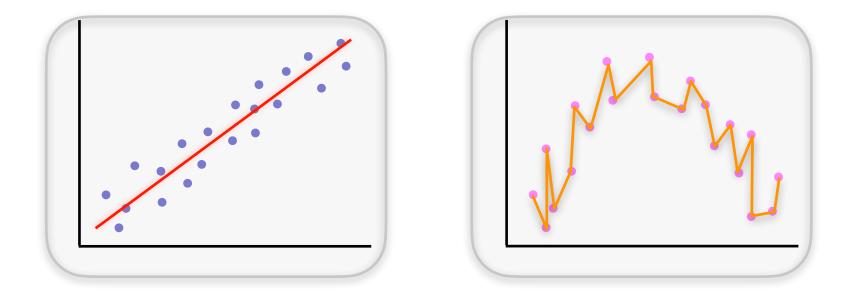
Approximation Theory

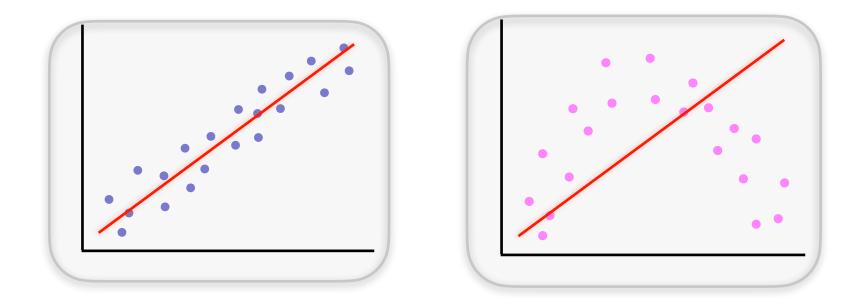
UNIVERSITY of WASHINGTON

Expressivity / Representation Power



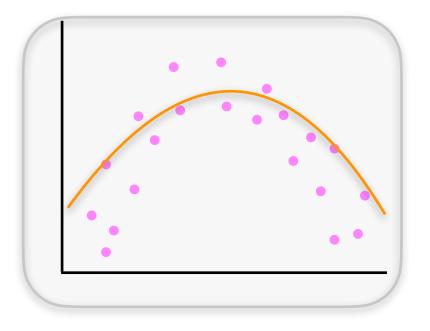
Expressive: Functions in class can represent "complicated" functions.

Linear Function



best linear fit

Review: generalized linear regression



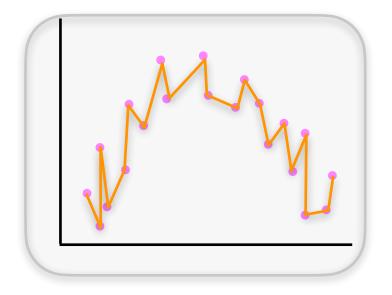
Transformed data:

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear in h

$$y_i \approx h(x_i)^T w$$

Review: Polynomial Regression



Approximation Theory Setup

 Goal: to show there exists a neural network that has small error on training / test set.

• Set up a natural baseline:

 $\inf_{f \in \mathscr{F}} L(f) \text{ v.s. } \inf_{g \in \text{ continuous functions}} L(g)$

Decomposition

Specific Setups

• "Average" approximation: given a distribution μ

$$\|f - g\|_{\mu} = \int_{x} |f(x) - g(x)| d\mu(x)$$

"Everywhere" approximation

$$||f - g||_{\infty} = \sup_{x} |f(x) - g(x)| \ge ||f - g||_{\mu}$$

Polynomial Approximation

Theorem (Stone-Weierstrass): for any function *f*, we can approximate it on any compact set Ω by a sufficiently high degree polynomial: for any $\epsilon > 0$, there exists a polynomial *p* of sufficient high degree, s.t., $\max |f(x) - p(x)| \le \epsilon$.

 $x \in \Omega$

Intuition: Taylor expansion!

Polynomial kernel

Gaussian Kernel

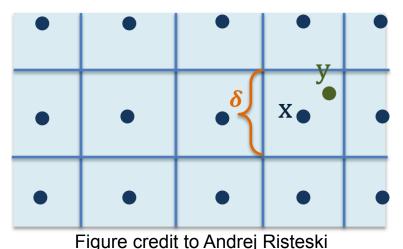
1D Approximation

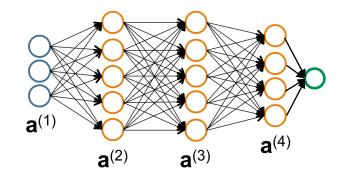
Theorem: Let $g : [0,1] \to R$, and ρ -Lipschitz. For any $\epsilon > 0, \exists$ 2-layer neural network f with $\lceil \frac{\rho}{\epsilon} \rceil$ nodes, threshold activation: $\sigma(z) : z \mapsto \mathbf{1} \{z \ge 0\}$ such that $\sup_{x \in [0,1]} |f(x) - g(x)| \le \epsilon$.

Proof of 1D Approximation

Multivariate Approximation

Theorem: Let *g* be a continuous function that satisfies $||x - x'||_{\infty} \le \delta \Rightarrow |g(x) - g(x')| \le \epsilon$ (Lipschitzness). Then there exists a 3-layer ReLU neural network with $O(\frac{1}{\delta^d})$ nodes that satisfy $\int_{[0,1]^d} |f(x) - g(x)| dx = ||f - g||_1 \le \epsilon$





Partition Lemma

Lemma: let g, δ, ϵ be given. For any partition P of $[0,1]^d$, $P = (R_1, \ldots, R_N)$ with all side length smaller than δ , there exists $(\alpha_1, \ldots, \alpha_N) \in \mathbb{R}^N$ such that

$$\sup_{x \in [0,1]^d} |g(x) - h(x)| \le \epsilon \text{ with } h(x) := \sum_{i=1}^N \alpha_i \mathbf{1}_{R_i}(x).$$

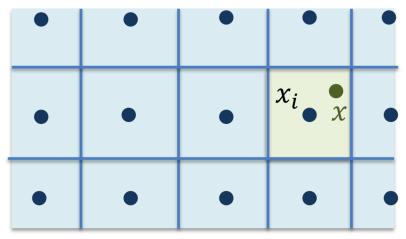


Figure credit to Andrej Risteski

Proof of Partition Lemma

Proof of Multivariate Approximation Theorem

Proof of Multivariate Approximation Theorem

Proof of Multivariate Approximation Theorem

Definition: A class of functions \mathscr{F} is universal approximator over a compact set S (e.g., $[0,1]^d$), if for every continuous function g and a target accuracy $\epsilon > 0$, there exists $f \in \mathscr{F}$ such that

$$\sup_{x \in S} |f(x) - g(x)| \le \epsilon$$

Stone-Weierstrass Theorem

Theorem: If \mathcal{F} satisfies

- **1.** Each $f \in \mathcal{F}$ is continuous.
- **2.** $\forall x, \exists f \in \mathscr{F}, f(x) \neq 0$
- **3.** $\forall x \neq x', \exists f \in \mathscr{F}, f(x) \neq f(x')$
- **4.** \mathscr{F} is closed under multiplication and vector space operations,

Then \mathcal{F} is a universal approximator:

 $\forall g:S \to R, \epsilon > 0, \exists f \in \mathcal{F}, \|f - g\|_{\infty} \leq \epsilon.$

Example: cos activation

Example: cos activation

Exponential activation

ReLU activation

Curse of Dimensionality

Unavoidable in the worse case

Barron's theory

Recent Advances in Representation Power

- Depth separation
- Analyses of different architectures
 - Graph neural network
 - Attention-based neural network
- Finite data approximation