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CSE543: Deep Learning

Instructor: Simon Du

Teaching Assistant: Qiwen Cui, Xingi Wang, Vector Runlong Zhou

Course Website (contains all logistic information): https://courses.cs.washington.edu/
courses/cseb543/23au/

Ed Discussion: https://edstem.org/us/courses/48032/discussion/

Announcements: Canvas

Homework: Canvas




CSE543: Deep Learning

What this class is:

 Fundamentals of DL: Neural network architecture, approximation

properties, optimization, generalization, generative models,
representation learning

* Preparation for further learning / research: the field is fast-

moving, you will be able to apply the fundamentals and teach
yourself the latest

What this class is not:

 An easy course: mathematically easy
* A survey course: laundry list of algorithms

« An application course: implementation of different architectures on
different datasets



Prerequisites

= Working knowledge of:

= Linear algebra

= Vector calculus

= Probability and statistics

= Algorithms

= Machine leanring (CSE 446/546)
= Mathematical maturity

= “Can | learn these topics concurrently?”



Lecture

= Time: Tuesday and Thursday 10:00 - 11:20AM

= CSE2 GO01 or Zoom (see website for the schedule)
= Slides + handwritten notes (e.g., proofs)

= Please ask questions

= Zoom link on Canvas

= Tentative schedule on course website



Homework (40%)

= 2 homework (20%+20%)

0 Each contains both theoretical questions and will have
programming

0 Related to course materials

0 Collaboration okay but must write who you collaborated
with. You must write, submit, and understand your
answers and code.

0 Submit on Canvas
0 Must be typed
0 Two late days
O Tentative timeline:
0 HW 1 due: 10/24
0 HW 2 due: 11/7




Course Project (60%)

= Group of 1 - 3.

= Topic: literature review (state-of-the-art) or original
research.

= Some potential topics are in listed on Canvas. OK to do a
project on listed.

= You can work on a project related to your research.
= Proposal (due: 10/10): 5%
= Format: NeurlPS Latex format, ~1 - 1.5 pages
= Presentations on (12/5 and 12/7 on Zoom): 20%
= Final report (due: 12/15): 35%
= Format: NeurlPS Latex format, ~8 pages
= Submit on Canvas



Possible Topics

= Approximation properties

= Advanced optimization methods

= Optimization theory for deep learning
= Generalization theory for deep learning
= Deep reinforcement learning

= |Implicit regularization

= Meta-learning

= Robustness

= Neural network compression

= Pre-training, fine-tuning, RLHF

= Deep learning application



Communication Chanels

= Announcements
= Canvas
= questions about class, homework help
Ed Discussion
Office hours:

Simon Du: Tu 16 :30 - 1 30@% iIn person CSE2
312 and/or Zoom)

“Qiwen Cui: Tu 17:00 - 18:00 PM Zoom
Xingi Wang: Th 14:00 - 15:00 CSE2 151
Vector Runlong Zhou: M 13:00 - 14:00 Zoom
Regrade requests / Personal concerns:
0 Emall to instructor or TAs



Topic 1: Review (Today)

= ML Review: training, gﬁ@@li_@
=

= Neural network basics: fully-connected neural network,
gradient descent T —
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Topic 2: Approximation Theory § Smf‘/

= \Why neural networks can express the (regression,
classification, ...) function you want?

= Construction of such desired neural networks
M’(\/_—\x\’_w o —

= Universal approximation theorem
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Topic 3: Optimization

= Review: Back-propagation
= Auto-differentiation <)

. Advanced optimizers: momentum (Nesterov acceleration),
adaptive method (AdaGrad, Adam)

= Techniques for improving optimization: batch-norm, layer-
norm, ..

= Theory: global convergence of gradient of over- \l\;\GQ
parameterized neural networks -

- Neural Tangent Kernel
T I




Topic 4: Generalization *% @’\/ (oA sf Y
2eneralization
lavge o) 4 3|

= Measures of generalization WS
. Double descent oy M
= Techniques for improving generalization _ﬁdg\‘w\

= (Generalization theory beyond VC-dimension

o WQularization
= Why NN outperforms kernel
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Topic 5: Architecture

Convolutional neural network
Recurrent neural network
= LSTM
Attention-based neural netwo\ﬂ
= Transformer
General framework 7@ PRI
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Topic 6: Representation Learning P <
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= | Multi-task representation learning
= [ Transfer learning

v\/

= | Contrastive learning Qm;m —
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=| Domain adaptation
=| Meta-learning

=| Theory
-
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Topic 7: Generative Models

Generative adversarial network

Variational Auto-Encoder (;SL \

Energy-based models O e
Normalizing flows
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Supervised Learning Process  foucior Jo
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Framework
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Single Node

“bias unit” L0 go
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bias units
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Neural Network(dm() 0 il
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Layer 1

(Input Layer)

Slide by Andrew Ng

Layer 2 Layer 3

(Hidden Layer) (Output Layer)
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al) = “activation” of uniti in layer j

OU) = weight matrix stores parameters
from layer J to layerj + 1

To + @(1):13 + @(1):1:2 + @%)333)

a; " = 9(@( )
a§2) = g(@(l)az + @(1)x1 + @( ):13 + @;?333)
aéz) = g(@(l)xo + @( )a: + @( )x + @%)xg)
ro(0) = al? = 02 + 02af? + 62ul? + 6ul?

If network has Sj units in Iayerj and S;,; units in Iayerj+1
then OV has dlmen5|on Sivg X (S7+1 )"'

@(1) c R3X4 @(2) c R1X4

Slide by Andrew Ng



Multi-layer Neural Network - Binary Classification

al) = x

L(1+1)
' L(y,y) =ylog(y)+ (1 — y)log(l - y)
= (L) (L
y_g(@ a )) ()_ 1 Bin?rY
T




Multi-layer Neural Network - Binary Classification

al) = x

' L(y,y) = ylog(y) + (1 — y)log(l — ¥)
:7/\ — g(@(L)a(L)) 1 Binary

0(z) = max{0,z} g(z) = ) —, Logistic
— Te Regression




Multiple Output Units: One-vs-Rest
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Multi-layer Neural Network - Regression

al) = x

o(z) = max{0, z} Regression
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Gradient Descent: @(l) < @(l) — UV@(z)L(% Z/J\) Vi

Seems simple enough, why are packages like PyTorch, Tensorflow,
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiatiﬂ_\ f\J
0 &th U3 \
2. Convenient libraries @ /Al v ((/;7 #Ull/(

—_—

3. GPU support




class Net(nn.Module):

def __init__(self):
super(Net, self).__init__()

Gradlent Desce nt: # 1 input image channel, 6 output channels, 3x3 square convolution

# kernel
self.convl

nn.Conv2d(1, 6, 3)

nn.Conv2d(6, 16, 3)

. # an affine operation: y = Wx + b

SeemS Slmple enough) self.fcl = nn.Linear(16 * 6 * 6, 120) # 646 from image dimension

self.fc2 nn.Linear (120, 84)

Theano, Cafe, MxNet { self.fc3 = nn.Linear(34, 10)

self.conv2

def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.convli(x)), (2, 2))

1 Automatlc dlffer # If the size is a square you can only specify a single number

X = F.max_pool2d(F.relu(self.conv2(x)), 2)
X = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fcl(x))

x = F.relu(self.fc2(x))

self.fc3(x)

2. Convenient Iibra‘ return x

# create your optimizer

optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:

optimizer.zero_grad() # zero the gradient buffers
output = net(input)

loss = criterion(output, target)

loss.backwazrd()

optimizer.step() # Does the update




