• For approximation and optimization, neural network has no advantage over kernel. Why NN gives better performance: generalization.

- [Allen-Zhu and Li '20] Construct a class of functions $\mathscr F$ such that $y = f(x)$ for some $f \in \mathcal{F}$:
	- no kernel is sample-efficient;
	- Exists a neural network that is sample-efficient.

Convolutional Neural Networks

Multi-layer Neural Network

$$
a^{(1)} = x
$$

\n
$$
z^{(2)} = \Theta^{(1)}a^{(1)}
$$

\n
$$
a^{(2)} = g(z^{(2)})
$$

\n
$$
z^{(l+1)} = \Theta^{(l)}a^{(l)}
$$

\n
$$
a^{(l+1)} = g(z^{(l+1)})
$$

\n
$$
\hat{y} = a^{(L+1)}
$$

\n
$$
a^{(l+1)} = \frac{1}{\Theta^{(l)}a^{(l)}}
$$

\n
$$
L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})
$$

\n
$$
g(z) = \frac{1}{1 + e^{-z}}
$$

\n
$$
\text{Binary logistic\nRegression}
$$

The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by **allowable edges**.

The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by **allowable edges**.

We say a layer is **Fully Connected (FC)** if all linear mappings from the current layer to the next layer are permissible.

$$
\mathbf{a}^{(k+1)} = g(\Theta \mathbf{a}^{(k)}) \quad \text{for any } \Theta \in \mathbb{R}^{n_{k+1} \times n_k}
$$

A lot of parameters!!
$$
n_1 n_2 + n_2 n_3 + \cdots + n_L n_{L+1}
$$

Objects are often localized in space so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.

Objects are often localized in space so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.

Similarly, to identify edges or other local structure, it makes sense to only look at **local information**

vs.

$$
\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right)
$$

$$
\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right)
$$

$$
\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right)
$$

3

 $\mathbf{1}$ \vert \vert \vert $\overline{1}$

Fully Connected (FC) Layer Convolutional (CONV) Layer (1 filter)

$$
\begin{bmatrix}\n\Theta_{0,0} & \Theta_{0,1} & \Theta_{0,2} & \Theta_{0,3} & \Theta_{0,4} \\
\Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & \Theta_{1,3} & \Theta_{1,4} \\
\Theta_{2,0} & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & \Theta_{2,4} \\
\Theta_{3,0} & \Theta_{3,1} & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\
\Theta_{4,0} & \Theta_{4,1} & \Theta_{4,2} & \Theta_{4,3} & \Theta_{4,4}\n\end{bmatrix}\n\qquad\n\begin{bmatrix}\n\theta_1 & \theta_2 & 0 & 0 & 0 \\
\theta_0 & \theta_1 & \theta_2 & 0 & 0 \\
0 & \theta_0 & \theta_1 & \theta_2 & 0 \\
0 & 0 & \theta_0 & \theta_1 & \theta_2 \\
0 & 0 & 0 & \theta_0 & \theta_1\n\end{bmatrix}\n\qquad\nm=3
$$

$$
\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right) \qquad \qquad \mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right) = g([\theta * \mathbf{a}^{(k)}]_{i})
$$

Convolution*

 $\theta = (\theta_0, \ldots, \theta_{m-1}) \in \mathbb{R}^m$ is referred to as a "filter"

Example (1d convolution)

$$
\boxed{\frac{\mathbf{1} \mid \mathbf{1} \mid \mathbf{1} \mid \mathbf{0} \mid \mathbf{0}}{\text{Input } x \in \mathbb{R}^n}}
$$

Example (1d convolution) 1 0 1 0 Input $x \in \mathbb{R}^n$ $m-1$ $\sum_{n=1}^{m}$ $(\theta * x)_i =$ $\theta_j x_{i+j}$ $\mathbf{0}$ $\mathbf{1}$ $j=0$ Filter $\theta \in \mathbb{R}^m$ $1₁$ 2 $\mathbf{1}$ $\mathbf{0}$ 0 Output $\theta * x$

Example (1d convolution) 1 0 1 0 Input $x \in \mathbb{R}^n$ $m-1$ $\sum_{n=1}^{m}$ $(\theta * x)_i =$ $\theta_j x_{i+j}$ $\mathbf{0}$ $\mathbf{1}$ $j=0$ Filter $\theta \in \mathbb{R}^m$ $1₁$ $\mathbf{1}$ $\mathbf{0}$. 0 2 1 Output $\theta * x$

Example (1d convolution) 1 0 1 0 Input $x \in \mathbb{R}^n$ $m-1$ $\sum_{n=1}^{m}$ $(\theta * x)_i =$ $\theta_j x_{i+j}$ $\mathbf{0}$ $\mathbf{1}$ $j=0$ Filter $\theta \in \mathbb{R}^m$ $2 \mid 1 \mid 1$ 1 1 1 0. Output $\theta * x$

2d Convolution Layer

Example: 200x200 image

- \blacktriangleright Fully-connected, 400,000 hidden units = 16 billion parameters
- Locally-connected, 400,000 hidden units $10x10$ fields = 40 million params
- Local connections capture local dependencies

Convolution of images (2d convolution)

$$
(I*K)(i,j) = \sum_{m} \sum_{n} I(i+m, j+n)K(m,n).
$$

Image *I*

Image

Convolved Feature $I * K$

Convolution of images

$$
(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n)K(m, n)
$$

Image *I*

Stacking convolved images

Stacking convolved images

Repeat with d filters!

Pooling

Pooling reduces the dimension and can be interpreted as "This filter had a high response in this general region"

Single depth slice 2 $\overline{4}$ 1 1 5 $6 \overline{6}$ $\overline{7}$ 8 $\overline{3}$ $\overline{2}$ $\overline{1}$ $\overline{0}$

 $\overline{2}$

 $\mathbf{1}$

 $\overline{3}$

 $\overline{4}$

y

max pool with 2x2 filters and stride 2

 $\overline{\mathbf{x}}$

Pooling Convolution layer

Flattening

Flatten into a single vector of size 14*14*64=12544

Training Convolutional Networks

input layer

Train with SGD!

hidden layer 1 hidden layer 2

Training Convolutional Networks

Real example network: LeNet

Real example network: LeNet

