
Approximation Theory

Specific Setups

■ “Average” approximation: given a distribution

■ “Everywhere” approximation

μ

∥f − g∥μ = ∫x
| f(x) − g(x) |dμ(x)

∥f − g∥∞ = sup
x

| f(x) − g(x) | ≥ ∥f − g∥μ

Multivariate Approximation

Theorem: Let be a continuous function that satisfies
 (Lipschitzness).

Then there exists a 3-layer ReLU neural network with

 nodes that satisfy

g
∥x − x′ ∥∞ ≤ δ ⇒ |g(x) − g(x′) | ≤ ϵ

O(
1
δd

)

∫[0,1]d

| f(x) − g(x) |dx = ∥f − g∥1 ≤ ϵ

Figure credit to Andrej Risteski

Universal Approximation

Definition: A class of functions is universal
approximator over a compact set (e.g.,), if for
every continuous function and a target accuracy ,
there exists such that

ℱ
S [0,1]d

g ϵ > 0
f ∈ ℱ

sup
x∈S

| f(x) − g(x) | ≤ ϵ

Stone-Weierstrass Theorem

Theorem: If satisfies
1. Each is continuous.
2.
3.
4. is closed under multiplication and vector space

operations,
Then is a universal approximator:

.

ℱ
f ∈ ℱ

∀x, ∃f ∈ ℱ, f(x) ≠ 0
∀x ≠ x′ , ∃f ∈ ℱ, f(x) ≠ f(x′)
ℱ

ℱ
∀g : S → R, ϵ > 0,∃f ∈ ℱ,∥f − g∥∞ ≤ ϵ

Example: cos activation

Example: cos activation

Other Examples

Exponential activation

ReLU activation

Curse of Dimensionality

■ Unavoidable in the worse case

Barron’s Theory

■ Can we avoid the curse of dimensionality for “nice” functions?
■ What are nice functions?

■ Fast decay of the Fourier coefficients

■ Fourier basis functions:

■ Fourier coefficient:

■ Fourier integral / representation:

{ew(x) = ei⟨w,x⟩ = cos(⟨w, x⟩) + i sin(⟨w, x⟩) ∣ w ∈ ℝd}

̂f(w) = ∫ℝd

f(x)e−i⟨w,x⟩dx

f(x) = ∫ℝd

̂f(w)ei⟨w,x⟩dw

Barron’s Theorem

Theorem (Barron ‘93): For any where
 is the unit ball, there exists a

3-layer neural network with neurons and

sigmoid activation function such that

.

g : 𝔹1 → ℝ
𝔹1 = {x ∈ ℝ : ∥x∥2 ≤ 1}

f O(
C2

ϵ
)

∫𝔹1

(f(x) − g(x))2dx ≤ ϵ

Definition: The Barron constant of a function is:

.

f

C ≜ ∫ℝd

∥w∥2| ̂f(w) |dw

Examples

■
Gaussian function:

■ Other functions:
■ Polynomials
■ Function with bounded derivatives

f(x) = (2πσ2)d/2exp (−
∥x∥2

2

2σ2)

Proof Ideas for Barron’s Theorem

Step 1: show any continuous function can be written as an infinite
neural network with cosine-like activation functions.
(Tool: Fourier representation.)

Step 2: Show that a function with small Barron constant can be
approximated by a convex combination of a small number of
cosine-like activation functions.
(Tool: subsampling / probabilistic method.)

Step 3: Show that the cosine function can be approximated by
sigmoid functions.
(Tool: classical approximation theory.)

Simple Infinite Neural Nets

Theorem: Suppose is differentiable, if

, then

g : ℝ → ℝ

x ∈ [0,1] g(x) = ∫
1

0
1{x ≥ b} ⋅ g′ (b)db + g(0)

Definition: An infinite-wide neural network is defined by a
signed measure over neuron weights

.

ν (w, b)
f(x) = ∫w∈ℝd,b∈ℝ

σ(w⊤x + b)dν(w, b)

Step 1: Infinite Neural Nets

The function can be written as

.f(x) = f(0) + ∫ℝd

| ̂f(w) | (cos(bw + ⟨w, x⟩) − cos(bw))dw

Step 1: Infinite Neural Nets Proof

The function can be written as

.f(x) = f(0) + ∫ℝd

| ̂f(w) | (cos(bw + ⟨w, x⟩) − cos(bw))dw

Step 2: Subsampling

Writing the function as the expectation of a random variable:

.f(x) = f(0) + ∫ℝd

| ̂f(w) |∥w∥2

C (C
∥w∥2

(cos(bw + ⟨w, x⟩) − cos(bw))) dw

Step 2: Subsampling

Writing the function as the expectation of a random variable:

.

Sample one with probability for times.

f(x) = f(0) + ∫ℝd

| ̂f(w) |∥w∥2

C (C
∥w∥2

(cos(bw + ⟨w, x⟩) − cos(bw))) dw

w ∈ ℝd | ̂f(w) |∥w∥2

C
r

Step 3: Approximating the Cosines

Lemma: Given ,

there exists a 2-layer neural network of size with
sigmoid activations, such that .

gw(x) =
C

∥w∥2
(cos(bw + ⟨w, x⟩) − cos(bw))

f0 O(1/ϵ)
sup

x∈[−1,1]
| f0(y) − hw(y) | ≤ ϵ

Depth Separation

So far we only talk about 2-layer or 3-layer neural networks.

Why we need Deep learning?

Can we show deep neural networks are strictly better than
shallow neural networks?

A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.

A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.

Depth separation: the difference of the computation power:
shallow vs deep Boolean circuits.

Håstad (’86): parity function cannot be approximated by a small
constant-depth circuit with OR and AND gates.

Modern depth-separation in neural networks

• Related architectures / models of computation
• Sum-product networks [Bengio, Delalleau ’11]

• Heuristic measures of complexity
• Bound of number of linear regions for ReLU networks

[Montufar, Pascanu, Cho, Bengio ‘14]

• Approximation error
• A small deep network cannot be approximated by a small

shallow network [Telgarsky ’15]

Shallow Nets Cannot Approximate Deep Nets

Theorem (Telgarsky ’15): For every , there exists
a function representable as a network
of depth , with nodes, and ReLU activation
such that, for every network of depth
and nodes, and ReLU activation, we have

.

L ∈ ℕ
f : [0,1] → [0,1]

O(L2) O(L2)
g : [0,1] → ℝ L

≤ 2L

∫[0,1]
| f(x) − g(x) |dx ≥

1
32

Intuition

A ReLU network is piecewise linear, we can subdivide domain
into a finite number of polyhedral pieces such
that in each piece, is linear: .

f
(P1, P2, . . . , PN)

f ∀x ∈ Pi, f(x) = Aix + bi

Deeper neural networks can make exponentially more regions
than shallow neural networks.
Make each region has different values, so shallow neural
networks cannot approximate.

Benefits of depth for smooth functions

Theorem (Yarotsky ’15): Suppose has
all partial derivatives of order with coordinate-wise
bound in , and let be given. Then there

exists a - depth and -size network so

that .

f : [0,1]d → ℝ
r

[−1,1] ϵ > 0

O(ln
1
ϵ

) (1
ϵ)

O(d
r)

sup
x∈[0,1]d

| f(x) − g(x) | ≤ ϵ

Remarks

• All results discussed are existential: they prove that a good
approximator exists. Finding one efficiently (e.g., using gradient
descent) is the next topic (optimization).

• The choices of non-linearity are usually very flexible: most
results we saw can be re-proven using different non-linearities.

• There are other approximation error results: e.g., deep and
narrow networks are universal approximators.

• Depth separation for optimization and generalization is widely
open.

