Reminder: midtern evaluation Separation between NN and kernel

• For approximation and optimization, neural network has no advantage over kernel. Why NN gives better performance: generalization.

- [Allen-Zhu and Li '20] Construct a class of functions \mathscr{F} such that y = f(x) for some $f \in \mathscr{F}$:
 - no kernel is sample-efficient;
 - Exists a neural network that is sample-efficient.

Deta Kennel method is a linear method
with embedding
$$\phi: \mathcal{R}^{d} \rightarrow \mathcal{H}$$
 Hilbert space
=) it turns an element $f \in \mathcal{H}$ into a production function
 $\mathcal{G} = \langle f_{s} \ \phi(x) \rangle$
The method uses n samples, $\langle x_{i} \rangle_{i=i}^{u}$, $x_{i} \in \mathcal{R}^{d}$
observes $\{ y_{i} \rangle_{i=i}^{u}$
 $f \in Span (\phi(x_{i}))_{i=i}^{u}$, $i \in (n)$
 $\ell \cdot \mathcal{G}$, argining $\frac{1}{n} \sum_{j=i}^{u} (y_{i} - \langle f, \phi(x_{i}) \rangle_{j}^{2} \rightarrow \lambda \| f \|_{\mathcal{H}}$

N: # of Samples Separation between NN and kernel Thus I a day of functions $C \leq [C:R]$ and a distribution M over R^d s.t. i) V Kernel method, VCEC, given 4= ((K), if $\mathbb{F}_{KnM}\left[\left(c(\kappa)-cf,\phi(\kappa)2\right)^{2}\right]\leq \frac{1}{9}$ they $u_{7}^{2} \geq d-f \exp\left[auge\right] \exp\left[e\kappa\rho\right]$ ii) I simple procedure s.t. it can output true c as long as 47, d this procedure can be simulated by a upund network trained by gradient destent 54 Mow

Separation between NN and kernel Pf: M: unit distribution over 51,-13^d, 2^d elements $C = \{C_{S} = \prod_{s \in S} X_{s}, S_{c} \{h, \dots, d\}\}$ part ii) charge a basis $X = \begin{pmatrix} -i \\ -i \end{pmatrix} \begin{pmatrix} -i \\ i \end{pmatrix} \begin{pmatrix} -i \end{pmatrix} \begin{pmatrix} -i \\$ e_1 e_2 e_d $= \frac{1}{2} \quad \text{yi} = \left(\left(l_{i} \right), \text{ if } i \in S = \right) \quad \text{yi} = 1 \\ i \in S = \frac{1}{2} \quad \text{yi} = \frac{1}{$ =) whether i is in S or not =) jdrutify 5=> prover (5

Part i) C is a basis for
$$f: \{-1,1\}^d \rightarrow R\}$$

with resper to disting time M by summery of
(#) $E_{X-M} \left[C_S(x) \cdot C_{S^1}(x) \right] = \begin{cases} 0 & \text{if } J \neq S' \\ 1 & \text{if } J = S' \end{cases}$
God: to compute
 $E_{X-M} \left[(C_{S^K}(x) - \langle f, \phi(x) \rangle)^2 \right]$
Since $f \in S(x) \cap (\phi(x)) \int_{S_1}^{S_1} (f(x) - \langle f, \phi(x) \rangle)^2 \right]$
Since $f \in S(x) \cap (\phi(x)) \int_{S_1}^{S_1} (f(x) - \langle f, \phi(x) \rangle)^2 \int_{S_1}^{S_2} (f(x) - \langle f, \phi(x) \rangle)^2 \int_{S_1}^{S_2}$

 $\widetilde{E}_{\text{KNM}}\left[\left(C_{\text{S}}^{*}(4) - \sum_{s \in \mathcal{U}_{i}, \mathcal{D}_{i}, s}^{H}(s)\right)^{2}\right) \xrightarrow{e}_{s} e^{\mu\nu\sigma\nu}$ $= \widetilde{E}_{\text{KNM}}\left[\left(C_{\text{S}}^{*}(4) - \sum_{s \in \mathcal{U}_{i}, \mathcal{D}_{i}, s}^{H}(s)\right)^{2}\right) \xrightarrow{e}_{s \in \mathcal{U}_{i}, \mathcal{D}_{i}}^{H}(s)\right]$ $= \left(\left(- \frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{2} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(\frac{4}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; , s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac{2}{s \neq s^{*}} \left(4; \lambda; s^{*} \right)^{2} + \frac$ by assumptiby, ecrop < -Mov 1172 d-1 $(1 - \frac{\gamma}{j=1} u_i h_i, f^*)^2 \leq \frac{1}{2} (1 - \frac{\gamma}{j=1} u_i h_i)^2 \leq \frac{1}{2} (1 - \frac{\gamma}{j=1} u_i)^2 \leq \frac{1$ \equiv

Separation between NN and kernel Notations: $\Lambda: 2^d \times 4$ $(4 \leq 2^d)$ /Si= Aris A: ux2d Ai, $S^{*} = \Omega_{i}, S^{*}, S^{*} \subset Cd$ $\Sigma = \Lambda A = 2^{d} \times 2^{d} \text{ of vank-} n$ diagond $(- \Sigma_{5^*}, S^*) \leq \overline{q} -) \Sigma_{5^*}^2 S^* ? \overline{q}$ 2 D25,5* 5-2 5=1.5* off-diagonal 251 7/4

SL= diag (I/+ D', D': Stf-diagoud $()\mathcal{L}'[(\frac{1}{F} \leq \frac{2^{q}}{r})]$ =) (unside subspace of 2' with pigey value $2\frac{2}{3}$ which has dimensivy at lease $\frac{3}{4}$. 2 YX E this spare $\| \mathcal{I}_{X} \|_{2} = \| (diag(\mathcal{I}) + \mathcal{I}')_{X} \|_{2}$ 7 [[diag (J.) K(12 - 1(J'K1)2 $2 = \frac{1}{3} ||x||_{2} - \frac{1}{3} ||x||_{2} = 0$ =) $Van(K(J)) = \frac{3}{4} \cdot 2^{d} = \frac{3}{4} \cdot 2^{$

Convolutional Neural Networks

Multi-layer Neural Network

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$\vdots$$

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l+1)} = g(z^{(l+1)})$$

$$\vdots$$

$$\hat{y} = a^{(L+1)}$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1-y)\log(1-\hat{y})$$

$$g(z) = \frac{1}{1+e^{-z}}$$
Binary
Logistic
Regression

The neural network architecture is defined by the <u>number of layers</u>, and the number of nodes in each layer, but also by **allowable edges**.

The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by **allowable edges**.

We say a layer is **Fully Connected (FC)** if all linear mappings from the current layer to the next layer are permissible.

$$\mathbf{a}^{(k+1)} = g(\Theta \mathbf{a}^{(k)})$$
 for any $\Theta \in \mathbb{R}^{n_{k+1} \times n_k}$
A lot of parameters!! $n_1 n_2 + n_2 n_3 + \cdots + n_L n_{L+1}$

Objects are often **localized in space** so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.

Objects are often **localized in space** so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.

Similarly, to identify edges or other local structure, it makes sense to only look at **local information**

VS.

$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1}\Theta_{i,j}\mathbf{a}_{j}^{(k)}\right)$$

$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right)$$

$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right)$$

Fully Connected (FC) Layer

Convolutional (CONV) Layer (1 filter)

$$\begin{bmatrix} \Theta_{0,0} & \Theta_{0,1} & \Theta_{0,2} & \Theta_{0,3} & \Theta_{0,4} \\ \Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & \Theta_{1,3} & \Theta_{1,4} \\ \Theta_{2,0} & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & \Theta_{2,4} \\ \Theta_{3,0} & \Theta_{3,1} & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\ \Theta_{4,0} & \Theta_{4,1} & \Theta_{4,2} & \Theta_{4,3} & \Theta_{4,4} \end{bmatrix} \qquad \begin{bmatrix} \theta_1 & \theta_2 & 0 & 0 \\ \theta_0 & \theta_1 & \theta_2 & 0 \\ 0 & \theta_0 & \theta_1 & \theta_2 & 0 \\ 0 & 0 & \theta_0 & \theta_1 & \theta_2 \\ 0 & 0 & 0 & \theta_0 & \theta_1 \end{bmatrix} m=3$$

$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right) \qquad \mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right) = g([\theta * \mathbf{a}^{(k)}]_{i})$$

Convolution*

 $heta = (heta_0, \dots, heta_{m-1}) \in \mathbb{R}^m$ is referred to as a "filter"

Example (1d convolution)

$$(\theta * x)_i = \sum_{j=0}^{m-1} \theta_j x_{i+j}$$

Active =

1

Filter
$$\theta \in \mathbb{R}^m$$

Example (1d convolution) Input $x \in \mathbb{R}^n$ m-1 $(\theta * x)_i = \sum \theta_j x_{i+j}$ j=0Filter $\theta \in \mathbb{R}^m$ Output $\theta * x$

Example (1d convolution)

Example (1d convolution)

2d Convolution Layer

Example: 200x200 image

- Fully-connected, 400,000 hidden units = 16 billion parameters
- Locally-connected, 400,000 hidden units 10x10 fields = 40 million params
- Local connections capture local dependencies

Convolution of images (2d convolution)

$$(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

Image I

1 _×1	1 _×0	1 _×1	0	0
0 _{×0}	1 _×1	1 _×0	1	0
0 _{×1}	0 _×0	1 _×1	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature I * K

Convolution of images

$$(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

Image I

NV: Leavy

Operation	Filter K	$\begin{array}{c} \text{Convolved} \\ \text{Image} & I \ast K \end{array}$
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

Stacking convolved images

K: EXEXV

 $x \in \mathbb{R}^{n \times n \times r}$ $\mathcal{R} \subseteq \mathcal{R}$ $\mathcal{R} \subseteq \mathcal{R}$ $\mathcal{R} \subseteq \mathcal{R}$ $\mathcal{R} \subseteq \mathcal{R}$ $\mathcal{R} \subseteq \mathcal{R}$

Stacking convolved images

Pooling

Pooling reduces the dimension and can be interpreted as "This filter had a high response in this general region"

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4
			У

max pool with 2x2 filters and stride 2

6	8
3	4

х

Pooling Convolution layer

Flattening

Flatten into a single vector of size 14*14*64=12544

Training Convolutional Networks

input layer

Train with SGD!

hidden layer 1 hidden layer 2

Training Convolutional Networks

Real example network: LeNet

Real example network: LeNet

