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Specific Setups

= “Average” approximation: given a distribution y
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= “Everywhere” approximation

If = gll = sup | f(x) —g) [ > If - &ll,



Multivariate Approximation

Theorem: Let g be a continuous function that satisfies
Ix — x|, £6 = |g(x) — g(x')| < € (Lipschitzness).
en there exists a 3-layer ReLU neural network with

|
0(§) nodes that satisfy

j F0) — g0 | dx = [If = gll, < €
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Figure credit to Andrej Risteski



Universal Approximation

Definition: A class of functions & is universal
approximator over a compact set S (e.g., [0,1]9), if for
every continuous function g and a target accuracy € > 0,
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there exists f € & such that €VW>/WWV@
sup | f(x) —g(x)| < e
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Stone-Weierstrass Theorem

Theorem: If # satisfies

1. Each f € F is continuous. - (_/7( jﬂ/:o)
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4. F is closed under multlpllcatlon and vector space

operatlons J‘l,ﬁéf f( j‘Léj' / rfﬁﬁ €y 0(7557

Then & is a unlversal approximator:
Vg:S—=>Re>0,3f € F|f-¢gll, €




Example: cos activation ./> VW‘/Z‘; e
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Example: cos activation



Other Examples

Exponential activation
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Curse of Dimensionality

= Unavoidable in the wors#;case
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= Can we avoid the curse of dimensionality for “nice” functions?
= What are nice functions?
= Fast decay of the Fourier coefficients

. Fourier basis functions: W' ﬁ"dey
{e (x) :“eﬂmni%s((w, x)) + isin({(w, x)) | w € R?)

e

Fourier coefficient: f(w) = { f(x)q?l@:”dx
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Fourier integral / representation: f(x) = f(w)ei<w’x>dw
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Barron’s Theorem

Definition: The Barron constant of a function f is:

Céj Iwllol fow) | dw.
) st coe: (=) (66

Theorem (Barron ‘93): Forany g : B, — R where

B, ={xe€R:|x|, £ 1} is the unit ball, there exists a

3-layer neural network f with O(—) neurons and
—_— - “~_ f
2,

sigmoid activation function such that
(f(x) — gx))’dx < e.
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Proof Ideas for Barron’s Theorem

Step 1: show any continuous function can be written as an |nf|n|te
neural network with cosine-like activation functions. —

(TooI. Fourier representation.)

Step 2: Show that a function with small Barron constant can be
approximated by a convex combination of a small number of
cosine-like activation functions.

(Tool: subsampling / probabilistic method.) (oubgiea®¥iJ [ T (S

\

Step 3: Show that the cosine function can be approximated by
sigmoid functions.

(Tool: classical approximation theory.)




Simple Infinite Neural Nets

Definition: An infinite-wide neural network is defined by a
signed measure v over neuron weights (w,b) — 2

a//aer‘ Jy((,/(b)
f(x) = J oc(w'x + b)dv(w, b) /
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Theorem: Suppose g : R — R is differentiable, if
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Step 1: Infinite Neural Nets

The function can be written as fLW (oryen 0o

Jx) =f(0) + j | fw)| (cos(b,, + (w, x)) — cas(b,,))dw.
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Step 1: Infinite Neural Nets Proof

The function can be written as

Jx) = f(0) +J | fw) | (cos(b,, + (w, x)) = cos(b,,))dw.
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Step 2: Subsampling
At o y)

Writing the function as the expectation of a random variable:

£) = £(0) + [ j f( )|||W||2 @os(bw + (W, x)) — cos(bw))> dw
|lw
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Step 2: Subsampling

Writing the function as the expectation of a random variable:

f(x) =100)+ J S (1wl < ¢ (cos(b,, + (w, x)) — cos(bw))> dw
Rd

C wlla

| Fon [lIwll,

Sample one w € R4 with probability for r times.
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Step 3: Approximating the Cosines

C

Lemma: Given g, (x) = ol (cos(b,, + (w, x)) — cos(b,)),
Wil2

there exists a 2-layer neural network f,, of size O(1/¢) with

sigmoid activations, such that sup |f,(y) —h,(y)| L€
x€[-1,1]
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Depth Separation

So far we only talk about 2-layer or 3-layer neural networks.
Why we need Deep learning?

Can we show deep neural networks are strictly better than
shallow neural networks?
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A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.
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A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.

Depth separation: the difference of the computation power:
shallow vs deep Boolean circuits.

Hastad (’86): parlty,fu\nctlon _cannot be approximated by a small
constant -depth circuit with OR and AND gates.




Modern depth-separation in neural networks

* Related architectures / models of computation
e Sum-product networks [Bengio, Delalleau '11]

e Bound of number of linear reglons for ReLU netwo
[Montufar, Pascanu, Cho, Bengio ‘14]

 Heuristic measures of complexity J
rk

 Approximation error

* A small deep network cannot be approximated by a small
shallow network [Telgarsky '15] T
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Shallow Nets Cannot Approximate Deep Nets

Theorem (Telgarsky '15): For every L € N, there exists
a function f : [0,1] — [0,1] representable as a network

of depth O(L?), with O(L?) nmu activati
such that, for every network g = [0,1] — R of d@
L . T— . -
and < 2" nodes, and ReLU activation, we have
— i |
| f(x) — g(x0) |dx =2 —
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Intuition

A ReLU network f'is piecewise linear, we can subdivide domain
into a finite number of polyhedral pieces (P, P,, ..., Py) such

Deeper neural networks can make exponentially more regions
than shallow neural networks. A —

Make each region has different values, so shallow neural
networks cannot approximate.




Benefits of depth for smooth functions

Theorem (Yarotsky '15): Suppose f : [0, l]d — R has
all partial derivatives of order r with coordlnate W|se
bound in[—1 1] and let € > 0 be glven Then there

" oo s d
exists a O(In —) - depth and < —)w-size network so
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that sup |f(x) - g()| <e. Y
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Remarks

 All results discussed are existential: they prove that a good
approximator exists. Finding one efficiently (e.g., using gradient
descent) is the next topic (optimization).

e The choices of non-linearity are usually very flexible: most
results we saw can be re-proven using different non-linearities.

* There are other approximation error results: e.g., deep and
narrow networks are universal approximators.

e Depth separation for optimization and generalization is widely
open. -




