
Optimization Methods
for Deep Learning

Gradient descent for non-convex optimization

Decsent Lemma: Let be twice differentiable, and
. Then setting the learning rate , and

applying gradient descent, , we have:

.

f : ℝd → ℝ
∥∇2f∥2 ≤ β η = 1/β

xt+1 = xt − η∇f(xt)

f(xt) − f(xt+1) ≥
1

2β
∥∇f(xt)∥2

2

Converging to stationary points

Theorem: In iterations, we have .T = O(
β
ϵ2

) ∥∇f(x)∥2 ≤ ϵ

Gradient Descent for Quadratic Functions

Problem: with being positive-definite.

Theorem: Let be the largest and the smallest

eigenvalues of . If we set , we have

min
x

1
2

x⊤Ax A ∈ ℝd×d

λmax and λmin

A η ≤
1

λmax
∥xt∥2 ≤ (1 − ηλmin)t ∥x0∥2

Momentum: Heavy-Ball Method (Polyak ’64)

Problem:

Method:

min
x

f(x)

vt+1 = − ∇f(xt) + βvt
xt+1 = xt + ηvt+1

Momentum: Nesterov Acceleration (Nesterov ’89)

Problem:

Method:

min
x

f(x)

vt+1 = − ∇f(xt + βvt) + βvt
xt+1 = xt + ηvt+1

Newton’s Method

Newton’s Method: xt+1 = xt − η(∇2f(xt))−1 ∇f(xt)

AdaGrad (Duchi et al. ’11)

Newton Method:
AdaGrad: separate learning rate for every parameter

,

xt+1 = xt − η(∇2f(xt))−1 ∇f(xt)

xt+1 = xt − η(Gt+1 + ϵI)−1 ∇f(xt) (Gt)ii =
t−1

∑
j=1

(∇f(xt)i)2

RMSProp (Hinton et al. ’12)

AdaGrad: separate learning rate for every parameter

,

RMSProp: exponential weighting of gradient norms
,

xt+1 = xt − η(Gt+1 + ϵI)−1 ∇f(xt) (Gt)ii =
t−1

∑
j=1

(∇f(xt)i)2

xt+1 = xt − η(Gt+1 + ϵI)−1/2 ∇f(xt)
(Gt+1)ii = β(Gt)ii + (1 − β)(∇f(xt)i)2

AdaDelta (Zeiler ’12)

RMSProp:
,

AdaDelta:
,

,

xt+1 = xt − η(Gt+1 + ϵI)−1/2 ∇f(xt)
(Gt+1)ii = β(Gt)ii + (1 − β)(∇f(xt)i)2

xt+1 = xt − ηΔxt
Δxt = ut + ϵ ⋅ (Gt+1 + ϵI)−1/2 ∇f(xt)
(Gt+1)ii = ρ(Gt)ii + (1 − ρ)(∇f(xt)i)2

ut+1 = ρut + (1 − ρ)∥Δxt∥2
2

Adam (Kingma & Ba ’14)

Momentum:
,

RMSProp: exponential weighting of gradient norms
,

Adam

Default choice nowadays.

vt+1 = − ∇f(xt) + βvt xt+1 = xt + ηvt+1

xt+1 = xt − η(Gt+1 + ϵI)−1 ∇f(xt)
(Gt)ii = β(Gt)ii + (1 − β)(∇f(xt)i)2

vt+1 = β1vt + (1 − β1)∇f(xt)
(Gt+1)ii = β2(Gt)ii + (1 − β2)(∇f(xt)i)2

xt+1 = xt − η(Gt+1 + ϵI)−1/2vt+1

Are these actually useful

Wilson,	Roelofs,	Stern,	Srebro,	Recht	‘18

Important Techniques
in Neural Network
Training

Gradient Explosion / Vanishing

• Deeper networks are harder to train:
• Intuition: gradients are products over layers
• Hard to control the learning rate

Activation Functions

Activation Function

Initialization

• Zero-initialization
• Large initialization
• Small initialization

• Design principles:
• Zero activation mean

• Activation variance remains same across layers

Xavier Initialization (Glorot & Bengio, ’10)

•

•
• Experiments (tanh activation)

W(h)
ij ∼ Unif [−

6
dh + dh+1

,
6

dh + dh+1]
b(h) = 0

Kaiming Initialization (He et al. ’15)

• .

•
• Designed for ReLU activation
• 30-layer neural network

W(h)
ij ∼ 𝒩 (0,

2
dh)

b(h) = 0

Kaiming Initialization (He et al. ’15)

Kaiming Initialization (He et al. ’15)

Kaiming Initialization (He et al. ’15)

Initialization by Pre-training

• Use a pre-trained network as initialization
• And then fine-tuning

Gradient Clipping

• The loss can occasionally lead to a steep descent
• This result in immediate instability
• If gradient norm bigger than a threshold, set the gradient to the

threshold.

Batch Normalization (Ioffe & Szegedy, ’14)

• Normalizing/whitening (mean = 0, variance = 1) the inputs is
generally useful in machine learning.
• Could normalization be useful at the level of hidden layers?
• Internal covariate shift: the calculations of the neural

networks change the distribution in hidden layers even if the
inputs are normalized

• Batch normalization is an attempt to do that：
• Each unit’s pre-activation is normalized (mean subtraction,

std division)
• During training, mean and std is computed for each

minibatch (can be backproped!

Batch Normalization (Ioffe & Szegedy, ’14)

Batch Normalization (Ioffe & Szegedy, ’14)

Batch Normalization (Ioffe & Szegedy, ’14)

• BatchNorm at training time
• Standard backprop performed for each single training data
• Now backprop is performed over entire batch.

Batch Normalization (Ioffe & Szegedy, ’14)

What is BatchNorm actually doing?

• May not due to covariate shift (Santurkar et al. ‘18):
• Inject non-zero mean, non-standard covariance Gaussian

noise after BN layer: removes the whitening effect
• Still performs well.

• Only training with random convolution kernels gives non-
trivial performance (Frankle et al. ’20)

• BN can use exponentially increasing learning rate! (Li & Arora
’19)

β, γ

More normalizations

• Layer normalization (Ba, Kiros, Hinton, ’16)
• Batch-independent
• Suitable for RNN, MLP

• Weight normalization (Salimans, Kingma, ’16)
• Suitable for meta-learning (higher order gradients are

needed)
• Instance normalization (Ulyanov, Vedaldi, Lempitsky, ’16)

• Batch-independent, suitable for generation tasks
• Group normalization (Wu & He, ‘18)

• Batch-independent, improve BatchNorm for small batch size

Non-convex
Optimization Landscape

Gradient descent finds global minima

Types of stationary points

• Stationary points:
• Global minimum:

• Local minimum:

• Local maximum:

• Saddle points: stationary points

that are not a local min/max

x : ∇f(x) = 0

x : f(x) ≤ f(x′)∀x′ ∈ ℝd

x : f(x) ≤ f(x′)∀x′ : ∥x − x′ ∥ ≤ ϵ

x : f(x) ≥ f(x′)∀x′ : ∥x − x′ ∥ ≤ ϵ

Landscape Analysis

• All local minima are global!
• Gradient descent can escape saddle points.

Strict Saddle Points (Ge et al. ’15, Sun et al. ’15)

• Strict saddle point: a saddle point and λmin(∇2f(x)) < 0

Escaping Strict Saddle Points
• Noise-injected gradient descent can escape strict saddle points

in polynomial time [Ge et al., ’15, Jin et al., ’17].

• Randomly initialized gradient descent can escape all strict
saddle points asymptotically [Lee et al., ’15].
• Stable manifold theorem.

• Randomly initialized gradient descent can take exponential time
to escape strict saddle points [Du et al., ’17].

If	1)	all	local	minima	are	global,	and	2)	
are	saddle	points	are	strict,	then	
noise-injected	(stochastic)	gradient	
descent	finds	a	global	minimum	in	
polynomial	time

What problems satisfy these two conditions
• Matrix factorization

• Matrix sensing

• Matrix completion

• Tensor factorization

• Two-layer neural network with quadratic activation

What about neural networks?
• Linear networks (neural networks with linear activations

functions): all local minima are global, but there exists saddle
points that are not strict [Kawaguchi ’16].

• Non-linear neural networks with:
• Virtually any non-linearity,
• Even with Gaussian inputs,
• Labels are generated by a neural network of the same

architecture,
There are many bad local minima [Safran-Shamir ’18, Yun-Sra-
Jadbaie ’19].

