
Separation between NN and kernel
• For approximation and optimization, neural network has no 

advantage over kernel. Why NN gives better performance: 
generalization. 

• [Allen-Zhu and Li ’20] Construct a class of functions such that 
 for some : 

• no kernel is sample-efficient; 
• Exists a neural network that is sample-efficient.

ℱ
y = f(x) f ∈ ℱ
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Separation between NN and kernel
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Separation between NN and kernel
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Separation between NN and kernel
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Separation between NN and kernel
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Separation between NN and kernel
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Separation between NN and kernel
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Convolutional Neural 
Networks



Multi-layer Neural Network

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

5

g(z) = 1
1 + e−z

Binary	
Logistic	
Regression



Neural Network Architecture

5

The	neural	network	architecture	is	defined	by	the	number	of	layers,	and	the	
number	of	nodes	in	each	layer,	but	also	by	allowable	edges.	

a



Neural Network Architecture

5

The	neural	network	architecture	is	defined	by	the	number	of	layers,	and	the	
number	of	nodes	in	each	layer,	but	also	by	allowable	edges.	

We	say	a	layer	is	Fully	Connected	(FC)	if	all	linear	mappings	from	the	current	
layer	to	the	next	layer	are	permissible.	

a(k+1) = g(⇥a(k)) for any ⇥ 2 Rnk+1⇥nk

A	lot	of	parameters!! n1n2 + n2n3 + · · ·+ nLnL+1



Neural Network Architecture
Objects	are	often	localized	
in	space	so	to	find	the	faces	
in	an	image,	not	every	pixel	
is	important	for	
classification—makes	sense	
to	drag	a	window	across	an	
image.



Neural Network Architecture
Objects	are	often	localized	
in	space	so	to	find	the	faces	
in	an	image,	not	every	pixel	
is	important	for	
classification—makes	sense	
to	drag	a	window	across	an	
image.

Similarly,	to	identify	
edges	or	other	local	
structure,	it	makes	
sense	to	only	look	at	
local	information	

vs.



Neural Network Architecture

vs.

Parameters: n2 3n� 2
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Neural Network Architecture

vs.

Parameters: n2 3n� 2

Mirror/share	local	
weights	everywhere	
(e.g.,	structure	equally	
likely	to	be	anywhere	in	
image)	
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Neural Network Architecture

Convolution*

Fully	Connected	(FC)	Layer Convolutional	(CONV)	Layer	(1	filter)

m=3

is	referred	to	as	a	“filter”

= g([✓ ⇤ a(k)]i)
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Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

Output ✓ ⇤ x

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j

stride 4



Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn
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Output ✓ ⇤ x

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j



Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2

Output ✓ ⇤ x
1

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j



Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2 1

Output ✓ ⇤ x
1

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j

Stride a



2d	Convolution	Layer



Convolution of images (2d convolution)

Image I
Filter K

I ⇤K



Convolution of images
K

Image I

I ⇤K

Mu learn



Stacking	convolved	images
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Stacking	convolved	images

d	filters
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Repeat	with	d	filters!
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Pooling

Pooling	reduces	the	dimension	
and	can	be	interpreted	as	“This	
filter	had	a	high	response	in	
this	general	region”

27x27x64

14x14x64



Pooling Convolution layer

14x14x64

64	filters

6
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27

MaxPool	with	
2x2	filters	and	
stride	2

Convolve	
with	64	6x6x3	filters



Flattening

14x14x64

64	filters

6

6

3 27

27

Convolve	
with	64	6x6x3	filters

MaxPool	with	
2x2	filters	and	
stride	2

Flatten	into	a	single	
vector	of	size	
14*14*64=12544



Training Convolutional Networks

14x14x64

6
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27

Recall:	Convolutional	neural	
networks	(CNN)	are	just	regular	
fully	connected	(FC)	neural	
networks	with	some	connections	
removed.		
Train	with	SGD!

reshape

output	layer

pool
CONV	hidden	layer

FC	hidden	layer



Training Convolutional Networks

14x14x64
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reshape

output	layer

pool
CONV	hidden	layer

FC	hidden	layer

Real	example	network:	LeNet



Training	Convolutional	Networks

Real	example	network:	LeNet

Real	example	network:	LeNet


