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Desiderata for generative models

• Probability	evaluation:	given	a	sample,	it	is	computationally	efficient	to	evaluate	
the	probability	of	this	sample.	

• Flexible	model	family:	it	is	easy	to	incorporate	any	neural	network	models.	

• Easy	sampling:	it	is	computationally	efficient	to	sample	a	data	from	the	
probabilistic	model.
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Taxonomy of generative models
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Key challenge for building generative models

Slide	credit	to	Yang	Song

distribution
5701470
SxPondxy

O
Zo Syet dy
NT hard
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Training generative models

• Likelihood-based:	maximize	the	likelihood	of	the	data	under	the	model	(possibly	
using	advanced	techniques	such	as	variational	method	or	MCMC):	

	

• Pros:	
• Easy	training:	can	just	maximize	via	SGD.	
• Evaluation:	evaluating	the	fit	of	the	model	can	be	done	by	evaluating	the	
likelihood	(on	test	data).	

• Cons:	
• Large	models	needed:	likelihood	objectve	is	hard,	to	fit	well	need	very	big	
model.	

• Likelihood	entourages	averaging:	produced	samples	tend	to	be	blurrier,	as	
likelihood	encourages	“coverage”	of	training	data.

max
θ

n

∑
i=1

log pθ(xi)



Training generative models

• Likelihood-free:	use	a	surrogate	loss	(e.g.,	GAN)	to	train	a	discriminator	to	
differentiate	real	and	generated	samples.	

• Pros:	
• Better	objective,	smaller	models	needed:	objective	itself	is	learned	-	can	
result	in	visually	better	images	with	smaller	models.	

• Cons:	
• Unstable	training:	typically	min-max	(saddle	point)	problems.	
• Evaluation:	no	way	to	evaluate	the	quality	of	fit.
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Implicit Generative Model

• Goal:	a	sampler	 	to	generate	images	
• A	simple	generator	 :	

• 	
• 	deterministic	transformation	

• Likelihood-free	training:	
• Given	a	dataset	from	some	distribution	 	
• Goal:	 	defines	a	distribution,	we	want	this	distribution	 	 	
• Training:	minimize	 	

• 	is	some	distance	metric	(not	likelihood)	
• Key	idea:	Learn	a	differentiable	

g( ⋅ )
g(z; θ)

z ∼ N(0,I )
x = g(z; θ)

pdata
g(z; θ) ≈ pdata

D(g(z; θ), pdata)
D

D

Metrics
Kamban Leiblerdivergence

Total variation
SHH M lax

Wasserstein distance
Jensen Shannon Divergence

yM
05Integral Probability

Metric



GAN (Goodfellow et al., ‘14)

• Parameterize	the	discriminator	 	with	parameter	 	

• Goal:	learn	 	such	that	 	measures	how	likely	 	is	from	 	
• 	if	 	
• 	if	 	
• a.k.a.,	a	binary	classifier	

• GAN:	use	a	neural	network	for	 	

• Training:	need	both	negative	and	positive	samples	
• Positive	samples:	just	the	training	data	
• Negative	samples:	use	our	sampler	 	(can	provide	infinite	samples).	

• Overall	objectives:	
• Generator:	 	

• Discriminator	uses	MLE	Training:	
	

D( ⋅ ; ϕ) ϕ

ϕ D(x; ϕ) x pdata
D(x, ϕ) = 1 x ∼ pdata
D(x, ϕ) = 0 x! ∼ pdata

D( ⋅ ; ϕ)

g( ⋅ ; z)

θ* = max
θ

D(g(z; θ); ϕ)

ϕ* = max
ϕ

$x∼pdata
[log D(x; ϕ)] + $ ̂x∼g(⋅)[log(1 − D( ̂x; ϕ))]

I



GAN (Goodfellow et al., ‘14)

• Generator	 	where	 	
• Generate	realistic	data	

• Discriminator	 	
• Classify	whether	the	data	is	real	(from	 )	or	fake	(from	 )	

• Objective	function:	
	

• Training	procedure:	
• Collect	dataset	 	
• Train	discriminator

	
• Train	generator	 	
• Repeat

G(z; θ) z ∼ N(0,I )

D(x; ϕ)
pdata G

L(θ, ϕ) = min
θ

max
ϕ

$x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D( ̂x; ϕ))]

{(x,1) |x ∼ pdata} ∪ {( ̂x,0) ∼ g(z; θ)}

D : L(ϕ) = $x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D( ̂x; ϕ))]
G : L(θ) = $z∼N(0,I) [log D(G(z; θ), ϕ)]

saddle point optimization Xf



GAN (Goodfellow et al., ‘14)

• Objective	function:	
L(θ, ϕ) = min

θ
max

ϕ
$x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D( ̂x; ϕ))]

Pdaty constant 0.5
a discriminator
a generator



Math Behind GAN
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Math Behind GAN

Consider optimal
generatorg grey optimal DX
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KL-Divergence and JS-Divergence
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Math Behind GAN
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Evaluation of GAN

• No	 	in	GAN.	
• Idea:	use	a	trained	classifier	 :	
• If	 ,	 	should	have	low	entropy	

• Otherwise,	 	close	to	uniform.	
• Samples	from	 	should	be	diverse:	

• 	close	to	uniform.

p(x)
f(y ∣ x)

x ∼ pdata f(y |x)
f(y ∣ x)

G
pf (y) = $x∼G[ f(y |x)]

Eep
log



Evaluation of GAN

• Inception	Score	(IS,	Salimans	et	al.	’16)	
• Use	Inception	V3	trained	on	ImageNet	as	 	

• 		

• Higher	the	better

f(y |x)
IS = exp ($x∼G [KL( f(y |x) | |pf (y)))])

I I marginal dist

dist forgiven x over classes



Comments on GAN

• Other	evaluation	metrics:	
• Fréchet	Inception	Distance	(FID):	Wasserstein	distance	between	Gaussians	

• Mode	collapse:		
• The	generator	only	generate	a	few	type	of	samples.	
• Or	keep	oscillating	over	a	few	modes.	

• Training	instability:	
• Discriminator	and	generator	may	keep	oscillating	
• Example:	 ,	generator	 ,	discriminator .	NE:	 	but	GD	oscillates.	
• No	stopping	criteria.	
• Use	Wsserstein	GAN	(Arjovsky	et	al.	’17):

	

• And	need	many	other	tricks…

−xy x y x = y = 0

min
G

max
f:Lip( f )≤1

$x∼pdata [f(x)] − $ ̂x∼pG
[ f( ̂x)]

I

man xy



Variational 
Autoencoder



Architecture

• Auto-encoder:	 	
• Encoder:	 	
• Decoder:	 	

• Isomorphic	Gaussian:	
	

• Gaussian	prior:	 	
• Gaussian	likelihood:	 	

• Probabilistic	model	interpretation:	latent	variable	
model.

x → z → x
q(z |x; ϕ) : x → z
p(x |z; θ) : z → x

q(z |x; ϕ) = N(μ(x; ϕ), diag(exp(σ(x; ϕ))))
p(z) = N(0,I )

p(x |z; θ) ∼ N( f(z; θ), I )



VAE Training

• Training	via	optimizing	ELBO	
• 	
• Likelihood	term	+	KL	penalty	

• KL	penalty	for	Gaussians	has	closed	form.	
• Likelihood	term	(reconstruction	loss):	

• Monte-Carlo	estimation	
• Draw	samples	from	 	
• Compute	gradient	of	 :	

• 	

•

L(ϕ, θ; x) = $z∼q(z|x;ϕ)[log p(z |x; θ)] − KL (q(z |x; ϕ) | |p(z))

q(z |x; ϕ)
θ

x ∼ N( f(z; θ); I )
p(x) = 1

2π
exp(− 1

2 ∥x − f(z; θ)∥2
2)



VAE Training

• Likelihood	term	(reconstruction	loss):	
• Gradient	for	 Loss:	 	
• Reparameterization	trick:		

• 	
• 	

	
• Monte-Carlo	estimate	for	 	

• End-to-end	training	

ϕ . L(ϕ) = $z∼q(z;ϕ) [log p(x |z)]
z ∼ N(μ, Σ) ⇔ z = μ + ϵ, ϵ ∼ N(0,Σ)

L(ϕ) ∝ $z∼q(z|ϕ) [∥f(z; θ) − x∥2
2]

∝ $ϵ∼N(0,I) [∥f(μ(x; ϕ) + σ(x; ϕ) ⋅ ϵ; θ) − x∥2
2]

∇L(ϕ)



VAE vs. AE

• AE:	classical	unsupervised	representation	learning	method.	
• VAR:	a	probabilistic	model	of	AE	

• AE	+	Gaussian	noise	on	 	
• KL	penalty:	 	constraint	on	the	latent	vector	 	

z
L2 z



Conditioned VAE

• Semi-supervised	learning:	some	labels	are	also	available	



Comments on VAE

• Pros:	
• Flexible	architecture	
• Stable	training	

• Cons:	
• Inaccurate	probability	evaluation	(approximate	inference)



Energy-Based Models



Energy-based Models

• Goal	of	generative	models:	
• a	probability	distribution	of	data:	 	

• Requirements	
• 	(non-negative)	

• 	

• Energy-based	model:	
• Energy	function:	 ,	parameterized	by	 	

• 	(why	exp?)	

•

P(x)

P(x) ≥ 0

∫x
P(x)dx = 1

E(x; θ) θ
P(x) = 1

z
exp(−E(x; θ))

z = ∫z
exp(−E(x; θ))dx



Boltzmann Machine

• Generative	model		

• 	

• ,	 :	temperature	hyper-parameter	

• :	parameter	to	learn	
• When	 	is	binary,	patterns	are	affecting	each	other	through	

E(y) = − 1
2 y⊤Wy

P(y) = 1
z

exp(− E(y)
T

) T

W
yi W



Boltzmann Machine: Training

• Objective:	maximum	likelihood	learning	(assume	T	=1):	
• Probability	of	one	sample:	

	 	

• Maximum	log-likelihood:	

P(y) =
exp( 1

2 y⊤y)
∑y′ exp(y′ ⊤Wy′ )

L(W ) = 1
N ∑

y∈D

1
2 y⊤Wy − log∑

y′ 
exp( 1

2 y′ ⊤Wy′ )



Boltzmann Machine: Training



Boltzmann Machine: Training



Boltzmann Machine with Hidden Neurons

• Visible	and	hidden	neurons:	
• :	visible,	 :	hidden	

•

y h
P(y) = ∑

h
P(y, v)



Boltzmann Machine with Hidden Neurons: Training



Boltzmann Machine with Hidden Neurons: Training



Restricted Bolzmann Machine

• A	structured	Boltzmann	Machine	
• Hidden	neurons	are	only	connected	to	visible	neurons	
• No	intra-layer	connections	
• Invented	by	Paul	Smolensky	in	’89	
• Became	more	practical	after	Hinton	invested	fast	learning	algorithms	in	mid	
2000



Restricted Bolzmann Machine

• Computation	Rules	
• Iterative	sampling	

• Hidden	neurons	 :	 ,	 	

• Visible	neurons	 :	

hi zi = ∑
j

wijvj P(hi |v) = 1
1 + exp(−zi)

vj zj = ∑
i

wijhi, P(vj |h) = 1
1 + exp(−zj)



Restricted Bolzmann Machine

• Sampling:	
• Randomly	initialize	visible	neurons	 	
• Iterative	sampling	between	hidden	neurons	and	visible	neurons	
• Get	final	sample	 	

v0

(v∞, h∞)



Restricted Bolzmann Machine

• Maximum	likelihood	estimated:	

• 	

• No	need	to	lift	up	the	entire	energy	landscape!	
• Raising	the	neighborhood	of	desired	patterns	is	sufficient	

∇wij
L(W ) = 1

NPK ∑
v∈P

v0ih0j − 1
M ∑ v∞ih∞j



Deep Bolzmann Machine

• Can	we	have	a	deep	version	of	RBM?	
• Deep	Belief	Net	(’06)	
• Deep	Boltzmann	Machine	(’09)	

• Sampling?	
• Forward	pass:	bottom-up	
• Backward	pass:	top-down	

• Deep	Bolzmann	Machine	
• The	very	first	deep	generative	model	
• Salakhudinov	&	Hinton	

deep belief net Deep Boltzmann Machine



Deep Bolzmann Machine



Summary

• Pros:	powerful	and	flexible	

• An	arbitrarily	complex	density	function	 	

• Cons:	hard	to	sample	/	train	
• Hard	to	sample:	

• MCMC	sampling	
• Partition	function	

• No	closed-form	calculation	for	likelihood	
• Cannot	optimize	MLE	loss	exactly	
• MCMC	sampling	

p(x) = 1
z

exp(−E(x))



Normalizing Flows



Intuition about easy to sample

• Goal:	design	 	such	that	
• Easy	to	sample	
• Tractable	likelihood	(density	function)	

• Easy	to	sample	
• Assume	a	continuous	variable	 	
• e.g.,	Gaussian	 ,	or	uniform	 	
• ,	 	is	also	easy	to	sample	

p(x)

z
z ∼ N(0,1) z ∼ Unif[0,1]

x = f(z) x



Intuition about tractable density

• Goal:	design	 	such	that	
• Assume	 	is	from	an	“easy”	distribution	
• 	has	tractable	likelihood	

• Uniform:	 	
• Density	 	
• ,	then	 	

f(z; θ)
z

p(x) = p( f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = ?
!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z



Intuition about tractable density

• Goal:	design	 	such	that	
• Assume	 	is	from	an	“easy”	distribution	
• 	has	tractable	likelihood	

• Uniform:	 	
• Density	 	
• ,	then	 	

• ,	then	 	(for	 )	

• ,	 	

• Assume	 	is	a	bijection	

f(z; θ)
z

p(x) = p( f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = 1/2
x = az + b p(x) = 1/ |a | a ≠ 0

x = f(z) p(z) |
dz
dx

| = | f′ (z) |−1 p(z)
f(z)

!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z



Change of variable

• Suppose	 	for	some	general	non-linear	 	
• The	linearized	change	in	volume	is	determined	by	the	Jacobian	of	 :	

•
	

• Given	a	bijection	 	
• 	

•
	

• Since	 	(Jacobian	of	invertible	function)	

•
	

x = f(z) f( ⋅ )
f( ⋅ )

∂f(z)
∂z

=

∂fz(x)
∂z1

⋯ ∂f1(z)
∂zd

⋯ ⋯ ⋯
∂fd(z)

∂z1
⋯ ∂fd(z)

∂zd

f(z) : ℝd → ℝd

z = f −1(x)

p(x) = p( f −1(x)) det ( ∂f −1(x)
∂x ) = p(z) det ( ∂f −1(x)

∂x )
∂f −1

∂x
= ( ∂f

∂x )
−1

p(x) = p(z) det ( ∂f −1(x)
∂x ) = p(z) det ( ∂f(z)

∂z )
−1



Normalizing Flow

• Idea	
• Sample	 	from	an	“easy”	distribution,	e.g.,	standard	Gaussian	
• Apply	 	bijections	 	
• The	final	sample	 	has	tractable	desnity	

• Normalizing	Flow	
• 	where	 	and	 	is	invertible	
• Every	revertible	function	produces	a	normalized	density	function	

•
	

z0
K zi = fi(zi−1)

x = fK(zK)

z0 ∼ N(0,I ), zi = fi(zi−1), x = ZK x, zi ∈ ℝd fi

p(zi) = p(zi−1) det ( ∂fi
∂zi−1 )

−1



Normalizing Flow

• Generation	is	trivial	
• Sample	 	then	apply	the	transformations	

• Log-likelihood	

• 	

•
	

z0

log p(x) = log p(Zk−1) − log det ( ∂fK
∂zK−1 )

log p(x) = log p(z0) − ∑
i

log det ( ∂fi
∂zi−1 ) ! "# ‼!



Normalizing Flow

• Naive	flow	model	requires	extremely	expensive	computation	
• Computing	determinant	of	 	matrices	

• Idea:	
• Design	a	good	bijection	 	such	that	the	determinant	is	easy	to	compute	

d × d

fi(z)



Plannar Flow

• Technical	tool:	Matrix	Determinant	Lemma:	
• 	

• Model:	
• 	
• 	chosen	to	be	 	

• 	

• Computation	in	 	time	
• Remarks:	

• 	to	ensure	invertibility	
• Require	normalization	on	u	and	w	

det(A + uv⊤) + (1 + v⊤A−1u) det A

fθ(z) + z + u ⊙ h(w⊤z + b)
h( ⋅ ) tanh( ⋅ )(0 < h′ ( ⋅ ) < 1)
θ = [u, w, b], det ( ∂f

∂z ) = det(I + h′ (w⊤z + b)uw⊤) = 1 + h′ (w⊤z + b)u⊤w

O(d)

u⊤w > − 1



Planar Flow (Rezende & Mohamed, ’16)

• 	
• 10	planar	transformations	can	transform	simple	distributions	into	a	more	complex	
one	

fθ(z) = z + uh (w⊤z + b)



Extensions

• Other	flow	models	uses	triangular	Jacobian	
• Suppose	 	only	depends	on	 	xi = fi(z) z≤i


