
Attention Mechanism

Machine Translation

• Before	2014:	Statistical	Machine		Translation	(SMT)	
• Extremely	complex	systems	that	require	massive	human	efforts	
• Separately	designed	components	
• A	lot	of	feature	engineering	
• Lots	of	linguistic	domain	knowledge	and	expertise	

• Before	2016:	
• Google	Translate	is	based	on	statistical	machine	learning	

• What	happened	in	2014?	
• Neural	machine	translation	(NMT)

Sequence to Sequence Model

• Neural	Machine	Translation	(NMT)	
• Learning	to	translate	via	a	single	end-to-end	neural	network.	
• Source	language	sentence	 ,	target	language	sentence	 	

• Sequence	to	Sequence	Model	(Seq2Seq,	Sutskever	et	al.	,	‘14)	
• Two	RNNs:	 	and	 	
• Encoder	 :	

• Takes	 	as	input,	and	output	the	initial	hidden	state	for	decoder	
• Can	use	bidirectional	RNN	

• Decoder	 :	
• It	takes	in	the	hidden	state	from	 	to	generate	 	
• Can	use	autoregressive	language	model

X Y = f(X; θ)

fenc fdec
fenc
X

fdec
fenc Y

Sequence to Sequence Model

Training Sequence to Sequence Model

• Collect	a	huge	paired	dataset	and	train	it	end-to-end	via	BPTT	
• Loss	induced	by	MLE	P(Y |X) = P(Y | fenc(X))

Deep Sequence to Sequence Model

• Stacked	seq2seq	model

Machine Translation

• 2016:	Google	switched	Google	Translate	from	SMT	to	NMT

Alignment

• Alignment:	the	word-level	correspondence	between	X	and	Y	
• Can	have	complex	long-term	dependencies

Issue in Seq2Seq

• Alignment:	the	word-level	correspondence	between	X	and	Y	
• The	information	bottleneck	due	to	the	hidden	state	 	
• We	want	each	 	to	also	focus	on	some	 	that	it	is	aligned	with

h
Yt Xi

I

Seq2Seq with Attention

• NMT	by	jointly	learning	to	align	and	translate	(Bahdanau,	Cho,	Bengio,	’15)	
• Core	idea:	

• When	decoding	 ,	consider	both	hidden	states	and	alignment:	
• Hidden	state:	 	
• Alignment:	connect	to	a	portion	of	 	

• When	portion	of	 	to	focus	on?	
• Learn	a	softmax	weight	over	 :	attention	distribution	 	
• :	how	much	attention	to	put	on	word	 	

• Attention	output	 	

• Use	 	and	 	to	compute	

Yt
ht = fdec(Yi<t)

X
X

X Patt
Patt(Xi |ht) Xi

hatt = ∑
i

fenc(Xi |Xj<i) ⋅ Patt(Xi |ht−1)

ht−1 hatt Yt

Xt Ye

Ye I Y

I

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

O
S Si 53 54

É l
I

Seq2Seq with Attention

hat ITPatt Xi ho a tiH T T 54

Xi K 3 44

ho

Seq2Seq with Attention

Iii any
attention than f Cho hat

yho

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Summary	
• Input	sequence	 ,	encoder	 ,	and	decoder	 	
• 	produces	hidden	states	 	
• On	time	step	 ,	we	have	decoder	hidden	state	 	
• Compute	attention	score	 	
• Compute	attention	distribution	 	

• Attention	output:	 	

• 	
• Sample	an	output	using	both	 	and	

X fenc fdec
fenc(X) henc

1 , henc
2 , …, henc

N
t ht

ei = h⊤
t henc

i
αi = Patt(Xi) = so_max(ei)

henc
att = ∑

i
αihenc

i

Yt ∼ g(ht, henc
att ; θ)

ht henc
att

FE

Attention

• It	significantly	improves	NMT.	
• It	solves	the	bottleneck	problem	and	the	long-term	dependency	issue.	
• Also	helps	gradient	vanishing	problem.	
• Provides	some	interpretability	

• Understanding	which	word	the	RNN	encoder	focuses	on		

• Attention	is	a	general	technique	
• Given	a	set	of	vector	values	 	and	vector	query	 	
• Attention	computes	a	weighted	sum	of	values	depending	on	 	

Other	use	cases:	
• Attention	can	be	viewed	as	a	module.	
• In	encoder	and	decoder	(more	on	this	later)	
• A	representation	of	a	set	of	points	

• Pointer	network	(Vinyals,	Forunato,	Jaitly	’15)		
• Deep	Sets	(Zaheer	et	al.,	’17)	

• Convolutional	neural	networks	
• To	include	non-local	information	in	CNN	(Non-local	network,	’18)

Vi q
q

o

Attention

• Representation	learning:	
• A	method	to	obtain	a	fixed	representation	corresponding	to	a	query	 	from	
an	arbitrary	set	of	representations	 	

• Attention	distribution:	 	

• Attention	output:	 	

• Attent	variant:	 	
• Multiplicative	attention:	 ,	 	is	a	weight	matrix	
• Additive	attention:	

q
{Vi}

αi = so_max(f(vi, q))
vatt = ∑

i
αivi

f(vi, q)
f(vi, q) = q⊤Whi W

f(vi, q) = u⊤tanh(W1vi + W2q)

Key-query-value attention

• Obtain	 	from	 	
• ;	 ;	 	(position	encoding	omitted)	

• 	are	learnable	weight	matrices	

• 	

• Intuition:	key,	query,	and	value	can	focus	on	different	parts	of	input

qt, vt, kt Xt
qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = so_max(q⊤
i kj); outi = ∑

k
αi, jvj

ki ku 1043 84,44

ERE
hyp softmaxGtri

Attention is all you need (Vsawani ’17)

• A	pure	attention-based	architecture	for	sequence	modeling	
• No	RNN	at	all!	

• Basic	component:	self-attention,	 	
• 	uses	attention	on	entire	 	sequence	
• 	computed	from	 	and	the	attention	output	

• Computing	 	
• Key	 ,	value	 ,	query	 	from	 	

• 	
• Attention	distribution	 	

• Attention	output	 	

• 	

Y = fSA(X; θ)
Xt X
Yt Xt

Yt
kt vt qt Xt
(kt, vt, qt) = g1(Xt; θ)

αt, j = so_max(q⊤
t kj)

outt = ∑
j

αt, jvj

Yt = g2(outt; θ)

Issues of Vanilla Self-Attention

• Attention	is	order-invariant	

• Lack	of	non-linearities	
• All	the	weights	are	simple	weighted	average	

• Capability	of	autoregressive	modeling	
• In	generation	tasks,	the	model	cannot	“look	at	the	future”	
• e.g.	Text	generation:	

• 	can	only	depend	on	 	
• But	vanilla	self-attention	requires	the	entire	sequence

Yt Xi<t

Position Encoding

• Vanilla	self-attention	
• 	
• 	

• Attention	output	 	

• Idea:	position	encoding:	
• :	an	embedding	vector	(feature)	of	position	 	
• 	

• In	practice:	Additive	is	sufficient:	 ;	
	

• 	is	only	included	in	the	first	layer

(kt, vt, qt) = g1(Xt; θ)
αt, j = so_max(q⊤

t kj)
outt = ∑

j
αt, jvj

pi i
(kt, vt, qt) = g1([Xt, pt]; θ)

kt ← k̃t + pt, qt ← q̃t + pt, vt ← ṽt + pt
(k̃t, ṽt, q̃t) = g1(Xt; θ)

pt

4 5

Position Encoding

	design	1:	Sinusoidal	position	representation	
• Pros:		

• simple	
• naturally	models	“relative	position”	
• Easily	applied	to	long	sequences	

• Cons:	
• Not	learnable	
• Generalization	poorly	to	sequences	longer	than	training	data

pt

7 l to

I

Position Encoding

	design	2:	Learned	representation	
• Assume	maximum	length	 ,	learn	a	matrix	 ,	 	is	a	column	of	 	
• Pros:		

• Flexible	
• Learnable	and	more	powerful	

• Cons:	
• Need	to	assume	a	fixed	maximum	length	 	
• Does	not	work	at	all	for	length	above	 	

pt
L p ∈ ℝd×T pt p

L
L

Combine Self-Attention with Nonlinearity

• Vanilla	self-attention	
• No	element-wise	activation	(e.g.,	ReLU,	tanh)	
• Only	weighted	average	and	softmax	operator	

• Fix:	
• Add	an	MLP	to	process	 	
• 	
• Usually	do	not	put	activation	layer	before	softmaax	

outi
mi = MLP(outi) = W2ReLU(W1outi + b1) + b2

Masked Attention

• In	language	model	decoder:	 	
• 		cannot	look	at	future	 	

• Masked	attention	
• Compute	 	as	usuall	
• Mask	out	 	by	setting	 	

• 	
• 	is	a	fixed	0/1	mask	matrix	

• Then	compute	 	
• Remarks:	

• 	for	full	self-attention	
• Set	 	for	arbitrary	dependency	ordering	

P(Yt |Xi<t)
outt Xi>t

ei, j = q⊤
i kj

ei>j ei>j = − ∞
e ⊙ (1 − M) ← − ∞
M

αi = so_max(ei)

M = 1
M

e

Transformer

Transformer-based	sequence-to-sequence	modeling	

Key-query-value attention

• Obtain	 	from	 	
• ;	 ;	 	(position	encoding	omitted)	

• 	are	learnable	weight	matrices	

• 	

• Intuition:	key,	query,	and	value	can	focus	on	different	parts	of	input

qt, vt, kt Xt
qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = so_max(q⊤
i kj); outi = ∑

k
αi, jvj

Multi-headed attention

• Standard	attention:	single-headed	attention	
• ,	 	
• We	only	look	at	a	single	position	 	with	
high	 	

• What	if	we	want	to		look	at	different	 	for	
different	reasons?	

• Idea:	define	 	separate	attention	heads	
• 	different	attention	distributions,	keys,	
values,	and	queries	

• 	for	 	

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = so_max((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jvℓ

j

xef south
Suit foot coati route

Multi-headed attention

• Standard	attention:	single-headed	attention	
• ,	 	
• We	only	look	at	a	single	position	 	with	
high	 	

• What	if	we	want	to		look	at	different	 	for	
different	reasons?	

• Idea:	define	 	separate	attention	heads	
• 	different	attention	distributions,	keys,	
values,	and	queries	

• 	for	 	

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = so_max((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jvℓ

j

Transformer

Transformer-based	sequence-to-sequence	modeling	

• Basic	building	blocks:	self-attention	
• Position	encoding	
• Post-processing	MLP	
• Attention	mask	

• Enhancements:	
• Key-query-value	attention	
• Multi-headed	attention	
• Architecture	modifications:	

• Residual	connection	
• Layer	normalization	

I

I

Transformer

Machine	translation	with	transformer	

Transformer

• Limitations	of	transformer:	Quadratic	computation	cost	
• Linear	for	RNNs	
• Large	cost	for	large	sequence	length,	e.g.,	 	

• Follow-ups:	
• Large-scale	training:	transformer-XL;	XL-net	(‘20)	
• Projection	tricks	to	 :	Linformer	('20)	
• Math	tricks	to	 :	Performer	(‘20)	
• Sparse	interactions:	Big	Bird	(‘20)	
• Deeper	transformers:	DeepNet	(’22)	

L > 104

O(L)
O(L)

Transformer for Images

• Vision	Transformer	(’21)	
• Decompose	an	image	to	16x16	patches	and	then	apply	transformer	encoder	

Transformer for Images

• Swin	Transformer	(’21)	
• Build	hierachical	feature	maps	at	different	resolution	

• Self-attention	only	within	each	block	
• Shifted	block	partitions	to	encode	information	between	blocks	

CNN vs. RNN vs. Attention

Summary

• Language	model	&	sequence	to	sequence	model:	
• Fundamental	ideas	and	methods	for	sequence	modeling	

• Attention	mechanism	
• So	far	the	most	successful	idea	for	sequence	data	in	deep	learning	
• A	scale/order-invariant	representation	
• Transformer:	a	fully	attention-based	architecture	for	sequence	data	
• Transformer	+	Pretraining:	the	core	idea	in	today’s	NLP	tasks	

• LSTM	is	still	useful	in	lightweight	scenarios	

Other architectures

Graph Neural Networks

Graph Neural Networks

2 72 a CN

I A

P E Apt

Geometric Deep Learning

FA t me

Representation Learning
Pre-training

Example in image representation

Example in image representation

Example in image representation

Examples

Representation learning

• A	function	that	maps	the	raw	input	to	a	compact	representation	(feature	vector).	
Learn	an	embedding	/	feature	/	representation	from	labeled/unlabeled	data.	

• Supervised:	
• Multi-task	learning	
• Meta-learning	
• Multi-modal	learning	
• …	

• Unsupervised:	
• PCA	
• ICA	
• Dictionary	learning	
• Sparse	coding	
• Boltzmann	machine	
• Autoencoder	
• Contrastive	learning	
• Self-supervised	learning	
• …	

Desiderata for representations

Many	possible	answers	here.	
• Downstream	usability:	the	learned	features	are	“useful”	for	downstream	tasks:	

• Example:	a	linear	(or	simple)	classifier	applied	on	the	learned	features	only	
requires	a	small	number	of	labeled	samples.	A	classifier	on	raw	inputs	
requires	a	large	mount	of	data.	

• Interpretability:	the	learned	features	are	semantically	meaningful,	interpretable	
by	a	human,	can	be	easily	evaluated.	
• Not	well-defined	mathematically.	
• Sparsity	is	an	important	subcase.

Desiderata for representations

From	Bengio,	Courville,	Vincent	’14:	
• Hierarchy	/	compositionality:	video/image/text	are	expected	to	have	hierarchial	
structure:	need	deep	learning.	

• Semantic	clusterability:	features	of	the	same	“semantic	class”	(e.g.	images	in	the	
same	class)	are	clustered	together.	

• Linear	interpolation:	in	the	representation	space,	linear	interpolations	produce	
meaningful	data	points	(latent	space	is	convex).	Also	called	manifold	flattening.	

• Disentanglement:	features	capture	“independent	factors	of	variation”	of	data.	A	
popular	principle	in	modern	unsupervised	learning.

Semantic clustering

Semantic	clusterability:	features	of	the	same	“semantic	class”	(e.g.	images	in	the	
same	class)	are	clustered	together.

Intuition:	If	semantic	classes	are	
linearly	separable,	and	labels	on	
downstreams	tasks	depend	
linearly	on	semantic	classes:	we	
only	need	to	learn	a	simple	
classifer.

t-SNE	projection	(a	data	visualization	method)	of	VAE-learned	
features	of	10	MNIST	classes.

Linear interpolation

Linear	interpolation:	in	the	representation	space,	linear	interpolations	produce	
meaningful	data	points	(latent	space	is	convex).	

Intuition:		the	data	lies	on	a	
manifold	which	is	complicated/
curved.	

The	latent	variable	manifold	is	a	
convex	set:	moving	in	straight	
lies	is	still	on	it.

Interpolations	for	a	VAE	trained	feature	on	MNIST.

Linear interpolation

Linear	interpolation:	in	the	representation	space,	linear	interpolations	produce	
meaningful	data	points	(latent	space	is	convex).	

Interpolations	for	a	BigGAN	image.

Disentanglement

Disentanglement:	features	capture	“independent	factors	of	variation”	of	data	
(Bengio,	Courville,	Vincent	’14).		
• Very	popular	in	modern	unsupervised	learning.	
• Strong	connections	with	generative	models:	 .pθ(z) = Πi pθ(zi)

