
Deep Reinforcement Learning

Qiwen Cui Xinqi Wang Runlong Zhou

University of Washington

• Data: (x, y)
• Goal: Learn a

function f(x)=y
• Examples:

Classification,
Regression, …

2

Supervised Learning

University of Washington

• Data: x
• Goal: Learn underlying

structure of the data
• Examples:

Representation Learning,
Contrastive Learning,
Autoregressive
Pretraining

3

Self-supervised Learning

University of Washington

• Goal: Learn a
policy to maximize
reward

• Examples: Chess,
Go, Poker, Self-
driving

4

Reinforcement Learning

University of Washington

• Goal: Collect as much reward as possible.

5

Markov Decision Process

Agent

Environment

ActionState
Reward

University of Washington 6

Markov Decision Process

Agent

Environment

Action a" =
𝜋(𝑠')

State:
𝑠')*~𝑃(⋅∣ 𝑠', 𝑎')

Reward:
𝑟')* = 𝑟(𝑠', 𝑎')

Maximize total discounted reward ∑𝛾'𝑟'.

University of Washington

• Policy: 𝜋 𝑠 = 𝑎.
• Discount factor: 𝛾 ∈ (0,1).
• Value function: 𝑉8 𝑠9 = 𝔼8[∑' 𝛾'𝑟'], where 𝑠9, 𝑎9, 𝑟9, 𝑠*, 𝑎*, 𝑟*, … is

a trajectory sampled by using policy 𝜋.
• Q function: 𝑄8 𝑠9, 𝑎9 = 𝔼8[∑' 𝛾'𝑟(𝑠', 𝑎')].
• Optimal policy: 𝜋∗ = argmax8 V8(s).
• There exists an optimal policy that achieves the argmax for all 𝑠

simultaneously!

7

Markov Decision Process

University of Washington

• Optimal Q function: 𝑄8∗ 𝑠9, 𝑎9 = 𝔼8∗[∑' 𝛾'𝑟(𝑠', 𝑎')].

• Property: 𝜋∗ 𝑠 = argmaxF𝑄8
∗(𝑠, 𝑎).

• If we know 𝑄∗, we know 𝜋∗.

8

Optimal Q Function

University of Washington

• If we know 𝑟(𝑠, 𝑎) and 𝑃(𝑠G ∣ 𝑠, 𝑎), we can use dynamic programming
to solve the optimal policy.

• How to learn the optimal policy without the knowledge of 𝑟(𝑠, 𝑎) and
𝑃(𝑠G ∣ 𝑠, 𝑎)?

• Collect samples!

9

Reinforcement Learning

University of Washington

• 3361 possible board configurations in Go.
• Impossible to enumerate.

• Theorem: Ω(𝑆𝐴) samples are necessary for learning MDP without
structures, where S is # of states and A is # of actions.

10

Challenge: Large State Space

University of Washington

• Challenge in RL: large state and action space.
• Many states and actions are similar and have similar 𝑄8∗.
• Use a function class ℱ = {𝑓N} to approximate Q function.

• Suppose we have a dataset 𝒟 = {𝑄8∗ 𝑠, 𝑎 }, then we can fit a 𝑓N to
approximate 𝑄8∗:

𝜃∗ = argminN ∑ T,F ∈𝒟 𝑓N 𝑠, 𝑎 − 𝑄8∗ 𝑠, 𝑎
V

.

11

Function Approximation

University of Washington

• Dataset: trajectories 𝑠9, 𝑎9, 𝑟9, 𝑠*, 𝑎*, 𝑟*, … , 𝑠W sampled from some
behavior policy 𝜋X.

• Challenge: unknown 𝑄8∗(𝑠, 𝑎).

12

Offline Reinforcement Learning

University of Washington

• Reminder: Markov-Decision Process(MDP)

13

Q-learning

State:
𝑠Y)* = 𝑃(⋅∣ 𝑠Y, 𝑎Y)

Reward:
𝑟Y)* = 𝑟(𝑠Y, 𝑎Y)

University of Washington

• Value-based method:
• Evaluate all the states, then find the action leading to the best state.

• Reminder: Value function and Q function:

•𝑉8 𝑠 = 𝐸8[∑Y 𝛾Y𝑟Y ∣ 𝑠]

• We need to know which action leads to the given reward:

•Q8 𝑠, 𝑎 = 𝐸8[∑Y 𝛾Y𝑟Y ∣ 𝑠, 𝑎]

14

Q-learning

University of Washington

Q-function:

Q8 𝑠, 𝑎 = 𝐸8[\
Y

𝛾Y𝑟Y ∣ 𝑠, 𝑎]

• Target: derive the Q function for the optimal policy 𝜋∗, 𝑄∗

• How to solve this system?

• Of course, we can use Monte Carlo’s Method to estimate Q function.
• But it takes Ω(𝑆𝐴Y) sample trajectories.

• Can we do better?

15

Q-learning

University of Washington

Q-function:

Q8 𝑠, 𝑎 = 𝐸8[\
Y

𝛾Y𝑟Y ∣ 𝑠, 𝑎]

• Notice that Q function should satisfy the successor relationship;
• Bellman's Equation:

• Q∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝐸8∗[𝑉∗ 𝑠G ∣ 𝑠, 𝑎]
• 𝑉∗ 𝑠 = max

F
𝑄∗(𝑠, 𝑎)

• Then we can solve it with polynomial samples!

16

Q-learning: Tabular learning

University of Washington

• First, initialize 𝑄 ⋅ = 0;
• Then we do iterative DP:

• Until convergency, do:
• For 𝑠, 𝑎 ∈ 𝑆×𝐴:

• Update Q: 𝑄 𝑠, 𝑎 ← *
`a,b

∑TcdT,FcdF 𝑟e + 𝛾𝑉 𝑠e)*
• For 𝑠 ∈ 𝑆:

• Update V: 𝑉 𝑠 ← max
F

𝑄(𝑠, 𝑎)

17

Q-learning: Tabular learning

University of Washington

• When we combine Deep Learning with Q-learning, we get DQN.
• Reminder: function approximation

• Structure/function class: MLP, CNN, Transformer, etc.
• Solve the Bellman's Equation with gradient descent!

• Q∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝐸8∗[𝑉∗ 𝑠G ∣ 𝑠, 𝑎]
• 𝑉∗ 𝑠 = max

F
𝑄∗(𝑠, 𝑎)

• Loss function:

18

Deep Q Network (DQN)

University of Washington

• Loss function:

• Estimated loss:

• Other tricks:
1. Double network trick for stronger stability;
2. Replay buffer for higher sample efficiency.

19

Deep Q Network (DQN)

University of Washington

• Evaluate network: trained network 𝜃
• Updated in each iteration
• The first Q is the evaluate network

• Target network: temporal copy of evaluate network 𝜃′
• Updated at regular intervals
• The second Q is fixed to be target network

• Avoid overfitting problem;
• Don’t need to solve a max problem in each iteration;
• Stabilize the training process.

20

DQN: double network structure

University of Washington

• Problem: batch size is very small compared with the dataset
• Each batch may only contain the transitions from a single trajectory
• Not mutually independent!

• Notice that we only need transitions {𝑠e, 𝑎e, 𝑟e, 𝑠e′} ,instead of complete
trajectories.

• Solution: In each iteration, we randomly sample data from the replay
buffer to form the training batch.

• The replay buffer can be the offline dataset, or the data collected with
latest policy, which gives better sample efficiency.

21

DQN: experience replay

University of Washington

• Sometimes we don't want to estimate the Value function!
• Value function approximation can be extremely tricky;

• Empirical experiments tell us simpler algorithm leads to better performance;
• We need to solve an argmax/max problem for each update, which can be very

expensive.

• Policy-Gradient(PG) directly optimize the policy!
• Directly approximate 𝜋∗(⋅) with DNN.

• Now we use 𝜋N to denote the policy learnt.

22

Policy-Gradient

University of Washington

• Denote the probability of getting a certain trajectory 𝜏 as 𝑃 𝜏, 𝜃 ,
and the corresponding reward as 𝑅(𝜏).

𝑃 𝜏, 𝜃 = ∏Y 𝜋N 𝑎Y 𝑠Y
𝑅 𝜏 = ∑Y 𝛾Y𝑟Y

• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑Y 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Gradient ascent: 𝜃 ← 𝜃 + 𝜂∇N𝐽(𝜃)

• Great so far!

• The problem lies in the estimation of ∇N𝐽(𝜃).

23

Policy-Gradient

University of Washington

• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑Y 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Gradient ascent: 𝜃 ← 𝜃 + 𝜂∇N𝐽(𝜃)
• Directly calculation of the gradient of empirical reward gives:

𝐽 𝜃 ≈ *
`
∑ed*` 𝑅 𝜏e ,

∇N𝐽 𝜃 ≈ ∇N[
*
`
∑ed*` 𝑅 𝜏e]?

• Remember	that	𝑅 𝜏 doesn’t	depend	on	𝜃 directly:
• 𝑃 𝜏, 𝜃 = ∏Y 𝜋N 𝑎Y 𝑠Y
• 𝑅 𝜏 = ∑Y 𝛾Y𝑟Y

24

Policy-Gradient

University of Washington

• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑} 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Directly calculation of the gradient of empirical reward gives:

𝐽 𝜃 ≈
1
𝑁
\
ed*

`

𝑅 𝜏e ,

∇N𝐽 𝜃 ≈ ∇N[
1
𝑁
\
ed*

`

𝑅 𝜏e]

• Problem: We are not calculating the exact reward with probability,
but with sampling!

• Therefore, we cannot backpropagate the gradient to DNN;
• (Sad news, can’t leave differential to loss.backword() this time)

25

Policy-Gradient

University of Washington

• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑Y 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Good! The gradient can be also understood as an expectation!
• Therefore, the empirical update function is:

26

Policy-Gradient

University of Washington

• Language modeling: autoregressive conditional sequence modeling
• Predict next token (≈word) with some probability

𝑃(“you”| “How”, “ ”, “are”, “ ”)
• Autoregressive: sample, and predict next

𝑃(“? ”| “How”, “ ”, “are”, “ ”, “you”)
• Just like policy in RL!

𝜋(𝑎'|𝑠*, 𝑎*, 𝑟*, … , 𝑠')

27

Decision Transformers

Decision making Architecture in
language modeling

University of Washington

• Offline dataset:
• Consider deterministic reward, finite horizon 𝑯, and discount 𝜸 = 𝟏

𝐷 = 𝜏e = (𝑠9e , 𝑎9e , 𝑟9e; 𝑠*e , 𝑎*e , 𝑟*e;⋯ ; 𝑠�e , 𝑎�e , 𝑟�e) ed*
`

• Decision Transformers:
• Return-to-go: �𝑅' = ∑Yd'� 𝑟Y

𝐷 = 𝜏e = (�𝑅9e , 𝑠9e , 𝑎9e ; �𝑅*e , 𝑠*e , 𝑎*e ;⋯ ; �𝑅�e , 𝑠�e , 𝑎�e) ed*
`

33

Decision Transformers for Offline RL[🔗]

https://arxiv.org/abs/2106.01345

University of Washington

• Decision Transformers:
• Return-to-go (RTG): �𝑅' = ∑Yd'� 𝑟Y

𝐷 = 𝜏e = (�𝑅9e , 𝑠9e , 𝑎9e ; �𝑅*e , 𝑠*e , 𝑎*e ;⋯ ; �𝑅�e , 𝑠�e , 𝑎�e) ed*
`

34

Decision Transformers for Offline RL

University of Washington

• Decision Transformers:
• Return-to-go (RTG): �𝑅' = ∑Yd'� 𝑟Y

𝐷 = 𝜏e = (�𝑅9e , 𝑠9e , 𝑎9e ; �𝑅*e , 𝑠*e , 𝑎*e ;⋯ ; �𝑅�e , 𝑠�e , 𝑎�e) ed*
`

35

Decision Transformers for Offline RL

University of Washington

• Minibatch of sequence with length 𝐾
• Context length 𝐾: use previous 𝐾 steps to predict next action
• Slice 𝜏e into 𝜏[���{���)*,*}:�]

e for 𝑗 = 1,2, … ,𝐻
𝜏[�:�]
e = �𝑅�e, 𝑠�e, 𝑎�e; … ; �𝑅�e , 𝑠�e , 𝑎�e

�̌�[�:�]
e = �𝑅�e, 𝑠�e, 𝑎�e; … ; �𝑅�e , 𝑠�e

36

Training

University of Washington

• Loss function
• Cross-entropy loss for discrete action space

ℒ���� �¡¢ =\
ed*

`

\
�d*

�

− log 𝜋 𝑎�e �̌�[��� ���)*,* :�]
e)

• 𝑳𝟐 loss for continuous action space

ℒ���� �¡¢ =\
ed*

`

\
�d*

�

𝔼F~8 ⋅ ¥} ¦§¨ ©ª«¬, :©
c) 𝑎�

e − 𝑎
V

37

Training

University of Washington

• Set an initial RTG (large enough)
• Run the DT and subtract the current return-to-go with the observed

reward
• Crop the sequence to length 𝐾

39

Evaluation

University of Washington

• Possible to outperform the best trajectory in dataset

40

Results

University of Washington

• CQL: conservative Q-learning
• BEAR: off-policy Q-learning
• BRAC-v: behavior regularized offline RL

41

Results

• AWR: advantage-weighted regression
• BC: behavior cloning

University of Washington

• Use a pretrained language model (GPT2) as initialization

43

Pretraining DTs on Language Tasks[🔗]

https://arxiv.org/abs/2310.20587

University of Washington

• Use MLP for embedding

• 𝑋~𝒩(𝜇 = 0, 𝜎V = 1)

44

Pretraining DTs on Language Tasks

University of Washington

• Parameter Efficient Finetuning (PEFT): Low-rank Adaptation (LoRA)
• High efficiency
• Avoid overfitting in full finetuning

45

Pretraining DTs on Language Tasks

University of Washington

• Language prediction as an auxiliary objective
• WikiText dataset
• ℒ²�¢³´�³� = ∑e − log 𝑇(𝑤e)*|𝑤*,… ,𝑤e)

ℒ = ℒ���� �¡¢ + 𝜆ℒ²�¢³´�³�

46

Pretraining DTs on Language Tasks

University of Washington

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information
processing systems 30 (2017).
Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence
modeling." Advances in neural information processing systems 34 (2021): 15084-
15097.
Zheng, Qinqing, Amy Zhang, and Aditya Grover. "Online decision
transformer." international conference on machine learning. PMLR, 2022.
Shi, Ruizhe, et al. "Unleashing the Power of Pre-trained Language Models for
Offline Reinforcement Learning." arXiv preprint arXiv:2310.20587 (2023).
Brandfonbrener, David, et al. "When does return-conditioned supervised learning
work for offline reinforcement learning?." Advances in Neural Information
Processing Systems 35 (2022): 1542-1553.
Zhou, Zhaoyi, et al. "Free from Bellman Completeness: Trajectory Stitching via
Model-based Return-conditioned Supervised Learning." arXiv preprint
arXiv:2310.19308 (2023).

56

References

