Optimization Methods for Deep Learning

Gradient descent for non-convex optimization

Decsent Lemma: Let $f: \mathbb{R}^d \to \mathbb{R}$ be twice differentiable, and $\|\nabla^2 f\|_2 \leq \beta$. Then setting the learning rate $\eta = 1/\beta$, and applying gradient descent, $x_{t+1} = x_t - \eta \, \nabla f(x_t)$, we have: $f(x_t) - f(x_{t+1}) \geq \frac{1}{2\beta} \|\nabla f(x_t)\|_2^2.$

Converging to stationary points

Theorem: In $T = O(\frac{\beta}{\epsilon^2})$ iterations, we have $\|\nabla f(x)\|_2 \le \epsilon$.

Gradient Descent for Quadratic Functions

Problem: $\min_{x} \frac{1}{2} x^{\top} A x$ with $A \in \mathbb{R}^{d \times d}$ being positive-definite. **Theorem:** Let λ_{\max} and λ_{\min} be the largest and the smallest eigenvalues of A. If we set $\eta \leq \frac{1}{\lambda_{\max}}$, we have $\|x_t\|_2 \leq \left(1 - \eta \lambda_{\min}\right)^t \|x_0\|_2$

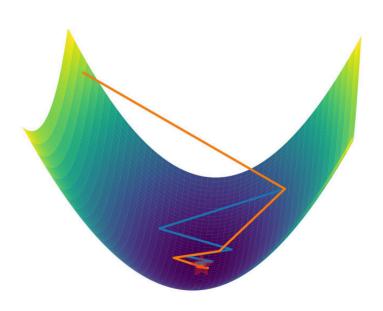
Momentum: Heavy-Ball Method (Polyak '64)

Problem: min f(x)

 \mathcal{X}

Method: $v_{t+1} = -\nabla f(x_t) + \beta v_t$

$$x_{t+1} = x_t + \eta v_{t+1}$$



Momentum: Nesterov Acceleration (Nesterov '89)

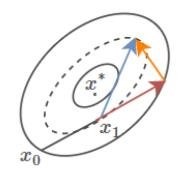
Problem: min f(x)

X

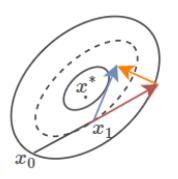
Method: $v_{t+1} = -\nabla f(x_t + \beta v_t) + \beta v_t$

$$x_{t+1} = x_t + \eta v_{t+1}$$

Polyak's Momentum

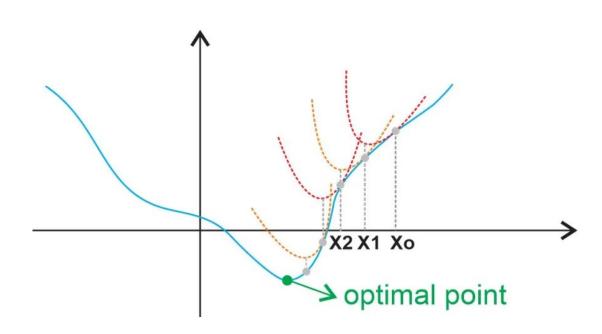


Nesterov Momentum



Newton's Method

Newton's Method: $x_{t+1} = x_t - \eta (\nabla^2 f(x_t))^{-1} \nabla f(x_t)$



AdaGrad (Duchi et al. '11)

Newton Method: $x_{t+1} = x_t - \eta (\nabla^2 f(x_t))^{-1} \nabla f(x_t)$

AdaGrad: separate learning rate for every parameter

$$x_{t+1} = x_t - \eta (G_{t+1} + \epsilon I)^{-1} \nabla f(x_t), (G_t)_{ii} = \sqrt{\sum_{j=1}^{t-1} \left(\nabla f(x_t)_i \right)^2}$$

RMSProp (Hinton et al. '12)

AdaGrad: separate learning rate for every parameter

$$x_{t+1} = x_t - \eta (G_{t+1} + \epsilon I)^{-1} \nabla f(x_t), (G_t)_{ii} = \sqrt{\sum_{j=1}^{t-1} \left(\nabla f(x_t)_i \right)^2}$$

RMSProp: exponential weighting of gradient norms

$$\begin{aligned} x_{t+1} &= x_t - \eta (G_{t+1} + \epsilon I)^{-1/2} \nabla f(x_t), \\ (G_{t+1})_{ii} &= \beta (G_t)_{ii} + (1 - \beta)(\nabla f(x_t)_i)^2 \end{aligned}$$

AdaDelta (Zeiler '12)

RMSProp:

$$x_{t+1} = x_t - \eta (G_{t+1} + \epsilon I)^{-1/2} \nabla f(x_t),$$

$$(G_{t+1})_{ii} = \beta (G_t)_{ii} + (1 - \beta)(\nabla f(x_t)_i)^2$$

AdaDelta:

$$\begin{aligned} x_{t+1} &= x_t - \eta \Delta x_t, \\ \Delta x_t &= \sqrt{u_t + \epsilon} \cdot (G_{t+1} + \epsilon I)^{-1/2} \nabla f(x_t) \\ (G_{t+1})_{ii} &= \rho(G_t)_{ii} + (1 - \rho)(\nabla f(x_t)_i)^2, \\ u_{t+1} &= \rho u_t + (1 - \rho) \|\Delta x_t\|_2^2 \end{aligned}$$

Adam (Kingma & Ba '14)

Momentum:

$$v_{t+1} = -\nabla f(x_t) + \beta v_t, x_{t+1} = x_t + \eta v_{t+1}$$

RMSProp: exponential weighting of gradient norms

$$x_{t+1} = x_t - \eta (G_{t+1} + \epsilon I)^{-1} \nabla f(x_t),$$

$$(G_t)_{ii} = \beta (G_t)_{ii} + (1 - \beta)(\nabla f(x_t)_i)^2$$

Adam

$$v_{t+1} = \beta_1 v_t + (1 - \beta_1) \nabla f(x_t)$$

$$(G_{t+1})_{ii} = \beta_2 (G_t)_{ii} + (1 - \beta_2) (\nabla f(x_t)_i)^2$$

$$x_{t+1} = x_t - \eta (G_{t+1} + \epsilon I)^{-1/2} v_{t+1}$$

Default choice nowadays.

Are these actually useful

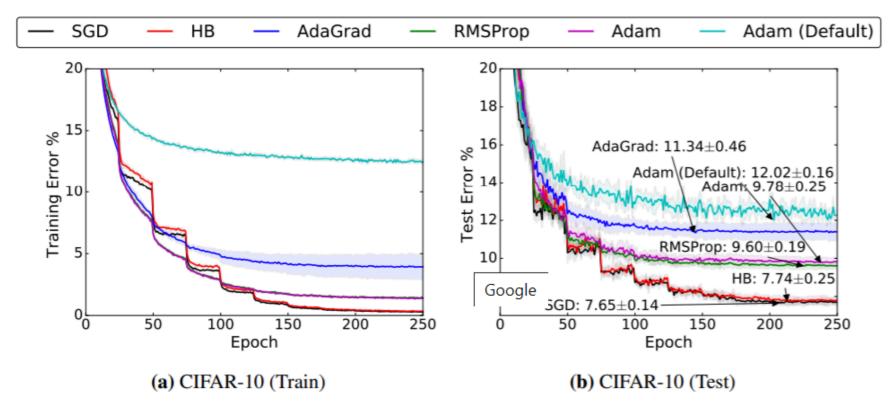


Figure 1: Training (left) and top-1 test error (right) on CIFAR-10. The annotations indicate where the best performance is attained for each method. The shading represents \pm one standard deviation computed across five runs from random initial starting points. In all cases, adaptive methods are performing worse on both train and test than non-adaptive methods.

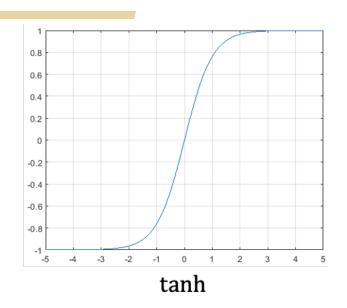
Wilson, Roelofs, Stern, Srebro, Recht '18

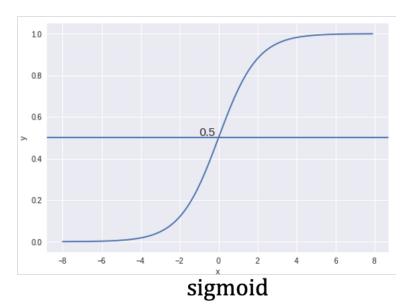
Important Techniques in Neural Network Training

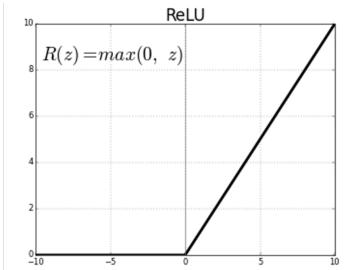
Gradient Explosion / Vanishing

- Deeper networks are harder to train:
 - Intuition: gradients are products over layers
 - Hard to control the learning rate

Activation Functions

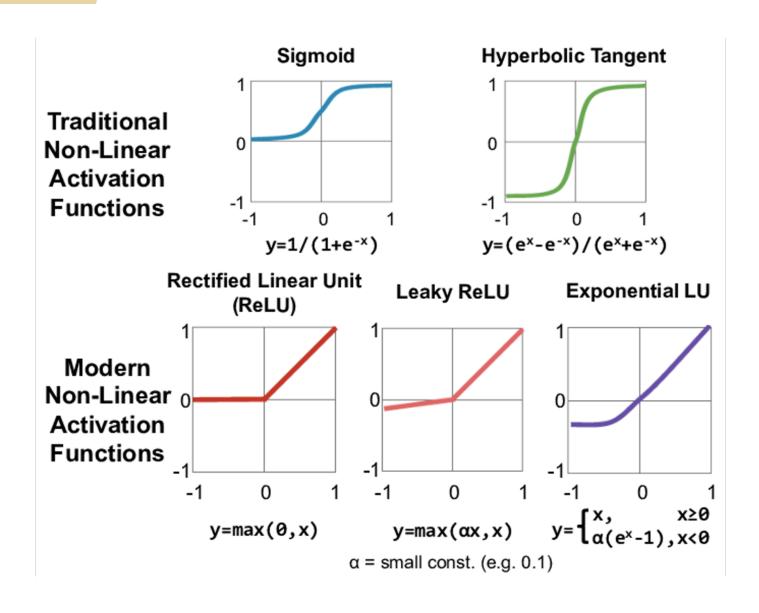






Rectified Linear United

Activation Function



Initialization

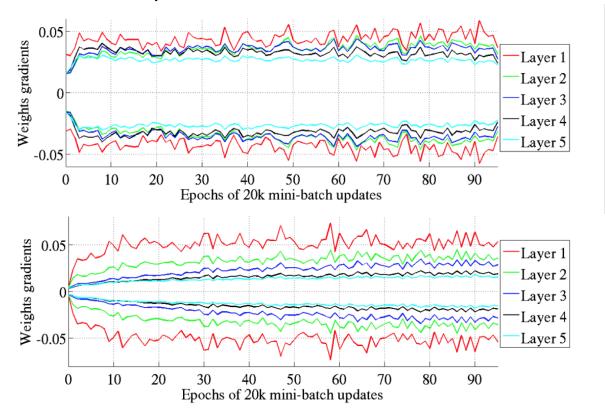
- Zero-initialization
- Large initialization
- Small initialization

- Design principles:
 - Zero activation mean
 - Activation variance remains same across layers

Xavier Initialization (Glorot & Bengio, '10)

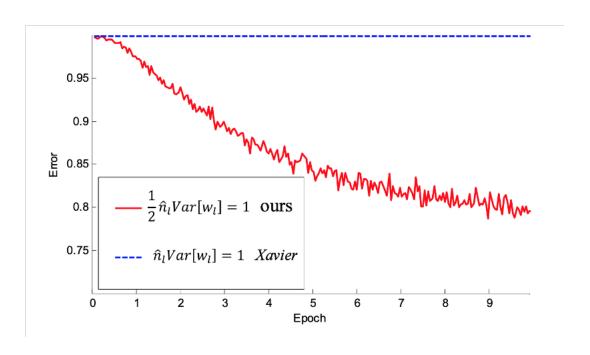
$$\begin{array}{l} \bullet \ W_{ij}^{(h)} \sim \text{Unif} \left[-\frac{\sqrt{6}}{\sqrt{d_h + d_{h+1}}}, \frac{\sqrt{6}}{\sqrt{d_h + d_{h+1}}} \right] \\ \bullet \ b^{(h)} = 0 \end{array}$$

- Experiments (tanh activation)



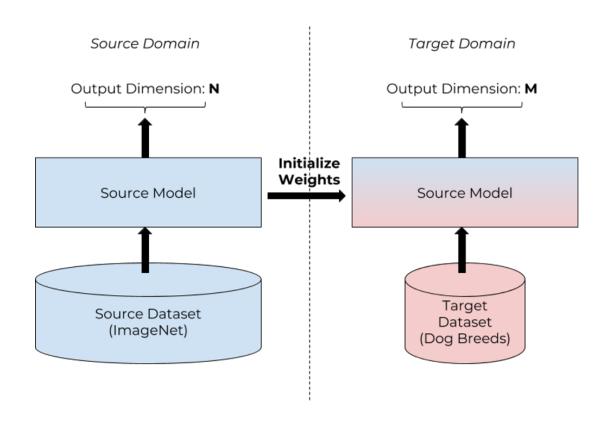
•
$$W_{ij}^{(h)} \sim \mathcal{N}\left(0, \frac{2}{d_h}\right)$$
.

- $b^{(h)} = 0$
- Designed for ReLU activation
- 30-layer neural network



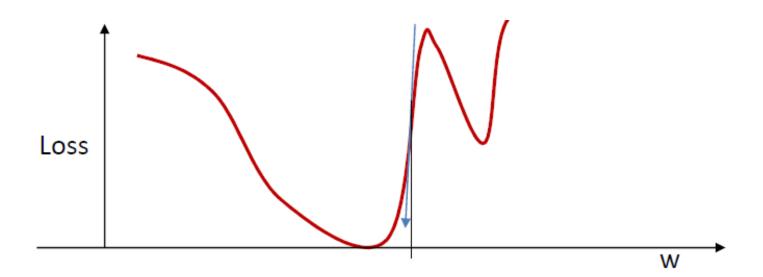
Initialization by Pre-training

- Use a pre-trained network as initialization
- And then fine-tuning



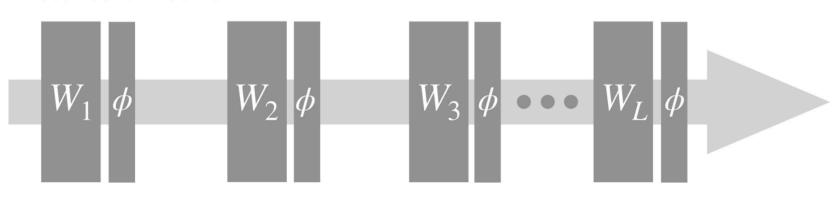
Gradient Clipping

- The loss can occasionally lead to a steep descent
- This result in immediate instability
- If gradient norm bigger than a threshold, set the gradient to the threshold.

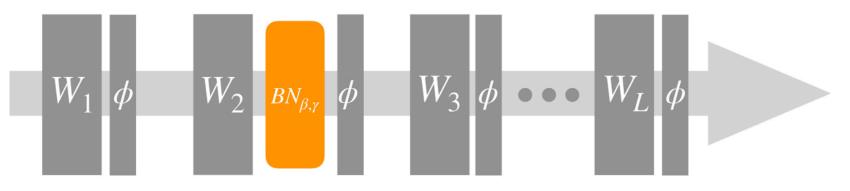


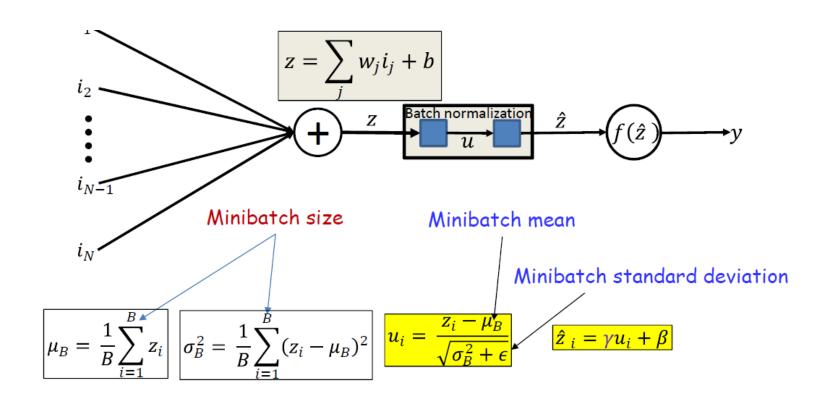
- Normalizing/whitening (mean = 0, variance = 1) the inputs is generally useful in machine learning.
 - Could normalization be useful at the level of hidden layers?
 - Internal covariate shift: the calculations of the neural networks change the distribution in hidden layers even if the inputs are normalized
- Batch normalization is an attempt to do that:
 - Each unit's pre-activation is normalized (mean subtraction, std division)
 - During training, mean and std is computed for each minibatch (can be backproped!

Standard Network



Adding a BatchNorm layer (between weights and activation function)





- BatchNorm at training time
 - Standard backprop performed for each single training data
 - Now backprop is performed over entire batch.

$$\frac{\partial Div}{\partial \sigma_B^2} = \frac{-1}{2} (\sigma_B^2 + \epsilon)^{-3/2} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}$$

$$\frac{\partial Div}{\partial \mu_B} = \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}$$

$$i_1 \qquad \qquad \frac{\partial Div}{\partial z_i} = \frac{\partial Div}{\partial u_i} \cdot \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{\partial Div}{\partial \sigma_B^2} \cdot \frac{2(z_i - \mu_B)}{B} + \frac{\partial Div}{\partial \mu_B} \cdot \frac{1}{B}$$

$$i_2 \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

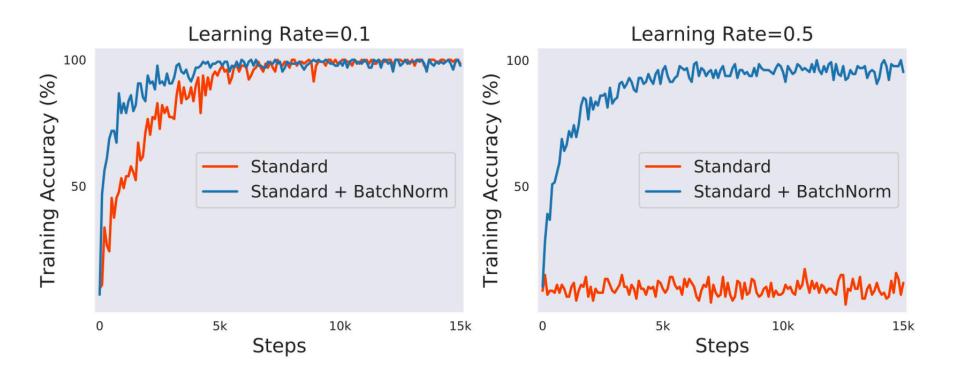
$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$i_{N-1} \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$



What is BatchNorm actually doing?

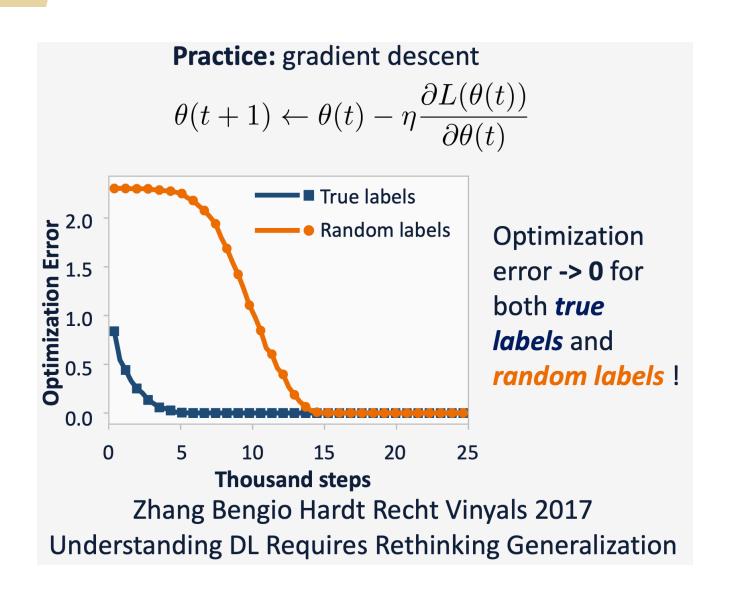
- May not due to covariate shift (Santurkar et al. '18):
 - Inject non-zero mean, non-standard covariance Gaussian noise after BN layer: removes the whitening effect
 - Still performs well.
- Only training β , γ with random convolution kernels gives nontrivial performance (Frankle et al. '20)
- BN can use exponentially increasing learning rate! (Li & Arora '19)

More normalizations

- Layer normalization (Ba, Kiros, Hinton, '16)
 - Batch-independent
 - Suitable for RNN, MLP
- Weight normalization (Salimans, Kingma, '16)
 - Suitable for meta-learning (higher order gradients are needed)
- Instance normalization (Ulyanov, Vedaldi, Lempitsky, '16)
 - Batch-independent, suitable for generation tasks
- Group normalization (Wu & He, '18)
 - Batch-independent, improve BatchNorm for small batch size

Non-convex Optimization Landscape

Gradient descent finds global minima



Types of stationary points

- Stationary points: $x : \nabla f(x) = 0$
- Global minimum:

$$x: f(x) \le f(x') \, \forall x' \in \mathbb{R}^d$$

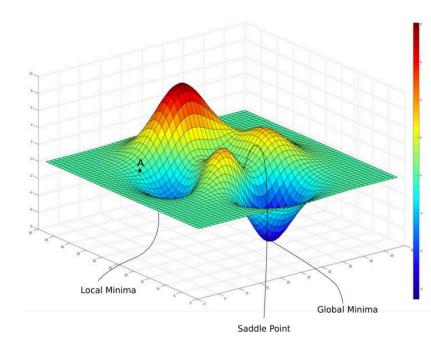
• Local minimum:

$$x: f(x) \le f(x') \, \forall x': \|x - x'\| \le \epsilon$$

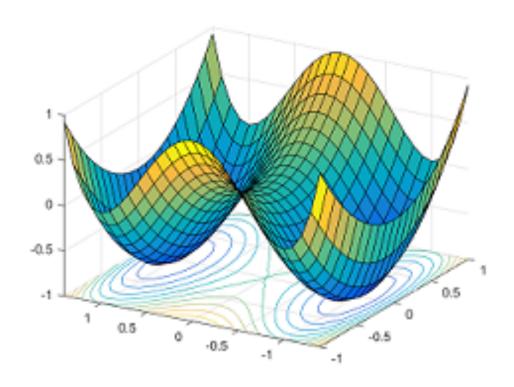
· Local maximum:

$$x: f(x) \ge f(x') \forall x': ||x - x'|| \le \epsilon$$

 Saddle points: stationary points that are not a local min/max

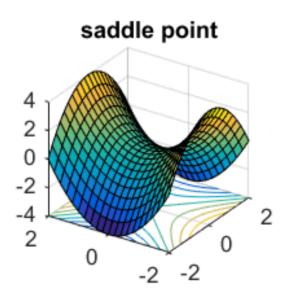


Landscape Analysis



- All local minima are global!
- Gradient descent can escape saddle points.

Strict Saddle Points (Ge et al. '15, Sun et al. '15)



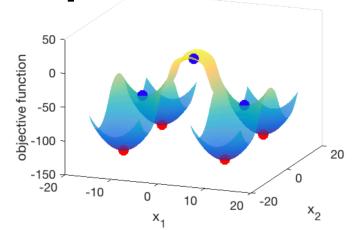
• Strict saddle point: a saddle point and $\lambda_{\min}(\nabla^2 f(x)) < 0$

Escaping Strict Saddle Points

- Noise-injected gradient descent can escape strict saddle points in polynomial time [Ge et al., '15, Jin et al., '17].
- Randomly initialized gradient descent can escape all strict saddle points asymptotically [Lee et al., '15].
 - Stable manifold theorem.

 Randomly initialized gradient descent can take exponential time to escape strict saddle points [Du et al., '17].

If 1) all local minima are global, and 2) are saddle points are strict, then noise-injected (stochastic) gradient descent finds a global minimum in polynomial time



What problems satisfy these two conditions

- Matrix factorization
- Matrix sensing
- Matrix completion
- Tensor factorization
- Two-layer neural network with quadratic activation

What about neural networks?

• Linear networks (neural networks with linear activations functions): all local minima are global, but there exists saddle points that are not strict [Kawaguchi '16].

- Non-linear neural networks with:
 - Virtually any non-linearity,
 - Even with Gaussian inputs,
 - Labels are generated by a neural network of the same architecture,

There are many bad local minima [Safran-Shamir '18, Yun-Sra-Jadbaie '19].