Separation between NN and kernel

* For approximation and optimization, neural network has no
advantage over kernel. Why NN gives better performance:
generalization.

» [Allen-Zhu and Li '20] Construct a class of functions & such that
y = f(x) for some f € F:
* no kernel is sample-efficient;
» Exists a neural network that is sample-efficient.
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Convolutional Neural
Networks




Multi-layer Neural Network
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a® = g (z®)

Z(l+1) — D40
al+h) = g (Z(z+1))

L(y,y) =ylog(y) + (1 —y)log(l — )

1 Binary
g(2) = | + o2 Logistic
Regression




Neural Network Architecture

The neural network architecture is defined by the number of layers, and the
number of nodes in each layer, but also by allowable edges.
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Neural Network Architecture

The neural network architecture is defined by the number of layers, and the
number of nodes in each Iayer but also by allowable edges.

Q("
/'

4»
w
,

2(2) 2(3)

We say a layer is Fully Connected (FC) if all linear mappings from the current
layer to the next layer are permissible.

al**tl) = g(@al®)) for any © € R7+1x7
A lot of parameters!! N1 T9 + MoN3 + *+* + nrmnyr i1



Neural Network Architecture

Objects are often localized
in space so to find the faces
in an image, not every pixel
is important for
classification—makes sense
to drag a window across an
Image.




Neural Network Architecture

Objects are often localized
in space so to find the faces
in an image, not every pixel
is important for
classification—makes sense
to drag a window across an
Image.

Similarly, to identify
edges or other local
structure, it makes
sense to only look at
local information




Neural Network Architecture
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Parameters:

Neural Network Architecture
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Neural Network Architecture

Fully Connected (FC) Layer Convolutional (CONV) Layer (1 filter)
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Convolution*®

0= (0y,...,0m_1) € R™ isreferred to as a “filter”



Example (1d convolution)
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Input x € R"
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Filter 6 € R™

m—1
7=0

Output 0 x x
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Example (1d convolution)

1/1/1/00

Input x € R”
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Example (1d convolution)

1/1/1/00

Input x € R”
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Filter 6 € R™
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Output 0 x x



2d Convolution Layer

# Example: 200x200 image
» Fully-connected, 400,000 hidden units = 16 billion parameters

» Locally-connected, 400,000 hidden units 10x10 fields = 40
million params

» Local connections capture local dependencies




Convolution of images (2d convolution)
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Convolution of images

Operation
(I K)(i,5) = Y > I(i+m,j+n)K(m,n)
m n
Image [
- . Edge detection
e
Sharpen
Box blur

(normalized)

Gaussian blur

(approximation)
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Stacking convolved images




Stacking convolved images

"/’>O COO00D Repeat with d filters!
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Pooling

A

Pooling reduces the dimension
and can be interpreted as “This
filter had a high response in

this general region”

27x27x64

Single depth slice
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Pooling Convolution layer

. 14x14x64
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64 filters MaxPool with

2x2 filters and
with 64 6x6x3 filters stride 2

Convolve



Flattening

- 14x14x
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64 filters MaxPool with

2x2 filters and
with 64 6x6x3 filters stride 2

Convolve

Flatten into a single
vector of size

14*14*64=12544



Training Convolutional Networks

reshape _
CONV hidden layer FC hidden layer
pool
/ % 14x14x6
32
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Recall: Convolutional neural
networks (CNN) are just regular
fully connected (FC) neural
networks with some connections
removed.

Train with SGD! e
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Training Convolutional Networks

reshape .
CONV hidden layer -
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Real example network: LeNet

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +RelU Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)




Real example network: LeNet
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