• For approximation and optimization, neural network has no advantage over kernel. Why NN gives better performance: generalization.

- [Allen-Zhu and Li '20] Construct a class of functions \mathscr{F} such that y = f(x) for some $f \in \mathscr{F}$:
 - no kernel is sample-efficient;
 - Exists a neural network that is sample-efficient.

Convolutional Neural Networks

Multi-layer Neural Network

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$\vdots$$

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l+1)} = g(z^{(l+1)})$$

$$\vdots$$

$$\hat{y} = a^{(L+1)}$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1-y)\log(1-\hat{y})$$

$$g(z) = \frac{1}{1+e^{-z}}$$
Binary
Logistic
Regression

The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by **allowable edges**.

The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by **allowable edges**.

We say a layer is **Fully Connected (FC)** if all linear mappings from the current layer to the next layer are permissible.

$$\mathbf{a}^{(k+1)} = g(\Theta \mathbf{a}^{(k)})$$
 for any $\Theta \in \mathbb{R}^{n_{k+1} \times n_k}$
A lot of parameters!! $n_1 n_2 + n_2 n_3 + \dots + n_L n_{L+1}$

Objects are often **localized in space** so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.

Objects are often **localized in space** so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.

Similarly, to identify edges or other local structure, it makes sense to only look at **local information**

VS.

$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right)$$

$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right)$$

Fully Connected (FC) Layer

Convolutional (CONV) Layer (1 filter)

$$\begin{bmatrix} \Theta_{0,0} & \Theta_{0,1} & \Theta_{0,2} & \Theta_{0,3} & \Theta_{0,4} \\ \Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & \Theta_{1,3} & \Theta_{1,4} \\ \Theta_{2,0} & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & \Theta_{2,4} \\ \Theta_{3,0} & \Theta_{3,1} & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\ \Theta_{4,0} & \Theta_{4,1} & \Theta_{4,2} & \Theta_{4,3} & \Theta_{4,4} \end{bmatrix} \qquad \qquad \begin{bmatrix} \theta_1 & \theta_2 & 0 & 0 & 0 \\ \theta_0 & \theta_1 & \theta_2 & 0 & 0 \\ 0 & \theta_0 & \theta_1 & \theta_2 & 0 \\ 0 & 0 & \theta_0 & \theta_1 & \theta_2 \\ 0 & 0 & 0 & \theta_0 & \theta_1 \end{bmatrix} m=3$$

$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right) \qquad \mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right) = g([\theta * \mathbf{a}^{(k)}]_{i})$$

Convolution*

 $heta = (heta_0, \dots, heta_{m-1}) \in \mathbb{R}^m$ is referred to as a "filter"

Example (1d convolution)

$$(\theta * x)_i = \sum_{j=0}^{m-1} \theta_j x_{i+j}$$

Example (1d convolution) 1 1 0 0 Input $x \in \mathbb{R}^n$ m-1 $(\theta * x)_i = \sum_{j=0} \theta_j x_{i+j}$ 0 1 Filter $\theta \in \mathbb{R}^m$ 1 0 0 Output $\theta * x$

2d Convolution Layer

Example: 200x200 image

- Fully-connected, 400,000 hidden units = 16 billion parameters
- Locally-connected, 400,000 hidden units 10x10 fields = 40 million params
- Local connections capture local dependencies

Convolution of images (2d convolution)

$$(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

Image I

Image

Convolved Feature I * K

Convolution of images

$$(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

Image I

Operation	Filter K	$\begin{array}{c} \text{Convolved} \\ \text{Image} \ I \ast K \end{array}$
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

Stacking convolved images

Stacking convolved images

Repeat with d filters!

Pooling

Pooling reduces the dimension and can be interpreted as "This filter had a high response in this general region"

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4
			У

max pool with 2x2 filters and stride 2

6	8
3	4

Х

Pooling Convolution layer

Flattening

Flatten into a single vector of size 14*14*64=12544

Training Convolutional Networks

Train with SGD!

Training Convolutional Networks

Real example network: LeNet

Real example network: LeNet

