Generative Models

Distribution learning

Training Model Samples (Karras et.al.,
Data(CelebA) 2018)

4 years of progression on Faces

Brundage et al.,
2017

2014 2015 2016 2017

Image credits to Andrej Risteski

Distribution learning

N, Brock et al ‘18

BigGA

Distribution learning

Conditional generative model P(zebra images| horse images)

Input Image Monet Van Gogh

Image credits to Andrej Risteski

Distribution learning

Source Real-time Reenactmen
actor

Real-time
reenactment

Reenactment Result

Generative model

Generate
— % =3

Generative model
of realistic images

—

Stroke paintings to realistic images
[Meng, He, Song, et al., ICLR 2022]

(e Generate

“Ace of Pentacles” === \ —

Generative model T ol
of paintings Language-guided artwork creation
https://chainbreakers.kath.io @RiversHaveWings

Slides credit to Yang Song

Generative model

High P Low
probability probability
— y

Generative model
of traffic signs

Outlier detection
[Song et al., ICLR 2018]

Slide credit to Yang Song

Desiderata for generative models

e Probability evaluation: given a sample, it is computationally efficient to evaluate
the probability of this sample.

¢ Flexible model family: it is easy to incorporate any neural network models.

e Easy sampling: it is computationally efficient to sample a data from the
probabilistic model.

Desiderata for generative models

Data distribution
(unknown)

High Low_ |
probability Probability

Generative model

Novel data points

Sampling &N;I m
’ﬂ' 8-

Slide credit to Yang Song

Taxonomy of generative models

Direct

Generative models

/\

Explicit density

Implicit density

T

Tractable density

GAN

\

Fully Visible Belief Nets

NADE
MADE
PixelRNN/CNN

Change of variables
models:

(Nonlinear) ICA

- Normalizing flows

Approximate density

Markov Chain

L

Variational

Variational Autoencoder

Image credits to Andrej Risteski

Markov Chain

Energy models

GSN

(Restricted) Boltzmann machines

Key challenge for building generative models

e.f@ (X)

?-;: = pe(x)M

_w -t

Normalizing constant

Slide credit to Yang Song

Key challenge for building generative models

Approximating the normalizing constant

* Variational auto-encoders [kingma & Welling 2014, Inaccurate probability
Rezende et al. 2014] evaluation
* Energy-based models [ackiey et al. 1985, LeCun et

al. 2006]

Using restricted neural network models

° Autoregressive models [Bengio & Bengio 2000, van Restricted model
den Oord et al. 2016] fam”y
* Normalizing flow models [pinh et al. 2014,

Rezende & Mohamed 2015]

- Model the generation process, not the Cannot evaluate

Generative adversarial networks (GANs) 6
probability distribution (coodteliow et al. 2014]

probabilities

Slide credit to Yang Song

Training generative models

e Likelihood-based: maximize the likelihood of the data under the model (possibly
using advanced techniques such as variational method or MCMC):

max } log py(x)
i=1

® Pros:
e Easy training: can just maximize via SGD.
¢ Evaluation: evaluating the fit of the model can be done by evaluating the
likelihood (on test data).

e Cons:
e Large models needed: likelihood objectve is hard, to fit well need very big
model.
e Likelihood entourages averaging: produced samples tend to be blurrier, as
likelihood encourages “coverage” of training data.

Training generative models

e Likelihood-free: use a surrogate loss (e.g., GAN) to train a discriminator to
differentiate real and generated samples.

® Pros:
e Better objective, smaller models needed: objective itself is learned - can
result in visually better images with smaller models.

e Cons:
e Unstable training: typically min-max (saddle point) problems.
¢ Evaluation: no way to evaluate the quality of fit.

Generative
Adversarial Nets

Implicit Generative Model

e Goal: a sampler g(-) to generate images
e A simple generator g(z; 0):
ez~ N(0,I)

e x = g(z;0) deterministic transformation

e Likelihood-free training:
* Given a dataset from some distribution p,,,.,
e Goal: g(z; 0) defines a distribution, we want this distribution ~ p .,
e Training: minimize D(g(z; @), Py.10)
e D is some distance metric (not likelihood)
e Key idea: Learn a differentiable D

GAN (Goodfellow et al., ‘14)

e Parameterize the discriminator D(- ; ¢) with parameter ¢

e Goal: learn ¢ such that D(x; ¢) measures how likely x is from p,_...

e D(x,)=1ifx~py,.

e D(x, ¢) = 0if x! ~ Pdata
e a.k.a., a binary classifier

e GAN: use a neural network for D(- ; ¢)

e Training: need both negative and positive samples
e Positive samples: just the training data

e Negative samples: use our sampler g(- ; z) (can provide infinite samples).

e Overall objectives:
o Generator: 0% = max D(g(z;0); ¢)
0

e Discriminator uses MLE Training:
*=maxE,_, [logD(x;)]+ E; . [log(l — D(%; ¢))]
¢

GAN (Goodfellow et al., ‘14)

e Generator G(z; @) where z ~ N(0,)
e Generate realistic data

e Discriminator D(x; ¢)
e Classify whether the data is real (from p,,,) or fake (from G)

e Objective function:
L(9,¢) = minmax E,_, |logD(x;)| + E;¢ [log(1 — D(&; ¢))]
9 ¢ ata

e Training procedure:
e Collect dataset {(x,1) |x ~ p .., } U {(X,0) ~ g(z;0)}
e Train discriminator
D: L($) = E,p,, [log Dx: 9)] + E;q [log(1 = D(E: ¢0)]
e Train generator G : L(0) = E,_y 1 [log D(G(z;0), gb)]
e Repeat

GAN (Goodfellow et al., ‘14)

e Objective function:
L, ¢) = mnmaxE, , [log D(x; (/ﬁ)] + E; [log(l — D(x; (,b))]
0 ¢

ata

SSSSSSS

. .
. .
. .

. . o)

GRS,

AN

T T T TR

(b) (c)

d)

Math Behind GAN

Math Behind GAN

KL-Divergence and JS-Divergence

— Dwlpllq)
— Dulqllp

0.03 A

0.02

0.01 4

0.00

— Dys(pllg)

Math Behind GAN

Evaluation of GAN

e No p(x) in GAN. o
e |dea: use a trained classifier f(y | x): 9z r
o If X ~ Py J(¥|x) should have low entropy D |
e Otherwise, f(y | x) close to uniform.
e Samples from G should be diverse: oo mE
o pr(y) = E, LSy | x)] close to uniform. 2 1 é;" ¥ g

Similar labels sum to give focussed distribution Different labels sum to give uniform distribution

|
=

sum

sum

Evaluation of GAN

¢ Inception Score (IS, Salimans et al. ’16)
e Use Inception V3 trained on ImageNet as f(y | x)

o IS =exp <[Ex~G [KL(f(y | X) | Ipf(y)))D
e Higher the better

High KL divergence Medium KL divergence Low KL divergence

mﬂ vl el

Ideal situation

Generated images are Generated images are
not distinctly one not distinctly one
label label

Label distribution
Marginal distribution

Low KL divergence

lI5i

Generator lacks
diversity

Comments on GAN

e Other evaluation metrics:
e Fréchet Inception Distance (FID): Wasserstein distance between Gaussians

e Mode collapse:
e The generator only generate a few type of samples.
e Or keep oscillating over a few modes.

e Training instability:
e Discriminator and generator may keep oscillating
e Example: —xYy, generator X, discriminatory. NE: x = y = 0 but GD oscillates.
e No stopping criteria.
e Use Wsserstein GAN (Arjovsky et al. "17):
min max Eyo,] = Esp [FE)]
e And need many other tricks...

Variational
Autoencoder

Architecture

e Auto-encoder:x - 7 = x
e Encoder: g(z|x;¢) : x = 2
e Decoder: p(x|z;0) : z = x

e |somorphic Gaussian:

q(z|x; @) = N(u(x; ¢), diag(exp(o(x; ¢))))

e Gaussian prior: p(z) = N(0,I)

e Gaussian likelihood: p(x|z;0) ~ N(f(z;0),1)

e Probabilistic model interpretation: latent variable
model.

X

e~N(0,D)J|-)

T

f(z;0)

|

N (z; p(x), 2(x))

]

|

U Net

> Net

/\

Neural Net

I

X

=—=c

} Decoder

Sample z

s Encode

VAE Training

* Training via optimizing ELBO

« L(¢h,0;%) = E,_ 1 gpllog p(z| x;:0)] = KL (q(z|x;) | | p(2))

e Likelihood term + KL penalty

e KL penalty for Gaussians has closed form.
e Likelihood term (reconstruction loss):
e Monte-Carlo estimation

X

e~N(O0, D)ﬁél-)
T

e Draw samples from ¢(z | x; @) 5 0) } _—
e Compute gradient of 0: r
e x ~ N(f(z;0);1) No gradient! NN | sample 2
1 1
px) = exp(——|lx — f(z; O)|I3) N (z p(x), 2(x))
¢ \/ 2 2 i f —
i Net X Net
- Encoder
Neural Net

I

X

VAE Training

e Likelihood term (reconstruction loss):
e Gradient for ¢ . Loss: L(¢p) = E. i) [logp(x|z)]
e Reparameterization trick: X
ez~ Nu,2)oz=u+e,e~ N®OZX) NOD%JL
o L) « E i 172 6) = xI12) D
« Eoonon [If (s) + 00 9) - ,0) = xl3] [r@e

} Decoder

e Monte-Carlo estimate for VL(¢) ‘ Sample z
N (z; u(x), 2(x))
e End-to-end training 1 Let z IIlet]
- Encode
Neural Net

I

X

VAE vs. AE

e AE: classical unsupervised representation learning method.
e VAR: a probabilistic model of AE

e AE + Gaussian noise on Z

e KL penalty: L, constraint on the latent vector 7

Input <o Ideally they are identical. ------------------ >

X —»

9¢

x~x

Bottleneck!

Encoder .

An compressed low dimensional
representation of the input.

Decoder

fo

Reconstructed
input

Input <o Ideally they are identical. ~ ~----------------oooo- -
x~x
Probabilistic Encoder
q4(2[x)
Mean w Sampled
latent vector
Probabilistic
X 3> Decoder
po(x|2)
g
Std. dev
. An compressed low dimensional
z=pt+to0e representation of the input.

e~ N(0,I)

Reconstructed
input

Conditioned VAE

e Semi-supervised learning: some labels are also available

conditioned generation

Comments on VAE

® Pros:
¢ Flexible architecture
e Stable training

e Cons:
e Inaccurate probability evaluation (approximate inference)

Energy-Based Models

W

Energy-based Models

e Goal of generative models:
e a probability distribution of data: P(x)

e Requirements
e P(x) > O (non-negative)
. J PXx)dx =1

X

e Energy-based model:
e Energy function: E(x; @), parameterized by 0

o P(x) = l exp(—E(x; 8)) (why exp?)
Z

W L= J exp(—E(x; 8))dx

Boltzmann Machine

e Generative model

1 T
.E(y)=—5y Wy

e P(y) = — eXp(—Ty), T: temperature hyper-parameter
<

e W: parameter to learn
e When y; is binary, patterns are affecting each other through W

1
Zi = ?Z Wjisj
J

P(si = 1lsj=1) = 7=

Boltzmann Machine: Training

e Objective: maximum likelihood learning (assume T =1):
e Probability of one sample:

exp(5y 1Y)
2., exp(yTWy)

P(y) =
e Maximum log-likelihood:

1 1 1,
LW) =~ D, =y Wy —log) exp(=yTWy)
yeD y'

Boltzmann Machine: Training

Boltzmann Machine: Training

Boltzmann Machine with Hidden Neurons

¢ \isible and hidden neurons:
e y: visible, /: hidden
PO =) P(LY)
h

Hidden

Visible Neurons

Neurons

®

Boltzmann Machine with Hidden Neurons: Training

Boltzmann Machine with Hidden Neurons: Training

Restricted Bolzmann Machine

e A structured Boltzmann Machine
e Hidden neurons are only connected to visible neurons
e No intra-layer connections
e Invented by Paul Smolensky in 89
e Became more practical after Hinton invested fast learning algorithms in mid
2000

HIDDEN

VISIBLE

Restricted Bolzmann Machine

e Computation Rules
e |terative sampling

, Hidden neurons h;: z; = Z Wi

Vi, P(h;|v) =
i PO = e

J
, Visible neurons v;: z; = Z wiihy, P(v;| h) =

l

1 + exp(—z)

HIDDEN

VISIBLE

Restricted Bolzmann Machine

e Sampling:
» Randomly initialize visible neurons v,
e |terative sampling between hidden neurons and visible neurons
e Get final sample (v, h_,)

Restricted Bolzmann Machine

e Maximum likelihood estimated:
o le-jL(W) — VOl /. _Z Vooi 00]
veP

e No need to lift up the entire energy landscape!
e Raising the neighborhood of desired patterns is sufficient

Energy

state

v

Deep Bolzmann Machine

e Can we have a deep version of RBM?
e Deep Belief Net ('06)
e Deep Boltzmann Machine ('09)

e Sampling?
e Forward pass: bottom-up
e Backward pass: top-down

e Deep Bolzmann Machine
e The very first deep generative model
e Salakhudinov & Hinton

Hidden layer 3

h

Hidden layer 2

l

Hidden layer 1

l

Visible layer (observed)

deep belief net

Deep Boltzmann Machine

Deep Bolzmann Machine

Deep Boltzmann Machine Training Samples Generated Samples
(4000 units | :

!

(4000 units)

!

4000 units

Prepr ocessed
transformation

= | &£

Gaussian visible units
(raw pixel data)

Ik AR
AR S AR

Summary

* Pros: powerful and flexible

1
o An arbitrarily complex density function p(x) = — exp(—E(x))
<

e Cons: hard to sample / train
e Hard to sample:
e MCMC sampling
e Partition function
e No closed-form calculation for likelihood
e Cannot optimize MLE loss exactly
e MCMC sampling

Normalizing Flows

Intuition about easy to sample

e Goal: design p(x) such that
e Easy to sample
e Tractable likelihood (density function)

e Easy to sample
e Assume a continuous variable z
e e.g., Gaussian z ~ N(0,1), or uniform z ~ Unif[0,1]
e x = f(z), x is also easy to sample

Intuition about tractable density

e Goal: design f(z; 0) such that p(x)
e Assume z is from an “easy” distribution 5
e p(x) = p(f(z;0)) has tractable likelihood 0

(2)

e Uniform: z ~ Unif[0,1] i
e Density p(z) = 1
e x =27+ 1,thenp(x) =? 0

ffR->R,f(z)=2z+1

z

Intuition about tractable density

e Goal: design f(z; 0) such that p(x)

e Assume z is from an “easy” distribution 5 -_
0 X

e p(x) = p(f(z;0)) has tractable likelihood

e Uniform: z ~ Unif[0,1] "/
e Density p(z) = 1
e x =27+ 1, thenp(x) = 1/2

e x =az+ b, thenp(x) = 1/|a| (fora # 0)

dZ , -1
o X =f(z),p(z)|d—l =@ pk
X

e Assume f(z) is a bijection

fIR->R f(z) =2z+1

z

Change of variable

e Suppose x = f(z) for some general non-linear f(-)
e The linearized change in volume is determined by the Jacobian of f(-):

af,(x) af1(2)
ofx) _ | * i
o 02 N U
| azl azd _
e Given a bijection f(2) : RY - R4
cz=f"'(x)
_ of ' (x) of ' (x)
p(x) = p(f~'(x)) |det = p(z) | det
° ox 0x

o N |
. Since = | — (Jacobian of invertible function)

ox ox
-1
-1
,P(x) =p(2) det<af (x)> = p(2) det<01;(ZZ)>|

0x

Normalizing Flow

e |dea
» Sample z, from an “easy” distribution, e.g., standard Gaussian
e Apply K bijections z; = fi(z;_)
e The final sample x = fx(zx) has tractable desnity
e Normalizing Flow
e 20~ N(,I),z, = f(z,_,), x = Zx where x, z; € R? and f; is invertible
e Every revertible function produces a normalized density function

~1
J/;

0Z;_1

fl (ZO) @ fz (Zi_l) @fi+1 (zz)
’/ \\ // \\
4 AN Y4 Y 4 AN
’ \ ’ \ ’ \
’ \ ’ \ / \
1 \ 1 \ 1 \
| | | | | I
\ 1 \ J \ I
\ / \ / \ /
\

4 \ / \
N // \ ,/ \ //
o . SMe - NS -

R ~ - ~ -

. p(z;) = p(z;_y) | det

zo ~ Po(zo) z; ~ D;i(2;) zx ~ Pk (ZK)

Normalizing Flow

e Generation is trivial

» Sample z, then apply the transformations
e Log-likelihood

dfx
, logp(x) =log p(Z,_,) — log |det
0Zg_
Jf;
log p(x) = lo —) log |det ’
_log p(x) = log p(z) Z e <0zi_1>

fl (ZO) @ fz (Zi_l) @fi+1 (zz)
/” \\\ //’ \\\
’] \ ’ \
’ \ ’ ‘ i \
1 \ 1 \
| 1 | 1
\ 1 \ 1
\ / \ 1
\\ / /
~ 7 4

Normalizing Flow

e Naive flow model requires extremely expensive computation

e Computing determinant of d X d matrices
e |dea:

e Design a good bijection f,(z) such that the determinant is easy to compute

Plannar Flow

e Technical tool: Matrix Determinant Lemma:
edetA+uv)+(1+v A lu)det A

e Model:
e f(2) +z+u®h(w'z+b)
e i(-)chosentobetanh(-)0 < A'(-)< 1)

0
. 0 =[u,w,b],det (0_f> =detd+hWw'z+b)uwH) =1+hKWw'z+bu'w

<
e Computation in O(d) time

e Remarks:

e u'w > — 1 to ensure invertibility

e Require normalization onu and w

Planar Flow (Rezende & Mohamed, '16)

e fo(z) =z + uh (WTZ + b)
e 10 planar transformations can transform simple distributions into a more complex
one

Planar
K=2

Unit Gaussian

Uniform

Extensions

e Other flow models uses triangular Jacobian
e Suppose x; = f,(z) only depends on z;

