CSE 543 Simon Du

W

CSE543: Deep Learning

Instructor: Simon Du
Teaching Assistant: Qiwen Cui, Xinqi Wang, Vector Runlong Zhou

Course Website (contains all logistic information): https://courses.cs.washington.edu/ courses/cse543/23au/
Ed Discussion: https://edstem.org/us/courses/48032/discussion/
Announcements: Canvas
Homework: Canvas

CSE543: Deep Learning

What this class is:

- Fundamentals of DL: Neural network architecture, approximation properties, optimization, generalization, generative models, representation learning
- Preparation for further learning / research: the field is fastmoving, you will be able to apply the fundamentals and teach yourself the latest

What this class is not:

- An easy course: mathematically easy
- A survey course: laundry list of algorithms
- An application course: implementation of different architectures on different datasets

Prerequisites

- Working knowledge of:
- Linear algebra
- Vector calculus
- Probability and statistics
- Algorithms
- Machine leanring (CSE 446/546)
- Mathematical maturity
- "Can I learn these topics concurrently?"

Lecture

- Time: Tuesday and Thursday 10:00-11:20AM
- CSE2 G01 or Zoom (see website for the schedule)
- Slides + handwritten notes (e.g., proofs)
- Please ask questions
- Zoom link on Canvas
- Tentative schedule on course website

Homework (40\%)

- 2 homework (20\%+20\%)
- Each contains both theoretical questions and will have programming
- Related to course materials
- Collaboration okay but must write who you collaborated with. You must write, submit, and understand your answers and code.
\square Submit on Canvas
\square Must be typed
\square Two late days
- Tentative timeline:
- HW 1 due: 10/24
- HW 2 due: 11/7

Course Project (60\%)

- Group of 1-3.
- Topic: literature review (state-of-the-art) or original research.
- Some potential topics are in listed on Canvas. OK to do a project on listed.
- You can work on a project related to your research.
- Proposal (due: 10/10): 5\%
- Format: NeurIPS Latex format, ~1-1.5 pages
- Presentations on (12/5 and 12/7 on Zoom): 20\%
- Final report (due: 12/15): 35\%
- Format: NeurIPS Latex format, ~ 8 pages
- Submit on Canvas

Possible Topics

- Approximation properties
- Advanced optimization methods
- Optimization theory for deep learning
- Generalization theory for deep learning
- Deep reinforcement learning
- Implicit regularization
- Meta-learning
- Robustness
- Neural network compression
- Pre-training, fine-tuning, RLHF
- Deep learning application

Communication Chanels

- Announcements
- Canvas
- questions about class, homework help
\square Ed Discussion
\square Office hours:
Simon Du: Tu 1 :30-12:30 AM (in person CSE2 312 and/or Zoom)
Qiwen Cui: Tu 17:00-18:00 PM Zoom
\square Xinqi Wang: Th 14:00-15:00 CSE2 151
\square Vector Runlong Zhou: M 13:00-14:00 Zoom
\square Regrade requests / Personal concerns:
\square Email to instructor or TAs

Topic 1: Review (Today)

- ML Review: training, generalization
- Neural network basics: fully-connected neural network, gradient descent

Topic 2: Approximation Theory

- Why neural networks can express the (regression, classification, ...) function you want?
- Construction of such desired neural networks
- Universal approximation theorem

Topic 3: Optimization

- Review: Back-propagation
- Auto-differentiation
- Advanced optimizers: momentum (Nesterov acceleration), adaptive method (AdaGrad, Adam)
- Techniques for improving optimization: batch-norm, layernorm, ..
- Theory: global convergence of gradient of over- wide parameterized neural networks
- Neural Tangent Kernel
- Measures of generalization
- Double descent
- Techniques for improving generalization

$$
\text { large } \supset) \text { \# tod data }
$$

- Generalization theory beyond VC-dimension \# of data
- Implicit regularization
- Why NN outperforms kernel

Topic 5: Architecture

- Convolutional neural network
- Recurrent neural network
- LSTM
- Attention-based neural network
- Transformer
- General framework
geometric

Topic 6: Representation Learning $+$

Topic 7: Generative Models

- Generative adversarial network
- Variational Auto-Encoder
- Energy-based models
- Normalizing flows

$$
O\left(e^{d}\right)
$$

- score-based
- diffusion

Mex

Discover Weekly

amazon prime

ML uses past data to make predictions

crase 0		ouro SAFPHRE निtotmero\qquad
0. Mexty	VISA	a.gevit
MileasePlus Explorer vnaves		

(3) 0

Supervised Learning Process

Collect a dataset

$$
\left\{\left(x_{i}, y_{i},\right\}_{i=1}^{n}, i_{i d i d}^{d} D\right.
$$

X_{i} : input $\in \mathbb{D}^{d}, i \operatorname{mong}($, sequence
(3) tree
$y_{i}<$ Requession: D
(4) neural network
Find the function which fits the data best
$l(f(f), y)$ Choose a loss function $l(f(x), y) \rightarrow \mathcal{D}$
$=(f(x)-y)^{2}$ Pick the function which minimizes loss
logistic on data
$\lambda \in D_{+}$
Use function to make prediction on new
Θ : ()parameter examples

Knew

$$
\text { Knew }_{\text {prediction }} \hat{f} \text { (nail } \approx y_{\text {nan }}
$$

$$
D(f)=\|\theta\|_{2}^{2}
$$

Framework

$$
\text { Fix } f \in F
$$

Goal: Test Eroov

$$
\begin{aligned}
& \operatorname{Lec}(f)=\mathbb{E}_{(x, y) \sim D}[l(f(x), y)] \\
& \operatorname{Ltv}(f)=\frac{1}{n} \sum_{i=1}^{n} l\left(f\left(x_{i}\right), y_{i}\right) \\
& \operatorname{Lte}(f)=\operatorname{Ltv}(f)+L \operatorname{te}(f)-L \operatorname{tr}(f) \\
& =\min _{\tilde{f} \in F} L_{t v}(\tilde{f})<\operatorname{appraximation} \\
& +\operatorname{Ltr}(f)-\min _{\tilde{f} \in \mathcal{F}}^{\operatorname{Ltr}(f)} \leftarrow_{\text {evor }}^{\text {opt }} \\
& +\angle \operatorname{te}(f)-\angle \operatorname{tr}(f) \leftarrow_{\text {gerror }}^{\text {genelation }}
\end{aligned}
$$

midden layers
Neural Networks

each node:

1) in pout
2) activation function

- maps output of node

3) output to the ingot of node - each link has on weight: D

Single Node

Sigmoid (logistic) activation function: $g(z)=\frac{1}{1+e^{-z}}$

$$
\operatorname{Re}(U: y(z)=\max \{0, z\}
$$

$a_{i}(j)=$ "activation" of unit i in layer j
$\Theta^{(j)}=$ weight matrix stores parameters from layer j to layer $j+1$

$$
\begin{aligned}
a_{1}^{(2)} & =g\left(\Theta_{10}^{(1)} x_{0}+\Theta_{11}^{(1)} x_{1}+\Theta_{12}^{(1)} x_{2}+\Theta_{13}^{(1)} x_{3}\right) \\
a_{2}^{(2)} & =g\left(\Theta_{20}^{(1)} x_{0}+\Theta_{21}^{(1)} x_{1}+\Theta_{22}^{(1)} x_{2}+\Theta_{23}^{(1)} x_{3}\right) \\
a_{3}^{(2)} & =g\left(\Theta_{30}^{(1)} x_{0}+\Theta_{31}^{(1)} x_{1}+\Theta_{32}^{(1)} x_{2}+\Theta_{33}^{(1)} x_{3}\right) \\
h_{\Theta}(x) & =a_{1}^{(3)}=g\left(\Theta_{10}^{(2)} a_{0}^{(2)}+\Theta_{11}^{(2)} a_{1}^{(2)}+\Theta_{12}^{(2)} a_{2}^{(2)}+\Theta_{13}^{(2)} a_{3}^{(2)}\right)
\end{aligned}
$$

If network has s_{j} units in layer j and s_{j+1} units in layer $j+1$, then $\Theta^{(0)}$ has dimension $s_{j+1} \times\left(s_{j}+1\right)$

$$
\Theta^{(1)} \in \mathbb{R}^{3 \times 4} \quad \Theta^{(2)} \in \mathbb{R}^{1 \times 4}
$$

Multi-layer Neural Network - Binary Classification

Multi-layer Neural Network - Binary Classification

Multiple Output Units: One-vs-Rest

Pedestrian

Car

Motorcycle

Truck

$$
\begin{aligned}
& \text { (voss- ent vos) } y \\
& h_{\Theta}(\mathbf{x}) \in \mathbb{R}^{K}
\end{aligned}
$$

Multi-class
Logistic
Regression
We want:

$$
h_{\Theta}(\mathbf{x}) \approx\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad h_{\Theta}(\mathbf{x}) \approx\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

when car

$$
h_{\Theta}(\mathbf{x}) \approx\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

when motorcycle
$h_{\Theta}(\mathbf{x}) \approx\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
when truck

Multi-layer Neural Network - Regression

$$
\begin{aligned}
& a^{(1)}=x \\
& z^{(2)}=\Theta^{(1)} a^{(1)} \\
& a^{(2)}=g\left(z^{(2)}\right) \\
& \vdots \\
& z^{(l+1)}=\Theta^{(l)} a^{(l)} \\
& a^{(l+1)}=g\left(z^{(l+1)}\right) \\
& \vdots \\
& \widehat{y}=g\left(\Theta^{(L)} a^{(L)}\right)
\end{aligned}
$$

$$
L(y, \hat{y})=y \log (\hat{y})+(1-y) \log (1-\hat{y})
$$

$$
g(z)=\frac{1}{1+e^{-z}}
$$

y: Step) size, loonvoing rate
Gradient Descent: $\Theta^{(l)} \leftarrow \Theta^{(l)}-\eta \nabla_{\Theta^{(l)}} L(y, \widehat{y}) \quad \forall l$

Gradient Descent: $\quad \Theta^{(l)} \leftarrow \Theta^{(l)}-\eta \nabla_{\Theta^{(l)}} L(y, \widehat{y}) \quad \forall l$

Seems simple enough, why are packages like PyTorch, Tensorflow, Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation
(1) set up NON
(2) Training funds
2. GPU support
```
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
    # 1 input image channel, 6 output channels, 3x3 square convolution
    # kernel
    self.conv1 = nn.Conv2d(1, 6, 3)
    self.conv2 = nn.Conv2d(6, 16, 3)
    #⿰㇒三丨⿰丨三\mp@code{an affine operation: y = Wx + b}
    self.fc1 = nn.Linear(16 * 6 * 6, 120) 非 6*6 from image dimension
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
    # Max pooling over a (2, 2) window
    x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
1. Automatic differ # If the size is a square you can only specify a single number
    x = F.max_pool2d(F.relu(self.conv2(x)), 2)
    x = x.view(-1, self.num_flat_features(x))
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return x
```

 2. Convenient libra
    ```
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() 非 zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() ## Does the update
```

