+1}$

Neural Network Architecture

Objects are often localized in space so to find the faces in an image, not every pixel is important for
classification—makes sense to drag a window across an image.

Neural Network Architecture

Objects are often localized in space so to find the faces in an image, not every pixel is important for classification-makes sense to drag a window across an image.

Similarly, to identify edges or other local structure, it makes sense to only look at local information

Neural Network Architecture

VS.

$\boldsymbol{q}^{(k)}$ (k+1) /racacod

$$
\left[\begin{array}{ccccc}
\Theta_{0,0} & \Theta_{0,1} & \Theta_{0,2} & \Theta_{0,3} & \Theta_{0,4} \\
\Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & \Theta_{1,3} & \Theta_{1,4} \\
\Theta_{2,0} & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & \Theta_{2,4} \\
\Theta_{3,0} & \Theta_{3,1} & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\
\Theta_{4,0} & \Theta_{4,1} & \Theta_{4,2} & \Theta_{4,3} & \Theta_{4,4}
\end{array}\right]
$$

Parameters: $\quad n^{2}$

$3 n-2$

$$
\mathbf{a}_{i}^{(k+1)}=g\left(\sum_{j=0}^{n-1} \Theta_{i, j} \mathbf{a}_{j}^{(k)}\right)
$$

Neural Network Architecture

VS.

Mirror/share local weights everywhere (e.g., structure equally likely to be anywhere in image)

$$
\left[\begin{array}{ccccc}
\Theta_{0,0} & \Theta_{0,1} & \Theta_{0,2} & \Theta_{0,3} & \Theta_{0,4} \\
\Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & \Theta_{1,3} & \Theta_{1,4} \\
\Theta_{2,0} & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & \Theta_{2,4} \\
\Theta_{3,0} & \Theta_{3,1} & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\
\Theta_{4,0} & \Theta_{4,1} & \Theta_{4,2} & \Theta_{4,3} & \Theta_{4,4}
\end{array}\right] \quad\left[\begin{array}{ccccc}
\Theta_{0,0} & \Theta_{0,1} & 0 & 0 & 0 \\
\Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & 0 & 0 \\
0 & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & 0 \\
0 & 0 & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\
0 & 0 & 0 & \Theta_{4,3} & \Theta_{4,4}
\end{array}\right]
$$

Parameters: $n^{2} \quad 3 n-2$

$$
\left[\begin{array}{ccccc}
\theta_{1} & \theta_{2} & 0 & 0 & 0 \\
\theta_{0} & \theta_{1} & \theta_{2} & 0 & 0 \\
0 & \theta_{0} & \theta_{1} & \theta_{2} & 0 \\
0 & 0 & \theta_{0} & \theta_{1} & \theta_{2} \\
0 & 0 & 0 & \theta_{0} & \theta_{1}
\end{array}\right]
$$

$$
\mathbf{a}_{i}^{(k+1)}=g\left(\sum_{j=0}^{n-1} \Theta_{i, j} \mathbf{a}_{j}^{(k)}\right)
$$

$$
\mathbf{a}_{i}^{(k+1)}=g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right)
$$

Neural Network Architecture

Fully Connected (FC) Layer

$$
\left[\begin{array}{ccccc}
\Theta_{0,0} & \Theta_{0,1} & \Theta_{0,2} & \Theta_{0,3} & \Theta_{0,4} \\
\Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & \Theta_{1,3} & \Theta_{1,4} \\
\Theta_{2,0} & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & \Theta_{2,4} \\
\Theta_{3,0} & \Theta_{3,1} & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\
\Theta_{4,0} & \Theta_{4,1} & \Theta_{4,2} & \Theta_{4,3} & \Theta_{4,4}
\end{array}\right]
$$

$$
\mathbf{a}_{i}^{(k+1)}=g\left(\sum_{j=0}^{n-1} \Theta_{i, j} \mathbf{a}_{j}^{(k)}\right)
$$

$$
\mathbf{a}_{i}^{(k+1)}=g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right)=g\left(\left[\theta * \mathbf{a}^{(k)}\right]_{i}\right)
$$

Convolution*

$$
\theta=\left(\theta_{0}, \ldots, \theta_{m-1}\right) \in \mathbb{R}^{m} \text { is referred to as a "filter" }
$$

Example (1d convolution)

$$
(\theta * x)_{i}=\sum_{j=0}^{m-1} \theta_{j} x_{i+j}
$$

$$
\text { Aevide }=1
$$

1	1	1	0	0

Input $x \in \mathbb{R}^{n}$

1 - 1
 Filter $\theta \in \mathbb{R}^{m}$

\square
Output $\theta * x$

Example (1d convolution)

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l}
1 & 1 & 1 & 0 & 0
\end{array} \\
& (\theta * x)_{i}=\sum_{j=0}^{m-1} \theta_{j} x_{i+j} \\
& \text { Input } x \in \mathbb{R}^{n} \\
& \begin{array}{|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array} \\
& \text { Filter } \theta \in \mathbb{R}^{m}
\end{aligned}
$$

Example (1d convolution)

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l}
1 & 1 & 1 & 0 & 0
\end{array} \\
& (\theta * x)_{i}=\sum_{j=0}^{m-1} \theta_{j} x_{i+j} \\
& \text { Input } x \in \mathbb{R}^{n} \\
& \begin{array}{|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array} \\
& \text { Filter } \theta \in \mathbb{R}^{m}
\end{aligned}
$$

Example (1d convolution)

$$
(\theta * x)_{i}=\sum_{j=0}^{m-1} \theta_{j} x_{i+j} \quad \begin{array}{r}
\text { Input } x \in \mathbb{R}^{n} \\
\text { In } \mathbf{1} \left\lvert\, \begin{array}{l|l|l|l|}
\hline 1 & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
\hline
\end{array}\right. \\
\text { Filter } \theta \in \mathbb{R}^{m}
\end{array}
$$

Sthide $=1$
Output $\theta * x$

2d Convolution Layer

Example: 200x200 image
F Fully-connected, 400,000 hidden units $=16$ billion parameters
Locally-connected, 400,000 hidden units 10×10 fields $=40$ million params

- Local connections capture local dependencies

Convolution of images (2d convolution)

$$
(I * K)(i, j)=\sum_{m} \sum_{n} I(i+m, j+n) K(m, n) .
$$

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
Image				

1	0	1	
$\mathbf{0}$	1	0	
1	0	1	
Filter K			

$1_{x 0}$	$1_{x 0}$	$1_{x 1}$	0	0
$0_{x 0}$	$1_{x 1}$	$1_{x 0}$	1	0
$0_{x 1}$	$0_{x 0}$	$1_{x 1}$	1	1
0	0	1	1	0
0	1	1	0	0

4		

Convolved
Feature

$$
I * K
$$

Convolution of images

$(I * K)(i, j)=\sum_{m} \sum_{n} I(i+m, j+n) K(m, n)$

Image I

NU: learn

Stacking convolved images

$$
\begin{gathered}
x \in \mathbb{R}^{n \times n \times r} \\
\mathcal{R} G B \\
Z=\sum_{\alpha=1}^{V} \times[E,:, \alpha] * K[E:, \alpha]
\end{gathered}
$$

Stacking convolved images

Pooling

$$
27 \times 27 \times 64
$$

Pooling Convolution layer

Flattening

Flatten into a single vector of size
14*14*64=12544

Training Convolutional Networks

 networks (CNN) are just regular fully connected (FC) neural networks with some connections removed.
Train with SGD!

Training Convolutional Networks

Real example network: LeNet

Real example network: LeNet

