Auto regressive language

Generative Models

AIGC: AI Generated Content

Distribution learning - Leave a distribution P_{θ} - Sample from P_{θ}

Training Data(CelebA)

Model Samples (Karras et.al., 2018)

4 years of progression on Faces

Brundage et al., 2017

Image credits to Andrej Risteski

Distribution learning

BigGAN, Brock et al '18

Distribution learning

Conditional generative model P(zebra images | horse images)

Style Transfer

Input Image

Monet

Van Gogh

Image credits to Andrej Risteski

Distribution learning

Source actor

Real-time Reenactment

Reenactment Result

Real-time reenactment

Target actor

Generative model

Slides credit to Yang Song

Generative model $evaluate P_{\Theta}(x)$

Generative model of traffic signs

Outlier detection

[Song et al., ICLR 2018]

Slide credit to Yang Song

Desiderata for generative models

14

 Probability evaluation: given a sample, it is computationally efficient to evaluate the probability of this sample.

• Flexible model family: it is easy to incorporate any neural network models.

• Easy sampling: it is computationally efficient to sample a data from the probabilistic model. Given PU Sample N dotter publicity PU Sample N dotter publicity PU A JS Jose Fo PU

Desiderata for generative models

Slide credit to Yang Song

Key challenge for building generative models distribution $\int P_{\Theta}(x) = 0$ $\int_{X} P_{\Theta}(x) dx = 0$

Slide credit to Yang Song

Slide credit to Yang Song

Key challenge for building generative models

Approximating the normalizing constant

- Variational auto-encoders [Kingma & Welling 2014, Rezende et al. 2014]
- Energy-based models [Ackley et al. 1985, LeCun et al. 2006]

Using restricted neural network models

- Autoregressive models [Bengio & Bengio 2000, van den Oord et al. 2016]
- Normalizing flow models [Dinh et al. 2014, Rezende & Mohamed 2015]

Generative adversarial networks (GANs)

• Model the generation process, not the probability distribution [Goodfellow et al. 2014]

Training generative models

• Likelihood-based: maximize the likelihood of the data under the model (possibly using advanced techniques such as variational method or MCMC):

$$\max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

- Pros:
 - Easy training: can just maximize via SGD.
 - **Evaluation**: evaluating the fit of the model can be done by evaluating the likelihood (on test data).
- Cons:
 - Large models needed: likelihood objectve is hard, to fit well need very big model.
 - Likelihood entourages averaging: produced samples tend to be blurrier, as likelihood encourages "coverage" of training data.

Training generative models

- Likelihood-free: use a surrogate loss (e.g., GAN) to train a discriminator to differentiate real and generated samples.
- Pros:
 - Better objective, smaller models needed: objective itself is learned can result in visually better images with smaller models.
- Cons:
 - Unstable training: typically min-max (saddle point) problems.
 - Evaluation: no way to evaluate the quality of fit.

Generative Adversarial Nets

Implicit Generative Model

- Goal: a sampler $g(\cdot)$ to generate images
- A simple generator $g(z; \theta)$:
 - $z \sim N(0, I)$
 - $x = g(z; \theta)$ deterministic transformation
- Likelihood-free training:
 - Given a dataset from some distribution p_{data}
 - Goal: $g(z; \theta)$ defines a distribution, we want this distribution $\approx p_{data}$
 - Training: minimize $D(g(z; \theta), p_{data})$
 - D is some distance metric (not likelihood)
 - Key idea: *Learn* a differentiable D

Metvics: () K Mbach - Leibler divergence () Toral Unigation: S (P, 0x) - P2 (x) (dx () Wasserstein distance () Jensey - Shannoy Divergence () Jensey - Shannoy Divergence

GAN (Goodfellow et al., '14)

- Parameterize the discriminator $D(\;\cdot\;;\phi)$ with parameter ϕ
- Goal: learn ϕ such that $D(x; \phi)$ measures how likely x is from p_{data}
 - $D(x, \phi) = 1$ if $x \sim p_{data}$
 - $D(x, \phi) = 0$ if $x! \sim p_{data}$
 - a.k.a., a binary classifier
- GAN: use a neural network for $D(\;\cdot\;;\phi)$
- Training: need both negative and positive samples
 - Positive samples: just the training data
 - Negative samples: use our sampler $g(\cdot; z)$ (can provide infinite samples).
- Overall objectives:
 - Generator: $\theta^* = \max D(g(z; \theta); \phi)$
 - Discriminator uses MLE Training:

$$\phi^* = \max_{\phi} \mathbb{E}_{x \sim p_{data}}[\log D(x;\phi)] + \mathbb{E}_{\hat{x} \sim g(\cdot)}[\log(1 - D(\hat{x};\phi))]$$

GAN (Goodfellow et al., '14)

- Generator $G(z; \theta)$ where $z \sim N(0,I)$
 - Generate realistic data
- Discriminator $D(x; \phi)$
 - Classify whether the data is real (from p_{data}) or fake (from G)
- Objective function: Soddle () Sint grtimizate. $L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim G} \left[\log(1 - D(\hat{x}; \phi)) \right]$
- Training procedure:
 - Collect dataset $\{(x,1) | x \sim p_{data}\} \cup \{(\hat{x},0) \sim g(z;\theta)\}$
 - Train discriminator

 $D: L(\phi) = \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim G} \left[\log(1 - D(\hat{x}; \phi)) \right]$

- Train generator $G : L(\theta) = \mathbb{E}_{z \sim N(0,I)} \left[\log D(G(z; \theta), \phi) \right]$
- Repeat

GAN (Goodfellow et al., '14)

 $L(\Theta, \Phi) = \min_{x} \max_{x} E_{x} - \operatorname{Bara}[\operatorname{Joy}(x; \Phi)] + E_{\operatorname{Yng}(-|\Theta|)}$ Math Behind GAN · Let D*, 9* Ve rue solution of T $L_{X}(D) = Pdat_{Q}(X) \cdot log D(X) f P_{Q}(X) \cdot log(I-DR)$ $L_{X}(D) = O \quad first-order \quad (sublitizy)$ $= \int \frac{Pdat_{Q}(X)}{D^{4}(X)} - \frac{P_{Q}(X)}{F D^{4}(X)} = O$ $= \int \frac{Pdat_{Q}(X)}{D^{4}(X)} - \frac{P_{Q}(X)}{F D^{4}(X)} = O$ $\int f(x) = \frac{(2data (x))}{(2data (x))}$ $V(r) - \frac{1}{(2ara(x)f(2g(x)))}$ $V(r) - \frac{1}{2}(x) = 0.5$

(ou sider optimal generator $g^{\#}$, $g^{N} eg$ optimal $g^{\#}$ $\mathcal{L}(\Theta, \Phi) = \mathbb{E}_{\chi \to 0 \text{ or } g} \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right] + \mathbb{E}_{\chi \to Q}(\cdot) \left[\frac{\mathcal{L}(\Theta, \varphi)}{\mathcal{L}(\Theta, \varphi)} \right]$ $= \underbrace{ff}_{X} - \operatorname{Pd}_{atty} \left[\operatorname{Pog}_{\frac{1}{2}} \underbrace{f_{doto}(x)}_{2} \right] + \underbrace{ff}_{X} - \operatorname{Pd}_{z} \left[\operatorname{Pog}_{\frac{1}{2}} \underbrace{f_{\frac{1}{2}}}_{2} \right] + \underbrace{ff}_{X} - \operatorname{Pd}_{z} \left[\operatorname{Pog}_{\frac{1}{2}} \underbrace{ff}_{\frac{1}{2}} \right] + \underbrace{ff}_{X} - \operatorname{Pd}_{z} \left[\operatorname{Pog}_{\frac{1}{2}} \underbrace{ff}_{\frac{1}{2}} \right] +$ $FL(P||Q) = E_{xap}[log_{Q(x)}] - log 4$ = $KL(|2dota||_2(|2dota+Pg|)+KL(|Pg||_2(|2dota+Pg))$ = 2. Jensey-Shannon Divergence

KL-Divergence and JS-Divergence

Math Behind GAN

(jivly)) + L(q) = 2JSD[Pg||Pdata] - log 4 q^{*} must satisfy $Pg^{*} = Pdatq$ $=) \qquad 1 \stackrel{\text{A}}{=} = - 1094$

Evaluation of GAN

- No p(x) in GAN.
- Idea: use a trained classifier $f(y \mid x)$:
- If x ~ p_{data}, f(y | x) should have low entropy
 Otherwise, f(y | x) close to uniform.
- Samples from *G* should be diverse:
 - $p_f(y) = \mathbb{E}_{x \sim G}[f(y \mid x)]$ close to uniform.

Similar labels sum to give focussed distribution

Different labels sum to give uniform distribution

Evaluation of GAN

• Inception Score (IS, Salimans et al. '16)

• Use Inception V3 trained on ImageNet as f(y | x)

•
$$IS = \exp\left(\mathbb{E}_{x \sim G}\left[KL(f(y|x)||p_f(y))\right)\right)$$

• Higher the better

1

> move ind list > over Jussel

High KL divergence

Medium KL divergence

Low KL divergence

Low KL divergence

Ideal situation

Label distribution Marginal distribution

|--|

Generated images are not distinctly one label

Generated images are not distinctly one label

Generator lacks diversity

Comments on GAN

- Other evaluation metrics:
 - Fréchet Inception Distance (FID): Wasserstein distance between Gaussians
- Mode collapse:
 - The generator only generate a few type of samples.
 - Or keep oscillating over a few modes.
- Training instability:
 - Discriminator and generator may keep oscillating
 - Example: -xy, generator x, discriminatory. NE: x = y = 0 but GD oscillates.
 - No stopping criteria.
 - Use Wsserstein GAN (Arjovsky et al. '17): $\min_{G} \max_{f: \mathsf{Lip}(f) \leq 1} \mathbb{E}_{x \sim p_{data}} \left[f(x) \right] - \mathbb{E}_{\hat{x} \sim p_{G}} [f(\hat{x})]$
 - And need many other tricks...

Variational Autoencoder

Architecture

- Auto-encoder: $x \to z \to x$
- Encoder: $q(z | x; \phi) : x \to z$
- Decoder: $p(x | z; \theta) : z \to x$

- Isomorphic Gaussian:
- $q(z \mid x; \phi) = N(\mu(x; \phi), \operatorname{diag}(\exp(\sigma(x; \phi))))$
- Gaussian prior: p(z) = N(0,I)
- Gaussian likelihood: $p(x | z; \theta) \sim N(f(z; \theta), I)$
- Probabilistic model interpretation: latent variable model.

VAE Training

- Training via optimizing ELBO
 - $L(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x;\phi)}[\log p(z|x;\theta)] KL(q(z|x;\phi)||p(z))$
 - Likelihood term + KL penalty
- KL penalty for Gaussians has closed form.
- Likelihood term (reconstruction loss):
 - Monte-Carlo estimation
 - Draw samples from $q(z | x; \phi)$
 - Compute gradient of θ :

VAE Training

- Likelihood term (reconstruction loss):
 - Gradient for ϕ . Loss: $L(\phi) = \mathbb{E}_{z \sim q(z;\phi)} \left[\log p(x \mid z) \right]$
 - Reparameterization trick:

•
$$z \sim N(\mu, \Sigma) \Leftrightarrow z = \mu + \epsilon, \epsilon \sim N(0, \Sigma)$$

• $L(\phi) \propto \mathbb{E}_{z \sim q(z|\phi)} \left[\|f(z;\theta) - x\|_2^2 \right]$ $\propto \mathbb{E}_{\epsilon \sim N(0,I)} \left[\|f(\mu(x;\phi) + \sigma(x;\phi) \cdot \epsilon;\theta) - x\|_2^2 \right]$

• Monte-Carlo estimate for $\nabla L(\phi)$

• End-to-end training

VAE vs. AE

- AE: classical unsupervised representation learning method.
- VAR: a probabilistic model of AE
 - AE + Gaussian noise on z
 - KL penalty: L_2 constraint on the latent vector z

Conditioned VAE

• Semi-supervised learning: some labels are also available

conditioned generation

Comments on VAE

- Pros:
 - Flexible architecture
 - Stable training
- Cons:
 - Inaccurate probability evaluation (approximate inference)

Energy-Based Models

Energy-based Models

- Goal of generative models:
 - a probability distribution of data: P(x)
- Requirements
 - $P(x) \ge 0$ (non-negative) • $\int_{x} P(x)dx = 1$
- Energy-based model:
 - Energy function: $E(x; \theta)$, parameterized by θ

•
$$P(x) = \frac{1}{z} \exp(-E(x;\theta))$$
 (why exp?)
• $z = \int_{z} \exp(-E(x;\theta)) dx$

Boltzmann Machine

• Generative model

•
$$E(y) = -\frac{1}{2}y^{\top}Wy$$

• $P(y) = \frac{1}{z}\exp(-\frac{E(y)}{T})$, T: temperature hyper-parameter

- W: parameter to learn
- When y_i is binary, patterns are affecting each other through W

Boltzmann Machine: Training

- Objective: maximum likelihood learning (assume T =1):
 - Probability of one sample:

$$P(y) = \frac{\exp(\frac{1}{2}y^{\top}y)}{\sum_{y'}\exp(y'^{\top}Wy')}$$

• Maximum log-likelihood:

$$L(W) = \frac{1}{N} \sum_{y \in D} \frac{1}{2} y^{\mathsf{T}} W y - \log \sum_{y'} \exp(\frac{1}{2} y'^{\mathsf{T}} W y')$$

Boltzmann Machine: Training

Boltzmann Machine: Training

Boltzmann Machine with Hidden Neurons

- Visible and hidden neurons:
 - *y*: visible, *h*: hidden

•
$$P(y) = \sum_{h} P(y, v)$$

Boltzmann Machine with Hidden Neurons: Training

Boltzmann Machine with Hidden Neurons: Training

- A structured Boltzmann Machine
 - Hidden neurons are only connected to visible neurons
 - No intra-layer connections
 - Invented by Paul Smolensky in '89
 - Became more practical after Hinton invested fast learning algorithms in mid 2000

- Computation Rules
 - Iterative sampling

Hidden neurons
$$h_i: z_i = \sum_j w_{ij} v_j$$
, $P(h_i | v) = \frac{1}{1 + \exp(-z_i)}$
Visible neurons $v_j: z_j = \sum_i w_{ij} h_i$, $P(v_j | h) = \frac{1}{1 + \exp(-z_j)}$

- Sampling:
 - Randomly initialize visible neurons v_0
 - Iterative sampling between hidden neurons and visible neurons
 - Get final sample (v_{∞}, h_{∞})

• Maximum likelihood estimated:

•
$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0i} h_{0j} - \frac{1}{M} \sum_{v \in N} v_{\infty i} h_{\infty j}$$

- No need to lift up the entire energy landscape!
 - Raising the neighborhood of desired patterns is sufficient

Deep Bolzmann Machine

- Can we have a **deep** version of RBM?
 - Deep Belief Net ('06)
 - Deep Boltzmann Machine ('09)
- Sampling?
 - Forward pass: bottom-up
 - Backward pass: top-down
- Deep Bolzmann Machine
 - The very first deep generative model
 - Salakhudinov & Hinton

Deep Bolzmann Machine

Deep Boltzmann Machine

Gaussian visible units (raw pixel data)

Training Samples							
- And	1	B	JA.		营		
\$	Ye	X	1	4	B		
5		(m)		举	1		
Ŕ	A.	6	-200	BUT ST	Test		
A		×	1	R	B		
(Lin)	No.	Ť	A	in the second	14 m		

Generated Samples \checkmark \checkmark

Summary

- Pros: powerful and flexible
 - An arbitrarily complex density function $p(x) = \frac{1}{z} \exp(-E(x))$
- Cons: hard to sample / train
 - Hard to sample:
 - MCMC sampling
 - Partition function
 - No closed-form calculation for likelihood
 - Cannot optimize MLE loss exactly
 - MCMC sampling

Normalizing Flows

Intuition about easy to sample

- Goal: design p(x) such that
 - Easy to sample
 - Tractable likelihood (density function)
- Easy to sample
 - Assume a continuous variable *z*
 - e.g., Gaussian $z \sim N(0,1)$, or uniform $z \sim \text{Unif}[0,1]$
 - x = f(z), x is also easy to sample

Intuition about tractable density

- Goal: design $f(z; \theta)$ such that
 - Assume *z* is from an "easy" distribution
 - $p(x) = p(f(z; \theta))$ has tractable likelihood
- Uniform: $z \sim \text{Unif}[0,1]$
 - Density p(z) = 1
 - x = 2z + 1, then p(x) = ?

Intuition about tractable density

- Goal: design $f(z; \theta)$ such that
 - Assume *z* is from an "easy" distribution
 - $p(x) = p(f(z; \theta))$ has tractable likelihood
- Uniform: $z \sim \text{Unif}[0,1]$
 - Density p(z) = 1

•
$$x = 2z + 1$$
, then $p(x) = 1/2$

• x = az + b, then p(x) = 1/|a| (for $a \neq 0$)

•
$$x = f(z), p(z) \left| \frac{dz}{dx} \right| = |f'(z)|^{-1} p(z)$$

• Assume f(z) is a bijection

Change of variable

• Suppose x = f(z) for some general non-linear $f(\cdot)$

• The linearized change in volume is determined by the Jacobian of $f(\cdot)$:

$$\frac{\partial f(z)}{\partial z} = \begin{vmatrix} \frac{\partial f_z(x)}{\partial z_1} & \cdots & \frac{\partial f_1(z)}{\partial z_d} \\ \vdots & \cdots & \cdots & \vdots \\ \frac{\partial f_d(z)}{\partial z_1} & \cdots & \frac{\partial f_d(z)}{\partial z_d} \end{vmatrix}$$

Given a bijection $f(z) : \mathbb{R}^d \to \mathbb{R}^d$
• $z = f^{-1}(x)$
• $p(x) = p(f^{-1}(x)) \left| \det\left(\frac{\partial f^{-1}(x)}{\partial x}\right) \right| = p(z) \left| \det\left(\frac{\partial f^{-1}(x)}{\partial x}\right) \right|$
• Since $\frac{\partial f^{-1}}{\partial x} = \left(\frac{\partial f}{\partial x}\right)^{-1}$ (Jacobian of invertible function)
• $p(x) = p(z) \left| \det\left(\frac{\partial f^{-1}(x)}{\partial x}\right) \right| = p(z) \left| \det\left(\frac{\partial f(z)}{\partial z}\right) \right|^{-1}$

Normalizing Flow

- Idea
 - Sample z_0 from an "easy" distribution, e.g., standard Gaussian
 - Apply *K* bijections $z_i = f_i(z_{i-1})$
 - The final sample $x = f_K(z_K)$ has tractable desnity
- Normalizing Flow
 - $z_0 \sim N(0,I), z_i = f_i(z_{i-1}), x = Z_K$ where $x, z_i \in \mathbb{R}^d$ and f_i is invertible
 - Every revertible function produces a normalized density function

Normalizing Flow

- Generation is trivial
 - Sample z_0 then apply the transformations
- Log-likelihood

•
$$\log p(x) = \log p(Z_{k-1}) - \log \left| \det \left(\frac{\partial f_K}{\partial z_{K-1}} \right) \right|$$

• $\log p(x) = \log p(z_0) - \sum_i \log \left| \det \left(\frac{\partial f_i}{\partial z_{i-1}} \right) \right|$ $O(d^3) !!!!$

Normalizing Flow

- Naive flow model requires extremely expensive computation
 - Computing determinant of $d \times d$ matrices
- Idea:
 - Design a good bijection $f_i(z)$ such that the determinant is easy to compute

Plannar Flow

- Technical tool: Matrix Determinant Lemma:
 - $\det(A + uv^{\top}) + (1 + v^{\top}A^{-1}u) \det A$
- Model:
 - $f_{\theta}(z) + z + u \odot h(w^{\top}z + b)$
 - $h(\cdot)$ chosen to be $tanh(\cdot)(0 < h'(\cdot) < 1)$

•
$$\theta = [u, w, b], \det\left(\frac{\partial f}{\partial z}\right) = \det(I + h'(w^{\top}z + b)uw^{\top}) = 1 + h'(w^{\top}z + b)u^{\top}w$$

- Computation in O(d) time
- Remarks:
 - $u^{\top}w > -1$ to ensure invertibility
 - Require normalization on u and w

Planar Flow (Rezende & Mohamed, '16)

- $f_{\theta}(z) = z + uh\left(w^{\mathsf{T}}z + b\right)$
- 10 planar transformations can transform simple distributions into a more complex one

Extensions

- Other flow models uses triangular Jacobian
 - Suppose $x_i = f_i(z)$ only depends on $z_{\leq i}$