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Machine Translation

e Before 2014: Statistical Machine Translation (SMT)
e Extremely complex systems that require massive human efforts
e Separately designed components
e A |ot of feature engineering
e Lots of linguistic domain knowledge and expertise

e Before 2016:
e Google Translate is based on statistical machine learning

e What happened in 2014?
e Neural machine translation (NMT)



Sequence to Sequence Model

e Neural Machine Translation (NMT)
e Learning to translate via a single end-to-end neural network.

e Source language sentence X, target language sentence Y = f(X; 0)

e Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)
e Two RNNs: f,, .and f,,.

e Encoderj,, .

e Takes X as input, and output the initial hidden state for decoder

e Can use bidirectional RNN
e Decoder f,,.:
e It takes in the hidden state from f,, . to generate Y

e Can use autoregressive language model



Sequence to Sequence Model

The sequence-to-sequence model
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source sentence.




Training Sequence to Sequence Model

e Collect a huge paired dataset and train it end-to-end via BPTT
e Loss induced by MLE P(Y | X) = P(Y | f,,.(X))
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Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.




Deep Sequence to Sequence Model

e Stacked seqg2seq model

Translation
generated
Encoder:
Builds up } Decoder
sentence
meaning
Source Feeding in
last word

sentence



Machine Translation

e 2016: Google switched Google Translate from SMT to NMT
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Alighment

e Alignment: the word-level correspondence between X and Y
e Can have complex long-term dependencies
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Issue in Seq2Seq

e Alignment: the word-level correspondence between X and Y
e The information bottleneck due to the hidden state &
e We want each Y, to also focus on some X; that it is alighed with

Encoding of the
source sentence.

This needs to capture all Target sentence (output)
information about the e A N\
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Seq2Seq with Attention
Xe o Nt

e NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, '15)
e Coreidea:

e When decoding Y,, consider both hidden states and alighment:

e Hidden state: h, = f,,.(Y,.,)
e Alignment: connect to a portion of X = ﬁ
e When portion of X to focus on? \('(' <

e Learn a softmax weight over X: attention distribution P, . ?

e P, (X;|h): hqw much attention to put on word X;

th@ | Xici) - PooX; | 1)

e~ .

l
e Use i,_; and i, to compute ¥,




Seq2Seq with Attention
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Seq2Seq with Attention

Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention

Attention
distribution

Attention

Encoder
RNN

scores

On this decoder timestep, we’re
mostly focusing on the first
encoder hidden state (“he”)

Take softmax to turn the scores
into a probability distribution
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Seq2Seq with Attention

Attention Use the attention distribution to take a
output weighted sum of the encoder hidden

states.

Attention
distribution

The attention output mostly contains
information from the hidden states that
received high attention.
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention

me

Attention

Decoder RNN
—M

A

output

I\

i

uollnguasIp
uolURNY

flJ\Ik

SoJ402S
Uo1UBNY

0000

0000

N

0000

A

N

~
Cdd

A

N

0000 |<—

fll(ll\

NNY
1apoou]

hit

<START> he

entarté

ml

il

Y

Source sentence (input)




Seq2Seq with Attention
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Seq2Seq with Attention

pie

Attention

Decoder RNN
—M

N

Yo

~
—

0000

N

0000

0000

0000

0000

0000

e

flJ\I\

uoIlNqlIASIpP
uoIuUINY

v
T

<~

rII<II\

S2J02S
UOIIUSNY

e

fIIJﬂIIk

NNY
1apooug]

me with

hit

<START> he

entarté

ml

il

Y

Source sentence (input)




Seq2Seq with Attention

Summary
e Input sequence X, encoder f,, ., and decoder f,,.
i dmm ctotac J,enc M’n‘c

* fonc(X) produces hidden states h;", h3", ..., hy
*-On time step 7, we have decoder hidden state /,
e Compute attention score ¢; = h,' h*"*
e Compute attention distribution a; = P, (X;) = softmax(e;)

: . — —_ —_————
, Attention output: ;" = Z o;h "

’_\’\i/_____
* Y, ~ g(hy, hyys 0)
e Sample an output using both A, and &} ¢




Attention

* It significantly improves NMT.
e |t solves the bottleneck problem and the long-term dependency issue.

e Also helps gradient vanishing problem. 2 g g
e Provides some interpretability !

e Understanding which word the RNN encoder focuses on 2

.
e Attention is a general technique entarte :.!-

e Given a set of vector values V; and vector query g
e Attention computes a weighted sum of values depending on ¢

with
a
pie

Other use cases:

e Attention can be viewed as a module.

* |n encoder and decoder (more on this later)

e A representation of a set of points
e Pointer ngtwork (Vinyals, Forunato, Jaitly "15)
e DeepSeis (Zaheer et al., ’17)

e Convolutional neural networks

e To include non-local information in CNN (Non-local network, “18)



Attention

e Representation learning:
e A methaod to obtain a fixed representation corresponding to a query g from
— . . \"—M—-\/'\,\,
an arbitrary set of representations { V,}

m
e Attention distribution: a; = softmax(f(v;, g))

, Attention output: v, = 2 a;V;

e Attent variant: f(v;, q)
e Multiplicative attention: f(v;, q) = q' Wh;, W is a weight matrix
e Additive attention: f(v;, q) = uTtanh(lel- + W,q)



v
Key-query-value attention % % & e, by

SNORPAD

* Obtain g, v, k, from X, < Xu X3 K
* 4 = W X v, = W"Xt, k, = WX (position encoding omitted)

e WY, w” mrm@ht matrices (7«‘[' g 9 5“7(“"'”’\’%5‘ Yz()
s i = softmax(ql k;); out; = Z a; Vi

e, e /\’_ . .
e |ntuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

XQ = XQKTXT
KT XT E IRTXT

P

softmax| xQKTXT | xy =
output € RT*4



Attention is all you need (Vsawani ’17)

e A pure attention-based architecture for sequence modeling

* No RNN at all!
e Basic component: self-attention, ¥ = f¢,(X; 0)
N -
* X, uses attention OQEW
e Y. computed from X, and the attention output
. T —~———
e Computing Y,
e Key k,, value v, query g, from X,
o (ki Vs @) = 21(X;;0)

e Attention distribution ay ;= softmax(thkj)
. Attention output out, = Z Q iV
J

e Y. = g,(out;0)
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Issues of Vanilla Self-Attention

e Attention is order-invariant
e - —

e Lack of non-linearities
e All the weights are simple weighted average

e Capability of autoregressive modeling
e |n generation tasks, the model cannot “look at the future’

e e.g. Text generation:

e Y, can only depend on X, _,
e But vanilla self-attention requires the entire sequence

)



Position Encoding

¢ Vanilla self-attention

o (kv q,) = 81(X;;0)
o ;= softmax(thkj)

. Attention output out, = Z Q iV

J
e |dea: position encoding:

e p:: an embedding vector (feature) of position i
° (kt’ Vt’ QI) — gl([prt]; 9) l),‘_ - ".\-

e In practice: Additive is sufficient: k, < l}t +p.q, < q,+p, v, <V, + p,;
(kp ‘7;7 th) — gl(Xp 9)

e p,is only included in the first layer



Position Encoding 1,02l :

p, design 1: Sinusoidal position representation
® Pros:

e simple

e naturally models “relative position”

e Easily applied to long sequences
e Cons:

e Not learnable

e Generalization poorly to sequences longer than training data

Y «

Position

Heatmap of plij

en y ¢
P (i 2¢1/dy ) Eire F =} s f3 ;
sin(i/10000%*1/%) : Ty
cos(i/100002*/4) S E
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. p £
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sin(i/lOOOOz*%/d)
. 2*—/d
\ \COS(l/lOOOO 2 )/ } Index in the sequence
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Position Encoding

p, design 2: Learned representation

e Assume maximum length L, learn a matrix p € IRJ“XT, p;is acolumn of p
® Pros:

e Flexible

e Learnable and more powerful
e Cons:

e Need to assume a fixed maximum length L]

e Does not work at all for length above L



Combine Self-Attention with Nonlinearity

e Vanilla self-attention
e No element-wise activation (e.g., ReLU, tanh)
e Only weighted average and softmax operator

e Fix:
e Add an MLP to process out;
— —\
o m; = MLP(out;) = W,ReLU(W,out; + b,) + b,

e Usually do notput activation layer before softmaax
L R B
!

FF FF FF
! ! !

self-attention

I S

FF FF FF FF
1 ! , r
self-attention
. . . LN .
Wy Wy W3 WT

The chef who food



Masked Attention

* In language model decoder: P(Ythiq)
e out, cannot look at future X._,

e Masked attention
» Computee; ; = qiTkj as usuall
e Mask out e;, ; by setting ¢;,; = — o0
Ol -M)« —
e M is a fixed 0/1 mask matrix

e Then compute a; = softmax(e;)
e Remarks:

e M = 1 for full self-attention
e Set M for arbitrary dependency ordering

raw attention weights mask

Yy Yys  Ys U:  YUs  Yg




Transformer

Transformer-based sequence-to-sequence modeling

[predictions!]

— )
Decoder

t

[ )

[ )

[ )

%

[decoder attends t
to encoder states] °

¢
Transformer
Decoder

-

[input sequence] [output sequence]




Key-query-value attention

e Obtain g,, v,, k, from X,
e g, = WiX;v, = WX, k, = W*X, (position encoding omitted)
o W9, WY, WX are learnable weight matrices

_ T7,\. _
o Ui = softmax(ql. kj), out; = 2 a; iv;
k

e Intuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

XQ = XQKTXT
KT XT E IRTXT

P

softmax| xQKTXT | xy =
output € R7*4



Multi-headed attention

e Standard attention: single-headed attention
e X. € R% Q,K, Ve R
e We only look at a single position j with
high o; ;
e What if we want to look at different j for
different reasons?
 |dea: define /& separate attention heads

e /1 different attention distributions, keys,
values, and queries

e O K/, VO e R™ifor1 <€ < h
a”ﬂ = soﬂmax((q"ﬂ)kaﬂ) OWK ZO‘:] Vi

' 249y, f
e \<3 [?wt? . ﬁwﬂgé;\:{
Aty (ool

#Params Unchanged!

Single-head attention
(just the query matrix)

X XQ
Q:

Multi-head attention

(just two heads here)

X XQ; X0,
1@z =

W, O‘ft&h)




Multi-headed attention

e Standard attention: single-headed attention
e X. € R% Q,K, Ve R
e We only look at a single position j with
high o; ;
e What if we want to look at different j for
different reasons?
 |dea: define /& separate attention heads

e /1 different attention distributions, keys,
values, and queries

e OV, K, Vl € R for 1 <?¢<h

J

£ INTLEN it — 217
, @ = softmax((q; ) 'k ); out; = Z @i Vi
J

Utterance Level Representation

W 2

Attention 3
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Transformer

Output

Transformer-based sequence-to-sequence model Probabilties
e Basic building blocks: self-attention
. . . f rm \
* Position encoding D
e Post-processing MLP ) —
. 4 1 ~\ Add & Norm
e Attention mask j (7 (Ko Mut-Head
Feed Attention
Forward T 7 Nx
e Enhancements: w | — AGTE Nom
. gl | R Masked
e Key-query-value attention Mt Mutti-Head
Attention Attention
. . A ’
e Multi-headed attention == ==
e Architecture modifications: posiiona @.@; &) Posttonal
. . 1 Encoding
e Residual connection :) input Outout
) i Embedding Embedding
e Layer normalization D f [
Inputs Outputs

(shifted right)



Transformer

Machine translation with transformer

BLEU Training Cost (FLOPs)

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3-10" 14-.10%
ConvS2S [9] 25.16  40.46 9.6-10"® 1.5-10%
MoE [32] 26.03  40.56 2.0-101% 1.2.10%0
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 2630  41.16 1.8-10%  1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-1017  1.2-10%
Transformer (base model) 27.3 38.1 3.3.10'%

Transformer (big) 28.4 41.8 2.3.101




Transformer

e Limitations of transformer: Quadratic computation cost
— . ____——

e Linear for RNNs
e Large cost for large sequence length, e.g@; 10*

e Follow-ups:
e Large-scale training: transformer-XL; XL-net (‘20)
* Projection tricks to O(L): Linformer ('20)
e Math tricks to O(L): Performer (‘20)
e Sparse interactions: Big Bird (‘20)
e Deeper transformers: DeepNet ('22)

—J



Transformer for Images

e Vision Transformer ('21)
e Decompose an image to 16x16 patches and then apply transformer encoder

Transformer Encoder

A

Vision Transformer (ViT)
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Norm

Transformer Encoder
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* Extra learnable

[class] embedding Linear Projection of Flattened Patches
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Transformer for Images

e Swin Transformer ('21)

e Build hierachical feature maps at different resolution
e Self-attention only within each block
e Shifted block partitions to encode information between blocks

Layer 1 Layer 1+1

x
-
2%
75
-

A local window to
perform self-attention

S as - L]

e £ _ M :A A patch

segmentation . .
classification  detection ... class{lcatlon
T A
Pacs: P P e
S 2 | 6% T6x
O, T
Vo B T adaa-d
/‘%/%/ S e S P
yr 7~ 4% /7/ // ///716/
Wi S A ey
VoA
(a) Swin Transformer (ours) (b) VIiT

Figure 2. An illustration of the shifted window approach for com-



CNN vs. RNN vs. Attention

Self-Attention

cat sat on the mat

The

Recurrence

cat sat on the mat

The

Convolution

cat sat on the mat
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Summary

e Language model & sequence to sequence model:
e Fundamental ideas and methods for sequence modeling

e Attention mechanism
e So far the most successful idea for sequence data in deep learning
e A scale/order-invariant representation
e Transformer: a_fully attention-based architecture for sequence data
e Transformer -Imm’?ﬂw tasks

e LSTM is still useful in lightweight scenarios




Other architectures




Graph Neural Networks

Adjacency Feature
matrix nxXn matrix nxd

PAPT PX
arbitrary ordering of nodes



Graph Neural Networks
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Geometric Deep Learning
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Representation Learning
Pre-training

W



Example in image representation

Image
Representation
rpdlayer hamaerl  naemerz T Train a neural network (ResNet) on
— ImageNet (1M data, 1000 classes)

é ) ) Cat Representation (feature extractor):

The mapping from image to the
second-to-the-last layer.

input layer niaaen 1ayer 1 hidden layer 2 niagen 1ayg

77

¢

J/

«
X

) Dog Fix the representation, just re-train
the last linear layer.

@)
D
‘\\

\

N\
\

L.
N

New linear
classifier



Example in image representation

input layer hidden layer 1 hidden layer 2 hidden layer 3

output layer

Source tasks o

(for training
representation):

ImageNet
Target task: . V\ilthou: repre;entatlon I(iar?lng:
Few-shot Learning . 5% - 10% (random guess = 5%)
on VOCO7 dataset M* : , ,

. * With representation learning:
(20 classes, 1-8 | P ! ne

e 50% - 80%
examples per class)



Example in image representation

input layer hidden layer 1 hidden layer 2 hidden layer 3

Source tasks
(for training
representation):

output layer

N
N0

ImageNet
Target task: . V\ilthou: repre;entatlon I(iar?lng:
Few-shot Learning . 5% - 10% (random guess = 5%)
on VOCO7 dataset M* : , ,

. * With representation learning:
(20 classes, 1-8 | P ! ne

e 50% - 80%
examples per class)



Examples

Final hidden state:
Sentence representation

Natural h h h
0 1 T
Language — —— e — —
Processing T T
Wo Wt
) node vector
Gra R
Ph — NI
Representation ffu->R N o J
Learning R4
O Feature representation,

embedding



Representation learning

e A function that maps the raw input to a compact representation (feature vector).
Learn an embedding / feature / representation from labeled/unlabeled data.

e Supervised:

e Multi-task learning

e Meta-learning

e Multi-modal learning

o e
e Unsupervised:

e PCA

e ICA

e Dictionary learning

e Sparse coding

e Boltzmann machine

e Autoencoder

e Contrastive learning

e Self-supervised learning



Desiderata for representations

Many possible answers here.
e Downstream usability: the learned features are “useful” for downstream tasks:

e Example: a linear (or simple) classifier applied on the learned features only
requires a small number of labeled samples. A classifier on raw inputs

requires a large mount of data.

¢ Interpretability: the learned features are semantically meaningful, interpretable

by a human, can be easily evaluated.
e Not well-defined mathematically.
e Sparsity is an important subcase.



Desiderata for representations

From Bengio, Courville, Vincent "14:
e Hierarchy / compositionality: video/image/text are expected to have hierarchial

structure: need deep learning.

e Semantic clusterability: features of the same “semantic class” (e.g. images in the
same class) are clustered together.

e Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex). Also called manifold flattening.

e Disentanglement: features capture “independent factors of variation” of data. A
popular principle in modern unsupervised learning.



Semantic clustering

Semantic clusterability: features of the same “semantic class” (e.g. images in the
same class) are clustered together.

Latent Variable T-SNE per Class

75 1
50 -
Intuition: If semantic classes are
linearly separable, and labels on
downstreams tasks depend
linearly on semantic classes: we
only need to learn a simple
classifer.

25

=75 -50 =25 0 25 50 75 100

t-SNE projection (a data visualization method) of VAE-learned
features of 10 MNIST classes.



Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex).

Intuition: the data lieson a
manifold which is complicated/
curved.

2222 ;3333333 The latent variable manifold is a

convex set: moving in straight

lies is still on it.

Interpolations for a VAE trained feature on MNIST.



Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex).

Interpolations for a BigGAN image.



Disentanglement

Disentanglement: features capture “independent factors of variation” of data
(Bengio, Courville, Vincent "14).

e Very popular in modern unsupervised learning.

e Strong connections with generative models: p,(z) = I1.py(z;).

(a) Skln colour (c) Image saturation

Figure 4: Latent factors learnt by 3-VAE on celebA: traversal of individual latents demonstrates
that 3-VAE discovered in an unsupervised manner factors that encode skin colour, transition from an
elderly male to younger female, and image saturation.



