
Approximation Theory



Specific Setups

■ “Average” approximation: given a distribution  

 

■ “Everywhere” approximation 

μ

∥f − g∥μ = ∫x
| f(x) − g(x) |dμ(x)

∥f − g∥∞ = sup
x

| f(x) − g(x) | ≥ ∥f − g∥μ



Multivariate Approximation

Theorem: Let  be a continuous function that satisfies 
 (Lipschitzness). 

Then there exists a 3-layer ReLU neural network with 

 nodes that satisfy  

 

g
∥x − x′ ∥∞ ≤ δ ⇒ |g(x) − g(x′ ) | ≤ ϵ

O(
1
δd

)

∫[0,1]d

| f(x) − g(x) |dx = ∥f − g∥1 ≤ ϵ

Figure credit to Andrej Risteski



Universal Approximation

Definition: A class of functions  is universal 
approximator over a compact set  (e.g., ), if for 
every continuous function  and a target accuracy , 
there exists  such that  

ℱ
S [0,1]d

g ϵ > 0
f ∈ ℱ

sup
x∈S

| f(x) − g(x) | ≤ ϵ



Stone-Weierstrass Theorem

Theorem: If  satisfies 
1. Each  is continuous. 
2.  
3.  
4.  is closed under multiplication and vector space 

operations, 
Then  is a universal approximator: 

. 

ℱ
f ∈ ℱ

∀x, ∃f ∈ ℱ, f(x) ≠ 0
∀x ≠ x′ , ∃f ∈ ℱ, f(x) ≠ f(x′ )
ℱ

ℱ
∀g : S → R, ϵ > 0,∃f ∈ ℱ,∥f − g∥∞ ≤ ϵ



Example: cos activation



Example: cos activation



Other Examples

Exponential activation

ReLU activation



Curse of Dimensionality

■ Unavoidable in the worse case



Barron’s Theory

■ Can we avoid the curse of dimensionality for “nice” functions? 
■ What are nice functions?  

■ Fast decay of the Fourier coefficients 

■ Fourier basis functions: 
  

■ Fourier coefficient:  

■ Fourier integral / representation:  

{ew(x) = ei⟨w,x⟩ = cos(⟨w, x⟩) + i sin(⟨w, x⟩) ∣ w ∈ ℝd}

̂f(w) = ∫ℝd

f(x)e−i⟨w,x⟩dx

f(x) = ∫ℝd

̂f(w)ei⟨w,x⟩dw



Barron’s Theorem

Theorem (Barron ‘93): For any  where 
 is the unit ball, there exists a 

3-layer neural network   with  neurons and 

sigmoid activation function such that  

.

g : 𝔹1 → ℝ
𝔹1 = {x ∈ ℝ : ∥x∥2 ≤ 1}

f O(
C2

ϵ
)

∫𝔹1

( f(x) − g(x))2dx ≤ ϵ

Definition: The Barron constant of a function  is: 

.

f

C ≜ ∫ℝd

∥w∥2| ̂f(w) |dw



Examples

■
Gaussian function:  

■ Other functions: 
■ Polynomials 
■ Function with bounded derivatives

f(x) = (2πσ2)d/2exp (−
∥x∥2

2

2σ2 )



Proof Ideas for Barron’s Theorem

Step 1: show any continuous function can be written as an infinite 
neural network with cosine-like activation functions. 
(Tool: Fourier representation.) 

Step 2: Show that a function with small Barron constant can be 
approximated by a convex combination of a small number of 
cosine-like activation functions. 
(Tool: subsampling / probabilistic method.) 

Step 3: Show that the cosine function can be approximated by 
sigmoid functions. 
(Tool: classical approximation theory.)



Simple Infinite Neural Nets

Theorem: Suppose  is differentiable, if 

, then 

g : ℝ → ℝ

x ∈ [0,1] g(x) = ∫
1

0
1{x ≥ b} ⋅ g′ (b)db + g(0)

Definition: An infinite-wide neural network is defined by a 
signed measure  over neuron weights  

.

ν (w, b)
f(x) = ∫w∈ℝd,b∈ℝ

σ(w⊤x + b)dν(w, b)



Step 1: Infinite Neural Nets

The function can be written as  

.f(x) = f(0) + ∫ℝd

| ̂f(w) | (cos(bw + ⟨w, x⟩) − cos(bw))dw



Step 1: Infinite Neural Nets Proof

The function can be written as  

.f(x) = f(0) + ∫ℝd

| ̂f(w) | (cos(bw + ⟨w, x⟩) − cos(bw))dw



Step 2: Subsampling

Writing the function as the expectation of a random variable: 

.f(x) = f(0) + ∫ℝd

| ̂f(w) |∥w∥2

C ( C
∥w∥2

(cos(bw + ⟨w, x⟩) − cos(bw))) dw



Step 2: Subsampling

Writing the function as the expectation of a random variable: 

. 

Sample one  with probability  for  times.

f(x) = f(0) + ∫ℝd

| ̂f(w) |∥w∥2

C ( C
∥w∥2

(cos(bw + ⟨w, x⟩) − cos(bw))) dw

w ∈ ℝd | ̂f(w) |∥w∥2

C
r



Step 3: Approximating the Cosines

Lemma: Given , 

there exists a 2-layer neural network   of size  with 
sigmoid activations, such that .

gw(x) =
C

∥w∥2
(cos(bw + ⟨w, x⟩) − cos(bw))

f0 O(1/ϵ)
sup

x∈[−1,1]
| f0(y) − hw(y) | ≤ ϵ



Depth Separation

So far we only talk about 2-layer or 3-layer neural networks. 

Why we need Deep learning? 

Can we show deep neural networks are strictly better than 
shallow neural networks?



A brief history of depth separation

Early results from theoretical computer science 

Boolean circuits: a directed acyclic graph model for computation 
over binary inputs; each node (“gate”) performs an operation (e.g. 
OR, AND, NOT) on the inputs from its predecessors.



A brief history of depth separation

Early results from theoretical computer science 

Boolean circuits: a directed acyclic graph model for computation 
over binary inputs; each node (“gate”) performs an operation (e.g. 
OR, AND, NOT) on the inputs from its predecessors. 

Depth separation: the difference of the computation power: 
shallow vs deep Boolean circuits. 

Håstad (’86): parity function cannot be approximated by a small 
constant-depth circuit with OR and AND gates.



Modern depth-separation in neural networks

• Related architectures / models of computation 
• Sum-product networks [Bengio, Delalleau ’11] 

• Heuristic measures of complexity 
• Bound of number of linear regions for ReLU networks 

[Montufar, Pascanu, Cho, Bengio ‘14] 

• Approximation error 
• A small deep network cannot be approximated by a small 

shallow network [Telgarsky ’15]



Shallow Nets Cannot Approximate Deep Nets

Theorem (Telgarsky ’15): For every , there exists 
a function  representable as a network 
of depth , with  nodes, and ReLU activation 
such that, for every network  of depth  
and  nodes, and ReLU activation, we have  

.

L ∈ ℕ
f : [0,1] → [0,1]

O(L2) O(L2)
g : [0,1] → ℝ L

≤ 2L

∫[0,1]
| f(x) − g(x) |dx ≥

1
32



Intuition

A ReLU network  is piecewise linear, we can subdivide domain 
into a finite number of polyhedral pieces  such 
that in each piece,  is linear: .

f
(P1, P2, . . . , PN)

f ∀x ∈ Pi, f(x) = Aix + bi

Deeper neural networks can make exponentially more regions 
than shallow neural networks.  
Make each region has different values, so shallow neural 
networks cannot approximate.



Benefits of depth for smooth functions

Theorem (Yarotsky ’15): Suppose  has 
all partial derivatives of order  with coordinate-wise 
bound in , and let  be given. Then there 

exists a  - depth and -size network so 

that .

f : [0,1]d → ℝ
r

[−1,1] ϵ > 0

O(ln
1
ϵ

) ( 1
ϵ )

O( d
r )

sup
x∈[0,1]d

| f(x) − g(x) | ≤ ϵ



Remarks

• All results discussed are existential: they prove that a good 
approximator exists. Finding one efficiently (e.g., using gradient 
descent) is the next topic (optimization). 

• The choices of non-linearity are usually very flexible: most 
results we saw can be re-proven using different non-linearities. 

• There are other approximation error results: e.g., deep and 
narrow networks are universal approximators. 

• Depth separation for optimization and generalization is widely 
open.


