Lecture 12

Prof. Simon Du

1 Separation between NN and kernel

Definition (Kernel method). A linear method with an embedding $\phi: \mathbb{R}^{d} \mapsto \mathcal{H}$ (Hilbert space), which turns an element $f \in \mathcal{H}$ into a prediction function $y=\langle f, \phi(x)\rangle$. The method uses n samples $\left\{x_{i}\right\}_{i}^{n}$ where $x_{i} \in \mathbb{R}^{d}$, observes $\left\{y_{i}\right\}_{i}^{n}$, and requires $f \in \operatorname{span}\left(\phi\left(x_{i}\right)_{i=1}^{n}\right), i \in[n]$.
Theorem (Allen-Zhu and Li'20). There exists a class of functions $\mathcal{C} \subseteq\left\{c: \mathbb{R}^{d} \mapsto \mathbb{R}\right\}$ and a distribution μ over \mathbb{R}^{d} such that:

1) For all kernel method satisfying the definition above, there exists a $c \in \mathcal{C}$ such that given $y_{i}=$ $c\left(x_{i}\right)$, if $\mathbb{E}_{x \sim \mu}\left[(c(x)-\langle f, \phi(x)\rangle)^{2}\right] \leq \frac{1}{9}$, then $n \geq 2^{d-1}$.
2) There exists a simple procedure such that it can output the true cas long as $n \geq d$. This procedure can be simulated/approximated by a neural network with gradient descent.

Theorem idea: the separation between NN and kernel is that there exists a function class such that kernel method requires exponential number of samples whereas neural network requires only linear number of samples.

Proof. Define distribution μ uniform on $\{0,1\}^{d}$. We consider

$$
\mathcal{C}=\left\{c_{S}(x)=\prod_{s \in S} x_{s}\right\}, s \subset\{1, \cdots, d\}
$$

We first prove part 2) of the theorem. Choose a basis $\left(e_{1}, \cdots, e_{d}\right)$ for \mathcal{C}. We observe $y_{i}=c\left(e_{i}\right)$. Note that if $i \in S$, then $y_{i}=-1$ and if $i \notin S$, then $y_{i}=1$. We know that whether i is in S or not, so we can identify the set S. Thus we can learn the function c_{S} by querying only d samples.

To prove part 1) of the theorem, note that \mathcal{C} is a basis for a general function class $\left\{f:\{-1,1\}^{d} \mapsto \mathbb{R}\right\}$ with distribution μ where $\mathbb{E}_{x \sim \mu}\left[c_{S}(x) \cdot c_{S^{\prime}}(x)\right]= \begin{cases}0 & \text { if } S \neq S^{\prime} \\ 1 & \text { if } S=S^{\prime}\end{cases}$
Our goal is to compute a small test error

$$
\underset{x \sim \mu}{\mathbb{E}}\left[\left(c_{S^{*}}(x)-\langle f, \phi(x)\rangle\right)^{2}\right]
$$

By definition, $f \in \operatorname{span}\left(\phi\left(x_{i}\right)_{i=1}^{n}\right)$, so we can write $f=\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)$.
Consider $x \mapsto\left\langle\phi\left(x_{i}\right), \phi(x)\right\rangle$. We can also write $x=\sum_{S \in[d]} \lambda_{i, S} c_{S}(x)$

Thus, we can write the test error in quadratic form:

$$
\begin{aligned}
\underset{x \sim \mu}{\mathbb{E}}\left[\left(c_{S^{*}}(x)-\langle f, \phi(x)\rangle\right)^{2}\right] & =\underset{x \sim \mu}{\mathbb{E}}\left[\left(c_{S^{*}}(x)-\sum_{S \in[d]} \sum_{i=1}^{n} a_{i} \lambda_{i, S} c_{S}(x)\right)^{2}\right] \\
& =\left(1-\sum_{i}^{n} a_{i} \lambda_{i, S^{*}}\right)^{2}+\sum_{S \neq S^{*}}\left(\sum_{i} a_{i} \lambda_{i, S}\right)^{2}
\end{aligned}
$$

By assumption, if this error is less or equal to $\frac{1}{9}$, then

$$
\left(1-\sum_{i}^{n} a_{i} \lambda_{i, S^{*}}\right)^{2} \leq \frac{1}{9} \text { and } \sum_{S \neq S^{*}}\left(\sum_{i} a_{i} \lambda_{i, S}\right)^{2} \leq \frac{1}{9}
$$

We will show that these two properties imply that $n \geq 2^{d-1}$ by some linear algebra.
We use the following notations (assuming $n \leq 2^{d}$).
$\Lambda: 2^{d} \times n$ matrix
$\Lambda_{S, i}=\lambda_{i, S}$
$A: n \times 2^{d}$ matrix
$A_{i, S^{*}}=a_{i, S^{*}}$
$\Omega=\Lambda A: 2^{d} \times 2^{d}$ matrix of rank n

We rewrite the two properties in terms of the new notations.
Property 1 is equivalent to

$$
\left(1-\Omega_{S^{*}, S^{*}}\right)^{2} \leq \frac{1}{9}
$$

This implies that $\Omega_{S^{*}, S^{*}} \geq \frac{2}{3}$, and thus $\sum_{S \neq S^{*}} \Omega_{S^{*}, S^{*}}^{2} \leq \frac{1}{9}$.
In other words, the diagonal entries of Ω are at least $\frac{2}{3}$, and the sum of the off-diagonal entries (row-wise) squared is no more than $\frac{1}{9}$. The idea is to use the property that a diagonal dominant matrix has near full rank.

Formally, we consider $\Omega=\operatorname{diag}(\Omega)+\Omega^{\prime}$, where Ω^{\prime} is the off-diagonal matrix.
We know that the Frobenius norm $\left\|\Omega^{\prime}\right\|_{F}^{2} \leq \frac{2^{d}}{9}$ by definition, and it is equivalent to the sum of the eigenvalues of Ω^{\prime}. This implies that Ω^{\prime} has at most $\frac{2^{d}}{4}$ eigenvalues that are at least $\frac{2}{3}$.
We consider the subspace with eigenvalue strictly smaller than $\frac{2}{3}$, which has dimension at least $\frac{3}{4} \cdot 2^{d}$. For any x in this subspace, note that

$$
\|\Omega x\|_{2}=\left\|\operatorname{diag}(\Omega) x+\Omega^{\prime} x\right\|_{2} \geq\|\operatorname{diag}(\Omega) x\|_{2}-\left\|\Omega^{\prime} x\right\|_{2}>\frac{2}{3} x-\frac{2}{3} x=0
$$

This shows that $\operatorname{rank}(\Omega) \geq \frac{3}{4} \cdot 2^{d}$, since we have a subspace of dimension at least $\frac{3}{4} \cdot 2^{d}$ such that for every entry x in this subspace, the product with our matrix is strictly positive. Then this matrix has rank at least of the subspace dimension.

Thus, we have $n \geq \frac{3}{4} \cdot 2^{d}$.

