
Generative Models

autoregressive language

AI GC AI Generated Content

Distribution learning

Image	credits	to	Andrej	Risteski

learn a distribution Po
sample from Po

Distribution learning

Distribution learning

Image	credits	to	Andrej	Risteski

Distribution learning

Generative model

Slides	credit	to	Yang	Song

Generative model

Slide	credit	to	Yang	Song

Given x
evaluate pay

Desiderata for generative models

• Probability	evaluation:	given	a	sample,	it	is	computationally	efficient	to	evaluate	
the	probability	of	this	sample.	

• Flexible	model	family:	it	is	easy	to	incorporate	any	neural	network	models.	

• Easy	sampling:	it	is	computationally	efficient	to	sample	a	data	from	the	
probabilistic	model.

To

Given x compare toll efficiently

PE CNN Tuan former

Given Po
sample n data point Po

Po is close to Po

Desiderata for generative models

Slide	credit	to	Yang	Song

Taxonomy of generative models

Image	credits	to	Andrej	Risteski

7 example

given x explicit
expressin tax

f

EI 169

I

E area
diffusion

Key challenge for building generative models

Slide	credit	to	Yang	Song

distribution
5701470
SxPondxy

O
Zo Syet dy
NT hard

Key challenge for building generative models

Slide	credit	to	Yang	Song

Training generative models

• Likelihood-based:	maximize	the	likelihood	of	the	data	under	the	model	(possibly	
using	advanced	techniques	such	as	variational	method	or	MCMC):	

	

• Pros:	
• Easy	training:	can	just	maximize	via	SGD.	
• Evaluation:	evaluating	the	fit	of	the	model	can	be	done	by	evaluating	the	
likelihood	(on	test	data).	

• Cons:	
• Large	models	needed:	likelihood	objectve	is	hard,	to	fit	well	need	very	big	
model.	

• Likelihood	entourages	averaging:	produced	samples	tend	to	be	blurrier,	as	
likelihood	encourages	“coverage”	of	training	data.

max
θ

n

∑
i=1

log pθ(xi)

Training generative models

• Likelihood-free:	use	a	surrogate	loss	(e.g.,	GAN)	to	train	a	discriminator	to	
differentiate	real	and	generated	samples.	

• Pros:	
• Better	objective,	smaller	models	needed:	objective	itself	is	learned	-	can	
result	in	visually	better	images	with	smaller	models.	

• Cons:	
• Unstable	training:	typically	min-max	(saddle	point)	problems.	
• Evaluation:	no	way	to	evaluate	the	quality	of	fit.

Generative
Adversarial Nets

GAN

Implicit Generative Model

• Goal:	a	sampler	 	to	generate	images	
• A	simple	generator	 :	

• 	
• 	deterministic	transformation	

• Likelihood-free	training:	
• Given	a	dataset	from	some	distribution	 	
• Goal:	 	defines	a	distribution,	we	want	this	distribution	 	 	
• Training:	minimize	 	

• 	is	some	distance	metric	(not	likelihood)	
• Key	idea:	Learn	a	differentiable	

g(⋅)
g(z; θ)

z ∼ N(0,I)
x = g(z; θ)

pdata
g(z; θ) ≈ pdata

D(g(z; θ), pdata)
D

D

Metrics
Kamban Leiblerdivergence

Total variation
SHH M lax

Wasserstein distance
Jensen Shannon Divergence

yM
05Integral Probability

Metric

GAN (Goodfellow et al., ‘14)

• Parameterize	the	discriminator	 	with	parameter	 	

• Goal:	learn	 	such	that	 	measures	how	likely	 	is	from	 	
• 	if	 	
• 	if	 	
• a.k.a.,	a	binary	classifier	

• GAN:	use	a	neural	network	for	 	

• Training:	need	both	negative	and	positive	samples	
• Positive	samples:	just	the	training	data	
• Negative	samples:	use	our	sampler	 	(can	provide	infinite	samples).	

• Overall	objectives:	
• Generator:	 	

• Discriminator	uses	MLE	Training:	
	

D(⋅ ; ϕ) ϕ

ϕ D(x; ϕ) x pdata
D(x, ϕ) = 1 x ∼ pdata
D(x, ϕ) = 0 x! ∼ pdata

D(⋅ ; ϕ)

g(⋅ ; z)

θ* = max
θ

D(g(z; θ); ϕ)

ϕ* = max
ϕ

$x∼pdata
[log D(x; ϕ)] + $ ̂x∼g(⋅)[log(1 − D(̂x; ϕ))]

I

GAN (Goodfellow et al., ‘14)

• Generator	 	where	 	
• Generate	realistic	data	

• Discriminator	 	
• Classify	whether	the	data	is	real	(from)	or	fake	(from)	

• Objective	function:	
	

• Training	procedure:	
• Collect	dataset	 	
• Train	discriminator

	
• Train	generator	 	
• Repeat

G(z; θ) z ∼ N(0,I)

D(x; ϕ)
pdata G

L(θ, ϕ) = min
θ

max
ϕ

$x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D(̂x; ϕ))]

{(x,1) |x ∼ pdata} ∪ {(̂x,0) ∼ g(z; θ)}

D : L(ϕ) = $x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D(̂x; ϕ))]
G : L(θ) = $z∼N(0,I) [log D(G(z; θ), ϕ)]

saddle point optimization Xf

GAN (Goodfellow et al., ‘14)

• Objective	function:	
L(θ, ϕ) = min

θ
max

ϕ
$x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D(̂x; ϕ))]

Pdaty constant 0.5
a discriminator
a generator

Math Behind GAN

210,4 mainmyEx
aataldogDA o Engages't

Let Dt g be the solution of J
Consider a given X

D Pdatan log DIX Pym
loll DAY

a 1 3,5 0 first order
condition

Y 44 0

Intensify
if Yg data p 0.5

Math Behind GAN

Consider optimal
generatorg grey optimal DX

10191 Exanatolistiidtenge ftp.T.I a
Ex aaanfsEtIIHtEisafe.IEIygkL

N7EiH 1094

KL Mdatallindatattyl tKL Pg KRdatatty

2 Jensen Shannon Divergence

KL-Divergence and JS-Divergence

KI 9119 Ex Fos

KL TO
KL OE Eq

JSD 70
JSD O E Eq

Math Behind GAN

Given D

g
2551 lylltdata 1094

y't must satisfy Pg Panty

L 1094

I

Evaluation of GAN

• No	 	in	GAN.	
• Idea:	use	a	trained	classifier	 :	
• If	 ,	 	should	have	low	entropy	

• Otherwise,	 	close	to	uniform.	
• Samples	from	 	should	be	diverse:	

• 	close	to	uniform.

p(x)
f(y ∣ x)

x ∼ pdata f(y |x)
f(y ∣ x)

G
pf (y) = $x∼G[f(y |x)]

Eep
log

Evaluation of GAN

• Inception	Score	(IS,	Salimans	et	al.	’16)	
• Use	Inception	V3	trained	on	ImageNet	as	 	

• 		

• Higher	the	better

f(y |x)
IS = exp ($x∼G [KL(f(y |x) | |pf (y)))])

I I marginal dist

dist forgiven x over classes

Comments on GAN

• Other	evaluation	metrics:	
• Fréchet	Inception	Distance	(FID):	Wasserstein	distance	between	Gaussians	

• Mode	collapse:		
• The	generator	only	generate	a	few	type	of	samples.	
• Or	keep	oscillating	over	a	few	modes.	

• Training	instability:	
• Discriminator	and	generator	may	keep	oscillating	
• Example:	 ,	generator	 ,	discriminator .	NE:	 	but	GD	oscillates.	
• No	stopping	criteria.	
• Use	Wsserstein	GAN	(Arjovsky	et	al.	’17):

	

• And	need	many	other	tricks…

−xy x y x = y = 0

min
G

max
f:Lip(f)≤1

$x∼pdata [f(x)] − $ ̂x∼pG
[f(̂x)]

I

man xy

Variational
Autoencoder

Architecture

• Auto-encoder:	 	
• Encoder:	 	
• Decoder:	 	

• Isomorphic	Gaussian:	
	

• Gaussian	prior:	 	
• Gaussian	likelihood:	 	

• Probabilistic	model	interpretation:	latent	variable	
model.

x → z → x
q(z |x; ϕ) : x → z
p(x |z; θ) : z → x

q(z |x; ϕ) = N(μ(x; ϕ), diag(exp(σ(x; ϕ))))
p(z) = N(0,I)

p(x |z; θ) ∼ N(f(z; θ), I)

VAE Training

• Training	via	optimizing	ELBO	
• 	
• Likelihood	term	+	KL	penalty	

• KL	penalty	for	Gaussians	has	closed	form.	
• Likelihood	term	(reconstruction	loss):	

• Monte-Carlo	estimation	
• Draw	samples	from	 	
• Compute	gradient	of	 :	

• 	

•

L(ϕ, θ; x) = $z∼q(z|x;ϕ)[log p(z |x; θ)] − KL (q(z |x; ϕ) | |p(z))

q(z |x; ϕ)
θ

x ∼ N(f(z; θ); I)
p(x) = 1

2π
exp(− 1

2 ∥x − f(z; θ)∥2
2)

VAE Training

• Likelihood	term	(reconstruction	loss):	
• Gradient	for	 Loss:	 	
• Reparameterization	trick:		

• 	
• 	

	
• Monte-Carlo	estimate	for	 	

• End-to-end	training	

ϕ . L(ϕ) = $z∼q(z;ϕ) [log p(x |z)]
z ∼ N(μ, Σ) ⇔ z = μ + ϵ, ϵ ∼ N(0,Σ)

L(ϕ) ∝ $z∼q(z|ϕ) [∥f(z; θ) − x∥2
2]

∝ $ϵ∼N(0,I) [∥f(μ(x; ϕ) + σ(x; ϕ) ⋅ ϵ; θ) − x∥2
2]

∇L(ϕ)

VAE vs. AE

• AE:	classical	unsupervised	representation	learning	method.	
• VAR:	a	probabilistic	model	of	AE	

• AE	+	Gaussian	noise	on	 	
• KL	penalty:	 	constraint	on	the	latent	vector	 	

z
L2 z

Conditioned VAE

• Semi-supervised	learning:	some	labels	are	also	available	

Comments on VAE

• Pros:	
• Flexible	architecture	
• Stable	training	

• Cons:	
• Inaccurate	probability	evaluation	(approximate	inference)

Energy-Based Models

Energy-based Models

• Goal	of	generative	models:	
• a	probability	distribution	of	data:	 	

• Requirements	
• 	(non-negative)	

• 	

• Energy-based	model:	
• Energy	function:	 ,	parameterized	by	 	

• 	(why	exp?)	

•

P(x)

P(x) ≥ 0

∫x
P(x)dx = 1

E(x; θ) θ
P(x) = 1

z
exp(−E(x; θ))

z = ∫z
exp(−E(x; θ))dx

Boltzmann Machine

• Generative	model		

• 	

• ,	 :	temperature	hyper-parameter	

• :	parameter	to	learn	
• When	 	is	binary,	patterns	are	affecting	each	other	through	

E(y) = − 1
2 y⊤Wy

P(y) = 1
z

exp(− E(y)
T

) T

W
yi W

Boltzmann Machine: Training

• Objective:	maximum	likelihood	learning	(assume	T	=1):	
• Probability	of	one	sample:	

	 	

• Maximum	log-likelihood:	

P(y) =
exp(1

2 y⊤y)
∑y′ exp(y′ ⊤Wy′)

L(W) = 1
N ∑

y∈D

1
2 y⊤Wy − log∑

y′
exp(1

2 y′ ⊤Wy′)

Boltzmann Machine: Training

Boltzmann Machine: Training

Boltzmann Machine with Hidden Neurons

• Visible	and	hidden	neurons:	
• :	visible,	 :	hidden	

•

y h
P(y) = ∑

h
P(y, v)

Boltzmann Machine with Hidden Neurons: Training

Boltzmann Machine with Hidden Neurons: Training

Restricted Bolzmann Machine

• A	structured	Boltzmann	Machine	
• Hidden	neurons	are	only	connected	to	visible	neurons	
• No	intra-layer	connections	
• Invented	by	Paul	Smolensky	in	’89	
• Became	more	practical	after	Hinton	invested	fast	learning	algorithms	in	mid	
2000

Restricted Bolzmann Machine

• Computation	Rules	
• Iterative	sampling	

• Hidden	neurons	 :	 ,	 	

• Visible	neurons	 :	

hi zi = ∑
j

wijvj P(hi |v) = 1
1 + exp(−zi)

vj zj = ∑
i

wijhi, P(vj |h) = 1
1 + exp(−zj)

Restricted Bolzmann Machine

• Sampling:	
• Randomly	initialize	visible	neurons	 	
• Iterative	sampling	between	hidden	neurons	and	visible	neurons	
• Get	final	sample	 	

v0

(v∞, h∞)

Restricted Bolzmann Machine

• Maximum	likelihood	estimated:	

• 	

• No	need	to	lift	up	the	entire	energy	landscape!	
• Raising	the	neighborhood	of	desired	patterns	is	sufficient	

∇wij
L(W) = 1

NPK ∑
v∈P

v0ih0j − 1
M ∑ v∞ih∞j

Deep Bolzmann Machine

• Can	we	have	a	deep	version	of	RBM?	
• Deep	Belief	Net	(’06)	
• Deep	Boltzmann	Machine	(’09)	

• Sampling?	
• Forward	pass:	bottom-up	
• Backward	pass:	top-down	

• Deep	Bolzmann	Machine	
• The	very	first	deep	generative	model	
• Salakhudinov	&	Hinton	

deep belief net Deep Boltzmann Machine

Deep Bolzmann Machine

Summary

• Pros:	powerful	and	flexible	

• An	arbitrarily	complex	density	function	 	

• Cons:	hard	to	sample	/	train	
• Hard	to	sample:	

• MCMC	sampling	
• Partition	function	

• No	closed-form	calculation	for	likelihood	
• Cannot	optimize	MLE	loss	exactly	
• MCMC	sampling	

p(x) = 1
z

exp(−E(x))

Normalizing Flows

Intuition about easy to sample

• Goal:	design	 	such	that	
• Easy	to	sample	
• Tractable	likelihood	(density	function)	

• Easy	to	sample	
• Assume	a	continuous	variable	 	
• e.g.,	Gaussian	 ,	or	uniform	 	
• ,	 	is	also	easy	to	sample	

p(x)

z
z ∼ N(0,1) z ∼ Unif[0,1]

x = f(z) x

Intuition about tractable density

• Goal:	design	 	such	that	
• Assume	 	is	from	an	“easy”	distribution	
• 	has	tractable	likelihood	

• Uniform:	 	
• Density	 	
• ,	then	 	

f(z; θ)
z

p(x) = p(f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = ?
!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z

Intuition about tractable density

• Goal:	design	 	such	that	
• Assume	 	is	from	an	“easy”	distribution	
• 	has	tractable	likelihood	

• Uniform:	 	
• Density	 	
• ,	then	 	

• ,	then	 	(for)	

• ,	 	

• Assume	 	is	a	bijection	

f(z; θ)
z

p(x) = p(f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = 1/2
x = az + b p(x) = 1/ |a | a ≠ 0

x = f(z) p(z) |
dz
dx

| = | f′ (z) |−1 p(z)
f(z)

!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z

Change of variable

• Suppose	 	for	some	general	non-linear	 	
• The	linearized	change	in	volume	is	determined	by	the	Jacobian	of	 :	

•
	

• Given	a	bijection	 	
• 	

•
	

• Since	 	(Jacobian	of	invertible	function)	

•
	

x = f(z) f(⋅)
f(⋅)

∂f(z)
∂z

=

∂fz(x)
∂z1

⋯ ∂f1(z)
∂zd

⋯ ⋯ ⋯
∂fd(z)

∂z1
⋯ ∂fd(z)

∂zd

f(z) : ℝd → ℝd

z = f −1(x)

p(x) = p(f −1(x)) det (∂f −1(x)
∂x) = p(z) det (∂f −1(x)

∂x)
∂f −1

∂x
= (∂f

∂x)
−1

p(x) = p(z) det (∂f −1(x)
∂x) = p(z) det (∂f(z)

∂z)
−1

Normalizing Flow

• Idea	
• Sample	 	from	an	“easy”	distribution,	e.g.,	standard	Gaussian	
• Apply	 	bijections	 	
• The	final	sample	 	has	tractable	desnity	

• Normalizing	Flow	
• 	where	 	and	 	is	invertible	
• Every	revertible	function	produces	a	normalized	density	function	

•
	

z0
K zi = fi(zi−1)

x = fK(zK)

z0 ∼ N(0,I), zi = fi(zi−1), x = ZK x, zi ∈ ℝd fi

p(zi) = p(zi−1) det (∂fi
∂zi−1)

−1

Normalizing Flow

• Generation	is	trivial	
• Sample	 	then	apply	the	transformations	

• Log-likelihood	

• 	

•
	

z0

log p(x) = log p(Zk−1) − log det (∂fK
∂zK−1)

log p(x) = log p(z0) − ∑
i

log det (∂fi
∂zi−1) ! "# ‼!

Normalizing Flow

• Naive	flow	model	requires	extremely	expensive	computation	
• Computing	determinant	of	 	matrices	

• Idea:	
• Design	a	good	bijection	 	such	that	the	determinant	is	easy	to	compute	

d × d

fi(z)

Plannar Flow

• Technical	tool:	Matrix	Determinant	Lemma:	
• 	

• Model:	
• 	
• 	chosen	to	be	 	

• 	

• Computation	in	 	time	
• Remarks:	

• 	to	ensure	invertibility	
• Require	normalization	on	u	and	w	

det(A + uv⊤) + (1 + v⊤A−1u) det A

fθ(z) + z + u ⊙ h(w⊤z + b)
h(⋅) tanh(⋅)(0 < h′ (⋅) < 1)
θ = [u, w, b], det (∂f

∂z) = det(I + h′ (w⊤z + b)uw⊤) = 1 + h′ (w⊤z + b)u⊤w

O(d)

u⊤w > − 1

Planar Flow (Rezende & Mohamed, ’16)

• 	
• 10	planar	transformations	can	transform	simple	distributions	into	a	more	complex	
one	

fθ(z) = z + uh (w⊤z + b)

Extensions

• Other	flow	models	uses	triangular	Jacobian	
• Suppose	 	only	depends	on	 	xi = fi(z) z≤i

