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• Data: (x, y)
• Goal: Learn a 

function f(x)=y
• Examples: 

Classification, 
Regression, … 
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Supervised Learning
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• Data: x
• Goal: Learn underlying 

structure of the data
• Examples: 

Representation Learning, 
Contrastive Learning, 
Autoregressive 
Pretraining

3

Self-supervised Learning
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• Goal: Learn a 
policy to maximize 
reward

• Examples: Chess, 
Go, Poker, Self-
driving
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Reinforcement Learning
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• Goal: Collect as much reward as possible. 
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Markov Decision Process

Agent

Environment

ActionState
Reward
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Markov Decision Process

Agent

Environment

Action a" =
𝜋(𝑠')

State:
𝑠')*~𝑃(⋅∣ 𝑠', 𝑎')

Reward:
𝑟')* = 𝑟(𝑠', 𝑎')

Maximize total discounted reward ∑𝛾'𝑟'.
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• Policy: 𝜋 𝑠 = 𝑎. 
• Discount factor: 𝛾 ∈ (0,1). 
• Value function: 𝑉8 𝑠9 = 𝔼8[∑' 𝛾'𝑟'], where 𝑠9, 𝑎9, 𝑟9, 𝑠*, 𝑎*, 𝑟*, … is 

a trajectory sampled by using policy 𝜋. 
• Q function: 𝑄8 𝑠9, 𝑎9 = 𝔼8[∑' 𝛾'𝑟(𝑠', 𝑎')]. 
• Optimal policy: 𝜋∗ = argmax8 V8(s). 
• There exists an optimal policy that achieves the argmax for all 𝑠

simultaneously!
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Markov Decision Process
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• Optimal Q function: 𝑄8∗ 𝑠9, 𝑎9 = 𝔼8∗[∑' 𝛾'𝑟(𝑠', 𝑎')]. 

• Property: 𝜋∗ 𝑠 = argmaxF𝑄8
∗(𝑠, 𝑎). 

• If we know 𝑄∗, we know 𝜋∗. 
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Optimal Q Function
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• If we know 𝑟(𝑠, 𝑎) and 𝑃(𝑠G ∣ 𝑠, 𝑎), we can use dynamic programming 
to solve the optimal policy. 

• How to learn the optimal policy without the knowledge of 𝑟(𝑠, 𝑎) and 
𝑃(𝑠G ∣ 𝑠, 𝑎)?

• Collect samples!
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Reinforcement Learning
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• 3361 possible board configurations in Go. 
• Impossible to enumerate. 

• Theorem: Ω(𝑆𝐴) samples are necessary for learning MDP without 
structures, where S is # of states and A is # of actions.  
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Challenge: Large State Space
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• Challenge in RL: large state and action space. 
• Many states and actions are similar and have similar 𝑄8∗. 
• Use a function class ℱ = {𝑓N} to approximate Q function. 

• Suppose we have a dataset 𝒟 = {𝑄8∗ 𝑠, 𝑎 }, then we can fit a 𝑓N to 
approximate 𝑄8∗:

𝜃∗ = argminN ∑ T,F ∈𝒟 𝑓N 𝑠, 𝑎 − 𝑄8∗ 𝑠, 𝑎
V

. 
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Function Approximation
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• Dataset: trajectories 𝑠9, 𝑎9, 𝑟9, 𝑠*, 𝑎*, 𝑟*, … , 𝑠W sampled from some 
behavior policy 𝜋X. 

• Challenge: unknown 𝑄8∗(𝑠, 𝑎). 
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Offline Reinforcement Learning
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• Reminder: Markov-Decision Process(MDP)
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Q-learning

State:
𝑠Y)* = 𝑃(⋅∣ 𝑠Y, 𝑎Y)

Reward:
𝑟Y)* = 𝑟(𝑠Y, 𝑎Y)
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• Value-based method:
• Evaluate all the states, then find the action leading to the best state.

• Reminder: Value function and Q function:

•𝑉8 𝑠 = 𝐸8[∑Y 𝛾Y𝑟Y ∣ 𝑠]

• We need to know which action leads to the given reward:

•Q8 𝑠, 𝑎 = 𝐸8[∑Y 𝛾Y𝑟Y ∣ 𝑠, 𝑎]
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Q-learning
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Q-function:

Q8 𝑠, 𝑎 = 𝐸8[\
Y

𝛾Y𝑟Y ∣ 𝑠, 𝑎]

• Target: derive the Q function for the optimal policy 𝜋∗, 𝑄∗

• How to solve this system?

• Of course, we can use Monte Carlo’s Method to estimate Q function.
• But it takes Ω(𝑆𝐴Y) sample trajectories. 

• Can we do better?
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Q-learning
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Q-function:

Q8 𝑠, 𝑎 = 𝐸8[\
Y

𝛾Y𝑟Y ∣ 𝑠, 𝑎]

• Notice that Q function should satisfy the successor relationship;
• Bellman's Equation:

• Q∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝐸8∗[𝑉∗ 𝑠G ∣ 𝑠, 𝑎]
• 𝑉∗ 𝑠 = max

F
𝑄∗(𝑠, 𝑎)

• Then we can solve it with polynomial samples!
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Q-learning: Tabular learning
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• First, initialize 𝑄 ⋅ = 0;
• Then we do iterative DP:

• Until convergency, do:
• For 𝑠, 𝑎 ∈ 𝑆×𝐴: 

• Update Q: 𝑄 𝑠, 𝑎 ← *
`a,b

∑TcdT,FcdF 𝑟e + 𝛾𝑉 𝑠e)*
• For 𝑠 ∈ 𝑆:

• Update V: 𝑉 𝑠 ← max
F

𝑄(𝑠, 𝑎)
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Q-learning: Tabular learning
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• When we combine Deep Learning with Q-learning, we get DQN.
• Reminder: function approximation

• Structure/function class: MLP, CNN, Transformer, etc.
• Solve the Bellman's Equation with gradient descent!

• Q∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝐸8∗[𝑉∗ 𝑠G ∣ 𝑠, 𝑎]
• 𝑉∗ 𝑠 = max

F
𝑄∗(𝑠, 𝑎)

• Loss function:

18

Deep Q Network (DQN)
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• Loss function:

• Estimated loss:

• Other tricks:
1. Double network trick for stronger stability;
2. Replay buffer for higher sample efficiency.
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Deep Q Network (DQN)
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• Evaluate network: trained network 𝜃
• Updated in each iteration
• The first Q is the evaluate network

• Target network: temporal copy of evaluate network 𝜃′
• Updated at regular intervals
• The second Q is fixed to be target network

• Avoid overfitting problem;
• Don’t need to solve a max problem in each iteration;
• Stabilize the training process.
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DQN: double network structure
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• Problem: batch size is very small compared with the dataset
• Each batch may only contain the transitions from a single trajectory
• Not mutually independent!

• Notice that we only need transitions {𝑠e, 𝑎e, 𝑟e, 𝑠e′} ,instead of complete 
trajectories.

• Solution: In each iteration, we randomly sample data from the replay 
buffer to form the training batch.

• The replay buffer can be the offline dataset, or the data collected with 
latest policy, which gives better sample efficiency.
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DQN: experience replay
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• Sometimes we don't want to estimate the Value function!
• Value function approximation can be extremely tricky;

• Empirical experiments tell us simpler algorithm leads to better performance;
• We need to solve an argmax/max problem for each update, which can be very 

expensive.

• Policy-Gradient(PG) directly optimize the policy!
• Directly approximate 𝜋∗(⋅) with DNN.

• Now we use 𝜋N to denote the policy learnt.

22

Policy-Gradient
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• Denote the probability of getting a certain trajectory 𝜏 as 𝑃 𝜏, 𝜃 , 
and the corresponding reward as 𝑅(𝜏).

𝑃 𝜏, 𝜃 = ∏Y 𝜋N 𝑎Y 𝑠Y
𝑅 𝜏 = ∑Y 𝛾Y𝑟Y

• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑Y 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Gradient ascent: 𝜃 ← 𝜃 + 𝜂∇N𝐽(𝜃)

• Great so far!

• The problem lies in the estimation of ∇N𝐽(𝜃).
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Policy-Gradient
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• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑Y 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Gradient ascent: 𝜃 ← 𝜃 + 𝜂∇N𝐽(𝜃)
• Directly calculation of the gradient of empirical reward gives:

𝐽 𝜃 ≈ *
`
∑ed*` 𝑅 𝜏e ,

∇N𝐽 𝜃 ≈ ∇N[
*
`
∑ed*` 𝑅 𝜏e ]?

• Remember	that	𝑅 𝜏 doesn’t	depend	on	𝜃 directly:
• 𝑃 𝜏, 𝜃 = ∏Y 𝜋N 𝑎Y 𝑠Y
• 𝑅 𝜏 = ∑Y 𝛾Y𝑟Y
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Policy-Gradient
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• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑} 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Directly calculation of the gradient of empirical reward gives:

𝐽 𝜃 ≈
1
𝑁
\
ed*

`

𝑅 𝜏e ,

∇N𝐽 𝜃 ≈ ∇N[
1
𝑁
\
ed*

`

𝑅 𝜏e ]

• Problem: We are not calculating the exact reward with probability, 
but with sampling!

• Therefore, we cannot backpropagate the gradient to DNN;
• (Sad news, can’t leave differential to loss.backword() this time)
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Policy-Gradient



University of Washington

• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑Y 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Good! The gradient can be also understood as an expectation!
• Therefore, the empirical update function is:
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Policy-Gradient
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• Language modeling: autoregressive conditional sequence modeling
• Predict next token (≈word) with some probability

𝑃(“you”| “How”, “ ”, “are”, “ ” )
• Autoregressive: sample, and predict next

𝑃(“? ”| “How”, “ ”, “are”, “ ”, “you” )
• Just like policy in RL!

𝜋(𝑎'|𝑠*, 𝑎*, 𝑟*, … , 𝑠')
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Decision Transformers

Decision making Architecture in 
language modeling
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• Offline dataset:
• Consider deterministic reward, finite horizon 𝑯, and discount 𝜸 = 𝟏

𝐷 = 𝜏e = (𝑠9e , 𝑎9e , 𝑟9e; 𝑠*e , 𝑎*e , 𝑟*e;⋯ ; 𝑠�e , 𝑎�e , 𝑟�e ) ed*
`

• Decision Transformers:
• Return-to-go: �𝑅' = ∑Yd'� 𝑟Y

𝐷 = 𝜏e = ( �𝑅9e , 𝑠9e , 𝑎9e ; �𝑅*e , 𝑠*e , 𝑎*e ;⋯ ; �𝑅�e , 𝑠�e , 𝑎�e ) ed*
`

33

Decision Transformers for Offline RL[🔗]

https://arxiv.org/abs/2106.01345
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• Decision Transformers:
• Return-to-go (RTG): �𝑅' = ∑Yd'� 𝑟Y

𝐷 = 𝜏e = ( �𝑅9e , 𝑠9e , 𝑎9e ; �𝑅*e , 𝑠*e , 𝑎*e ;⋯ ; �𝑅�e , 𝑠�e , 𝑎�e ) ed*
`
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Decision Transformers for Offline RL
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• Decision Transformers:
• Return-to-go (RTG): �𝑅' = ∑Yd'� 𝑟Y

𝐷 = 𝜏e = ( �𝑅9e , 𝑠9e , 𝑎9e ; �𝑅*e , 𝑠*e , 𝑎*e ;⋯ ; �𝑅�e , 𝑠�e , 𝑎�e ) ed*
`
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Decision Transformers for Offline RL
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• Minibatch of sequence with length 𝐾
• Context length 𝐾: use previous 𝐾 steps to predict next action
• Slice 𝜏e into 𝜏[���{���)*,*}:�]

e for 𝑗 = 1,2, … ,𝐻
𝜏[�:�]
e = �𝑅�e, 𝑠�e, 𝑎�e; … ; �𝑅�e , 𝑠�e , 𝑎�e

�̌�[�:�]
e = �𝑅�e, 𝑠�e, 𝑎�e; … ; �𝑅�e , 𝑠�e
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Training
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• Loss function
• Cross-entropy loss for discrete action space

ℒ���� �¡¢ =\
ed*

`

\
�d*

�

− log 𝜋 𝑎�e �̌�[��� ���)*,* :�]
e )

• 𝑳𝟐 loss for continuous action space

ℒ���� �¡¢ =\
ed*

`

\
�d*

�

𝔼F~8 ⋅ ¥} ¦§¨ ©ª«¬, :©
c ) 𝑎�

e − 𝑎
V
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Training
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• Set an initial RTG (large enough)
• Run the DT and subtract the current return-to-go with the observed 

reward
• Crop the sequence to length 𝐾

39

Evaluation
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• Possible to outperform the best trajectory in dataset
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Results
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• CQL: conservative Q-learning
• BEAR: off-policy Q-learning
• BRAC-v: behavior regularized offline RL
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Results

• AWR: advantage-weighted regression
• BC: behavior cloning
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• Use a pretrained language model (GPT2) as initialization
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Pretraining DTs on Language Tasks[🔗]

https://arxiv.org/abs/2310.20587
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• Use MLP for embedding

• 𝑋~𝒩(𝜇 = 0, 𝜎V = 1)
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Pretraining DTs on Language Tasks
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• Parameter Efficient Finetuning (PEFT): Low-rank Adaptation (LoRA)
• High efficiency
• Avoid overfitting in full finetuning
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Pretraining DTs on Language Tasks
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• Language prediction as an auxiliary objective
• WikiText dataset
• ℒ²�¢³´�³� = ∑e − log 𝑇(𝑤e)*|𝑤*,… ,𝑤e)

ℒ = ℒ���� �¡¢ + 𝜆ℒ²�¢³´�³�
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Pretraining DTs on Language Tasks
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