
Optimization Methods 
for Deep Learning



Gradient descent for non-convex optimization

Decsent Lemma: Let  be twice differentiable, and 
. Then setting the learning rate , and 

applying gradient descent, , we have: 

.

f : ℝd → ℝ
∥∇2f∥2 ≤ β η = 1/β

xt+1 = xt − η∇f(xt)

f(xt) − f(xt+1) ≥
1

2β
∥∇f(xt)∥2

2



Converging to stationary points

Theorem: In  iterations, we have .T = O(
β
ϵ2

) ∥∇f(x)∥2 ≤ ϵ



Gradient Descent for Quadratic Functions

Problem:  with  being positive-definite. 

Theorem: Let  be the largest and the smallest 

eigenvalues of . If we set , we have 

min
x

1
2

x⊤Ax A ∈ ℝd×d

λmax and λmin

A η ≤
1

λmax
∥xt∥2 ≤ (1 − ηλmin)t ∥x0∥2



Momentum: Heavy-Ball Method (Polyak ’64)

Problem:  

Method:  
                

min
x

f(x)

vt+1 = − ∇f(xt) + βvt
xt+1 = xt + ηvt+1



Momentum: Nesterov Acceleration (Nesterov ’89)

Problem:  

Method:  
                

min
x

f(x)

vt+1 = − ∇f(xt + βvt) + βvt
xt+1 = xt + ηvt+1



Newton’s Method

Newton’s Method:  xt+1 = xt − η(∇2f(xt))−1 ∇f(xt)



AdaGrad (Duchi et al. ’11)

Newton Method:  
AdaGrad: separate learning rate for every parameter 

, 

xt+1 = xt − η(∇2f(xt))−1 ∇f(xt)

xt+1 = xt − η(Gt+1 + ϵI)−1 ∇f(xt) (Gt)ii =
t−1

∑
j=1

(∇f(xt)i)2



RMSProp (Hinton et al. ’12)

AdaGrad: separate learning rate for every parameter 

,  

RMSProp: exponential weighting of gradient norms 
, 

xt+1 = xt − η(Gt+1 + ϵI)−1 ∇f(xt) (Gt)ii =
t−1

∑
j=1

(∇f(xt)i)2

xt+1 = xt − η(Gt+1 + ϵI)−1/2 ∇f(xt)
(Gt+1)ii = β(Gt)ii + (1 − β)(∇f(xt)i)2



AdaDelta (Zeiler ’12)

RMSProp: 
, 

 

AdaDelta: 
,  

 

,  
 

xt+1 = xt − η(Gt+1 + ϵI)−1/2 ∇f(xt)
(Gt+1)ii = β(Gt)ii + (1 − β)(∇f(xt)i)2

xt+1 = xt − ηΔxt
Δxt = ut + ϵ ⋅ (Gt+1 + ϵI)−1/2 ∇f(xt)
(Gt+1)ii = ρ(Gt)ii + (1 − ρ)(∇f(xt)i)2

ut+1 = ρut + (1 − ρ)∥Δxt∥2
2



Adam (Kingma & Ba ’14)

Momentum: 
,  

RMSProp: exponential weighting of gradient norms 
, 

 
Adam 

 
 

 

Default choice nowadays. 

vt+1 = − ∇f(xt) + βvt xt+1 = xt + ηvt+1

xt+1 = xt − η(Gt+1 + ϵI)−1 ∇f(xt)
(Gt)ii = β(Gt)ii + (1 − β)(∇f(xt)i)2

vt+1 = β1vt + (1 − β1)∇f(xt)
(Gt+1)ii = β2(Gt)ii + (1 − β2)(∇f(xt)i)2

xt+1 = xt − η(Gt+1 + ϵI)−1/2vt+1



Are these actually useful

Wilson,	Roelofs,	Stern,	Srebro,	Recht	‘18



Important Techniques 
in Neural Network 
Training



Gradient Explosion / Vanishing

• Deeper networks are harder to train: 
• Intuition: gradients are products over layers 
• Hard to control the learning rate



Activation Functions



Activation Function



Initialization

• Zero-initialization 
• Large initialization 
• Small initialization 

• Design principles: 
• Zero activation mean 

• Activation variance remains same across layers



Xavier Initialization (Glorot & Bengio, ’10)

•
 

•  
• Experiments (tanh activation)

W(h)
ij ∼ Unif [−

6
dh + dh+1

,
6

dh + dh+1 ]
b(h) = 0



Kaiming Initialization (He et al. ’15)

• . 

•  
• Designed for ReLU activation 
• 30-layer neural network

W(h)
ij ∼ 𝒩 (0,

2
dh )

b(h) = 0



Kaiming Initialization (He et al. ’15)



Kaiming Initialization (He et al. ’15)



Kaiming Initialization (He et al. ’15)



Initialization by Pre-training

• Use a pre-trained network as initialization 
• And then fine-tuning



Gradient Clipping

• The loss can occasionally lead to a steep descent 
• This result in immediate instability 
• If gradient norm bigger than a threshold, set the gradient to the 

threshold.



Batch Normalization (Ioffe & Szegedy, ’14)

• Normalizing/whitening (mean = 0, variance = 1) the inputs is 
generally useful in machine learning. 
• Could normalization be useful at the level of hidden layers? 
• Internal covariate shift: the calculations of the neural 

networks change the distribution in hidden layers even if the 
inputs are normalized 

• Batch normalization is an attempt to do that： 
• Each unit’s pre-activation is normalized (mean subtraction, 

std division) 
• During training, mean and std is computed for each 

minibatch (can be backproped!



Batch Normalization (Ioffe & Szegedy, ’14)



Batch Normalization (Ioffe & Szegedy, ’14)



Batch Normalization (Ioffe & Szegedy, ’14)

• BatchNorm at training time 
• Standard backprop performed for each single training data 
• Now backprop is performed over entire batch.



Batch Normalization (Ioffe & Szegedy, ’14)



What is BatchNorm actually doing?

• May not due to covariate shift (Santurkar et al. ‘18):  
• Inject non-zero mean, non-standard covariance Gaussian 

noise after BN layer: removes the whitening effect 
• Still performs well. 

• Only training  with random convolution kernels gives non-
trivial performance (Frankle et al. ’20) 

• BN can use exponentially increasing learning rate! (Li & Arora 
’19)

β, γ



More normalizations

• Layer normalization (Ba, Kiros, Hinton, ’16) 
• Batch-independent 
• Suitable for RNN, MLP 

• Weight normalization (Salimans, Kingma, ’16) 
• Suitable for meta-learning (higher order gradients are 

needed) 
• Instance normalization (Ulyanov, Vedaldi, Lempitsky, ’16) 

• Batch-independent, suitable for generation tasks 
• Group normalization (Wu & He, ‘18) 

• Batch-independent, improve BatchNorm for small batch size



Non-convex 
Optimization Landscape



Gradient descent finds global minima



Types of stationary points

• Stationary points:  
• Global minimum: 

 
• Local minimum: 

 
• Local maximum: 

 
• Saddle points: stationary points 

that are not a local min/max

x : ∇f(x) = 0

x : f(x) ≤ f(x′ )∀x′ ∈ ℝd

x : f(x) ≤ f(x′ )∀x′ : ∥x − x′ ∥ ≤ ϵ

x : f(x) ≥ f(x′ )∀x′ : ∥x − x′ ∥ ≤ ϵ



Landscape Analysis

• All local minima are global! 
• Gradient descent can escape saddle points.



Strict Saddle Points (Ge et al. ’15, Sun et al. ’15)

• Strict saddle point: a saddle point and λmin(∇2f(x)) < 0



Escaping Strict Saddle Points
• Noise-injected gradient descent can escape strict saddle points 

in polynomial time [Ge et al., ’15, Jin et al., ’17]. 

• Randomly initialized gradient descent can escape all strict 
saddle points asymptotically [Lee et al., ’15].  
• Stable manifold theorem. 

• Randomly initialized gradient descent can take exponential time 
to escape strict saddle points [Du et al., ’17].

If	1)	all	local	minima	are	global,	and	2)	
are	saddle	points	are	strict,	then	
noise-injected	(stochastic)	gradient	
descent	finds	a	global	minimum	in	
polynomial	time



What problems satisfy these two conditions
• Matrix factorization 

• Matrix sensing 

• Matrix completion 

• Tensor factorization 

• Two-layer neural network with quadratic activation



What about neural networks?
• Linear networks (neural networks with linear activations 

functions): all local minima are global, but there exists saddle 
points that are not strict [Kawaguchi ’16].  

• Non-linear neural networks with: 
• Virtually any non-linearity, 
• Even with Gaussian inputs, 
• Labels are generated by a neural network of the same 

architecture, 
There are many bad local minima [Safran-Shamir ’18, Yun-Sra-
Jadbaie ’19].


