Attention Mechanism

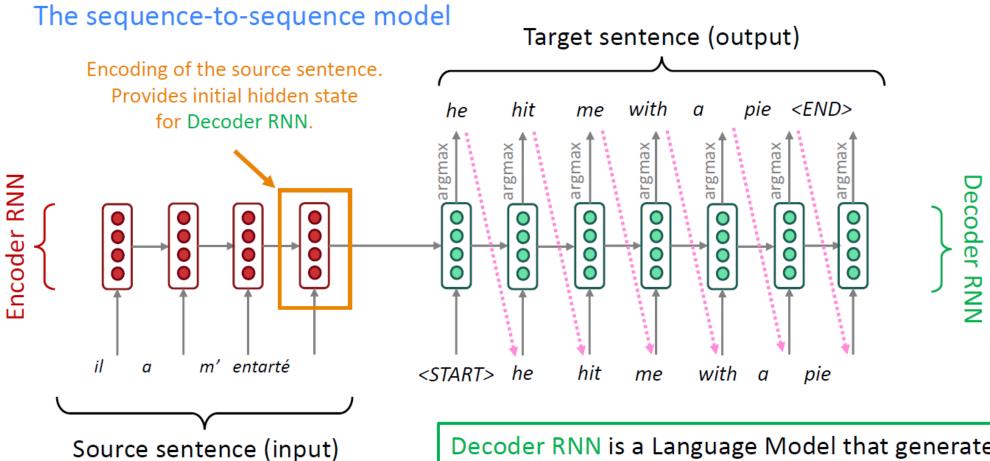
Machine Translation

- Before 2014: Statistical Machine Translation (SMT)
 - Extremely complex systems that require massive human efforts
 - Separately designed components
 - A lot of feature engineering
 - Lots of linguistic domain knowledge and expertise
- Before 2016:
 - Google Translate is based on statistical machine learning
- What happened in 2014?
 - Neural machine translation (NMT)

Sequence to Sequence Model

- Neural Machine Translation (NMT)
 - Learning to translate via a **single end-to-end** neural network.
 - Source language sentence X, target language sentence $Y = f(X; \theta)$
- Sequence to Sequence Model (Seq2Seq, Sutskever et al., '14)
 - ullet Two RNNs: f_{enc} and f_{dec}
 - Encoder f_{enc} :
 - Takes X as input, and output the initial hidden state for decoder
 - Can use bidirectional RNN
 - Decoder f_{dec} :
 - It takes in the hidden state from f_{enc} to generate Y
 - Can use autoregressive language model

Sequence to Sequence Model



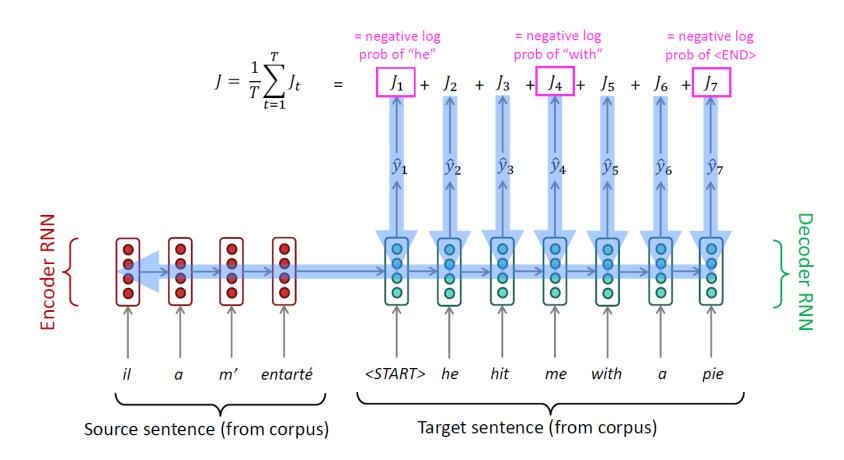
Encoder RNN produces an encoding of the source sentence.

Decoder RNN is a Language Model that generates target sentence, conditioned on encoding.

Note: This diagram shows **test time** behavior: decoder output is fed in **.as.ne**xt step's input

Training Sequence to Sequence Model

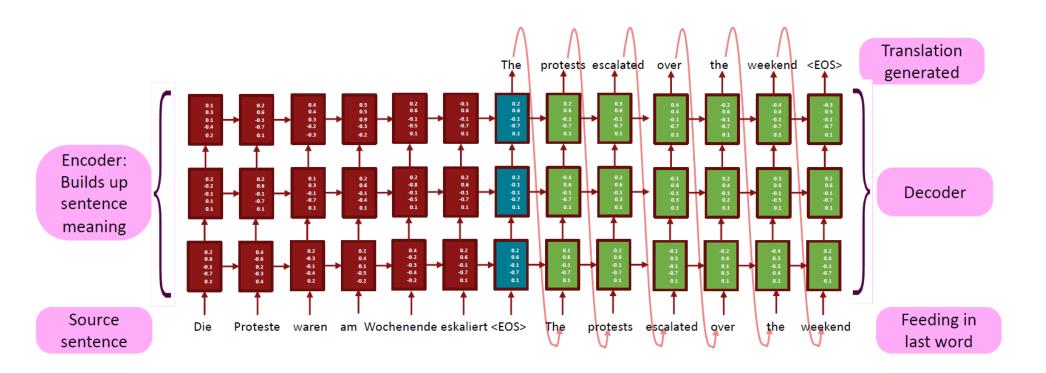
- Collect a huge paired dataset and train it end-to-end via BPTT
- Loss induced by MLE $P(Y|X) = P(Y|f_{enc}(X))$



Seq2seq is optimized as a single system. Backpropagation operates "end-to-end".

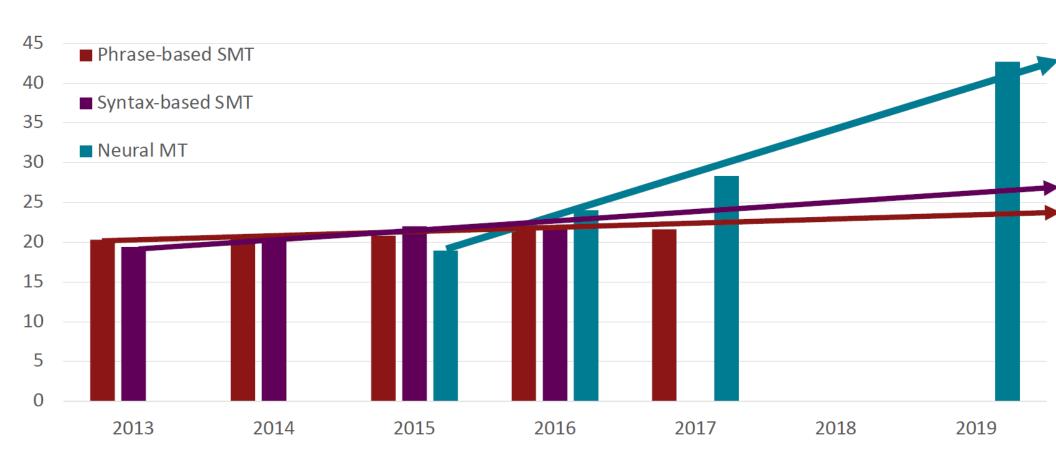
Deep Sequence to Sequence Model

Stacked seq2seq model



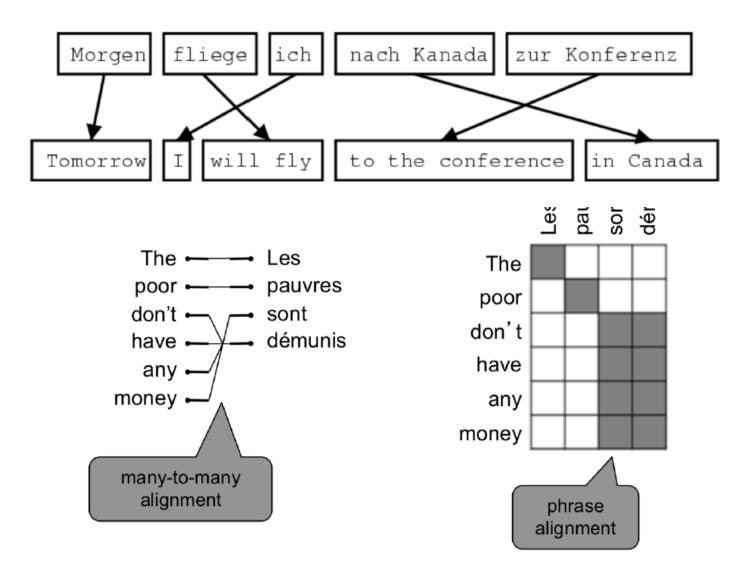
Machine Translation

• 2016: Google switched Google Translate from SMT to NMT



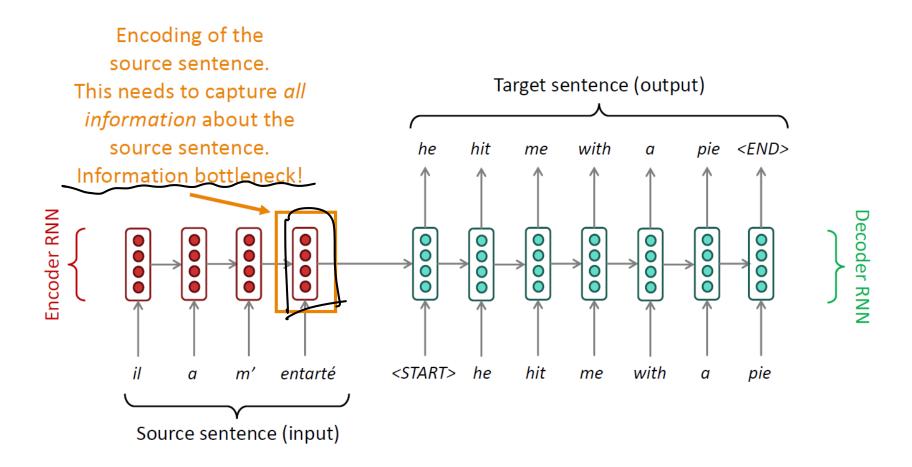
Alignment

- Alignment: the word-level correspondence between X and Y
- Can have complex long-term dependencies



Issue in Seq2Seq

- Alignment: the word-level correspondence between X and Y
 - ullet The information bottleneck due to the hidden state h
 - We want each Y_t to also focus on some X_i that it is aligned with

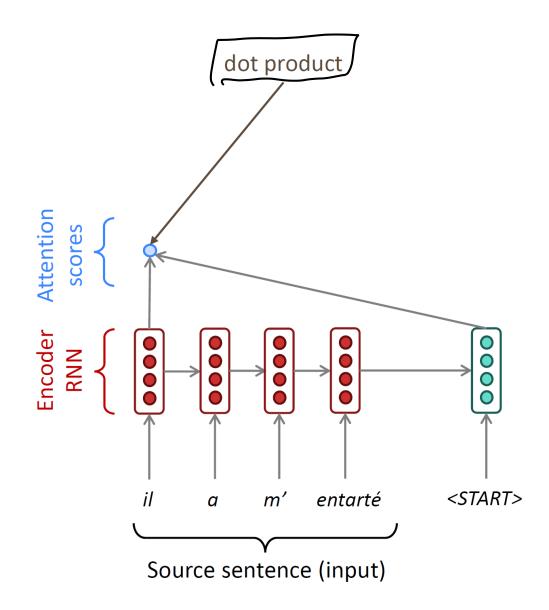


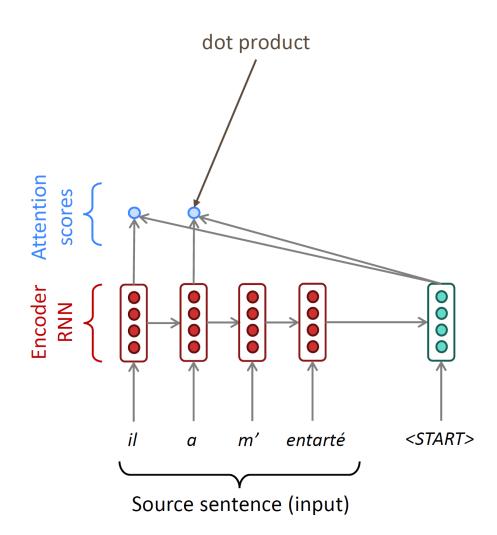
- NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, '15)
- Core idea:
 - When decoding Y_n consider both hidden states and alignment:
 - Hidden state: $h_t = f_{dec}(Y_{i \le t})$
 - Alignment: connect to a portion of X
 - When portion of X to focus on?

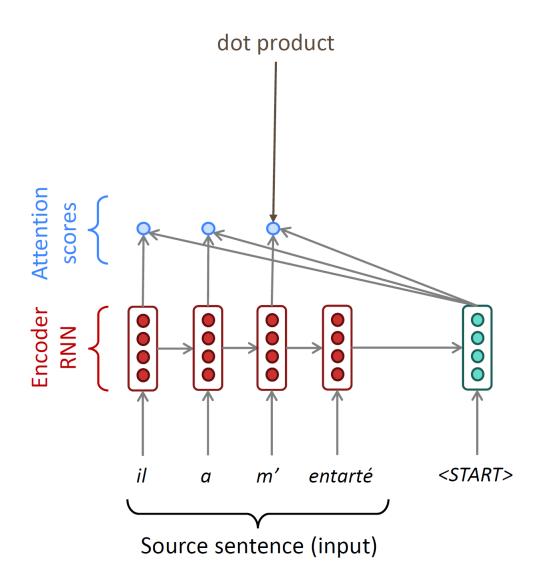
- Learn a softmax weight over X: attention distribution P_{att}

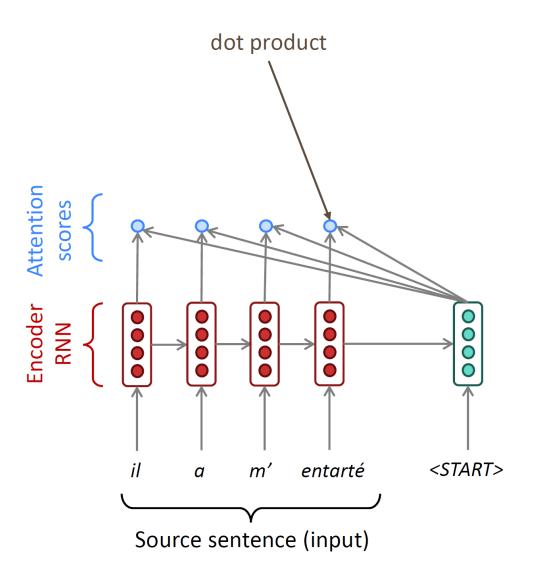
•
$$P_{att}(X_i | h_t)$$
: how much attention to put on word X_i
• Attention output $h_{att} = \sum_i f_{enc}(X_i | X_{j < i}) \cdot P_{att}(X_i | h_{t-1})$

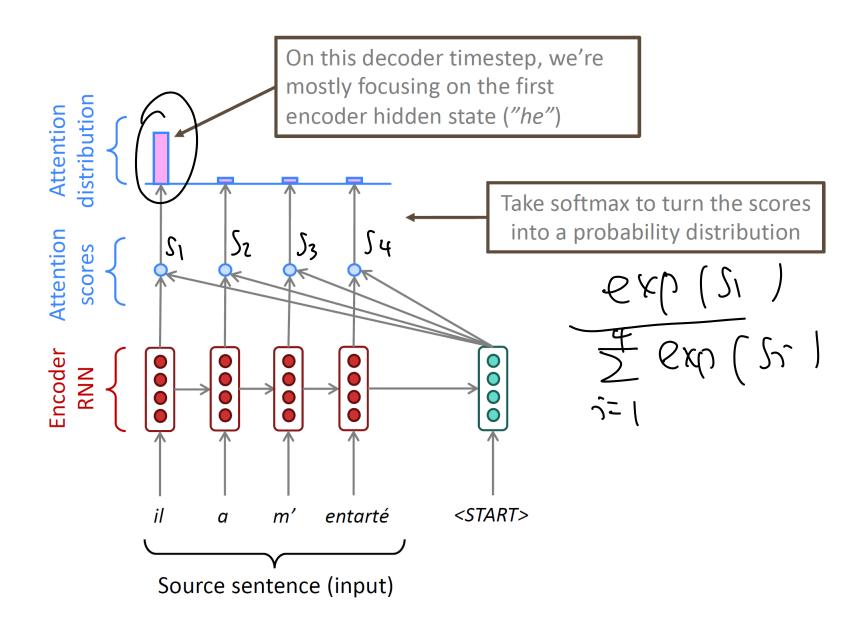
• Use h_{t-1} and h_{att} to compute Y_t

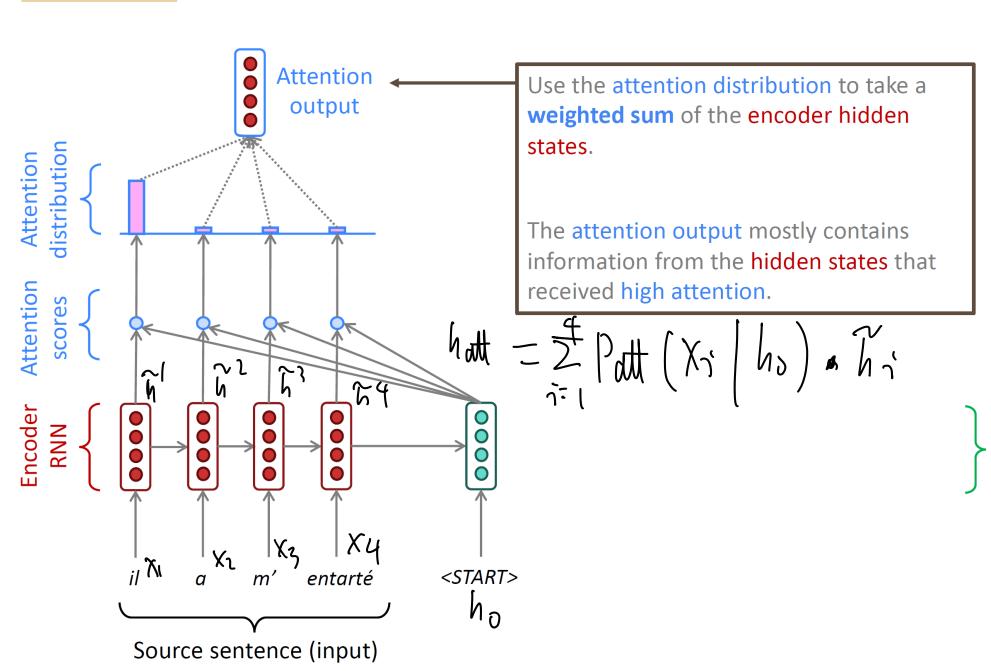




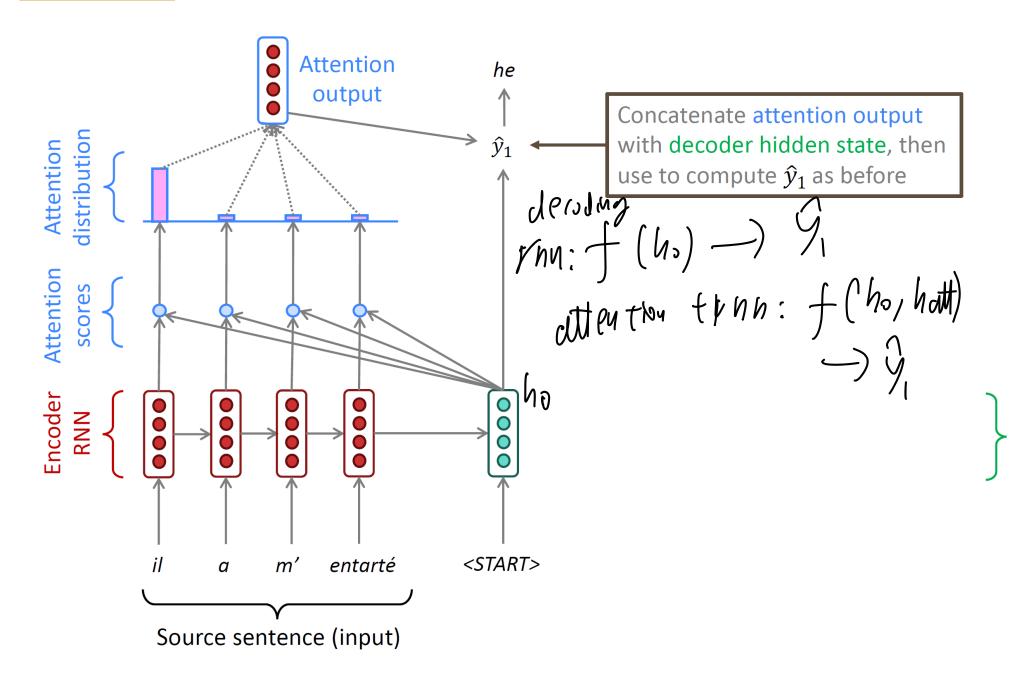


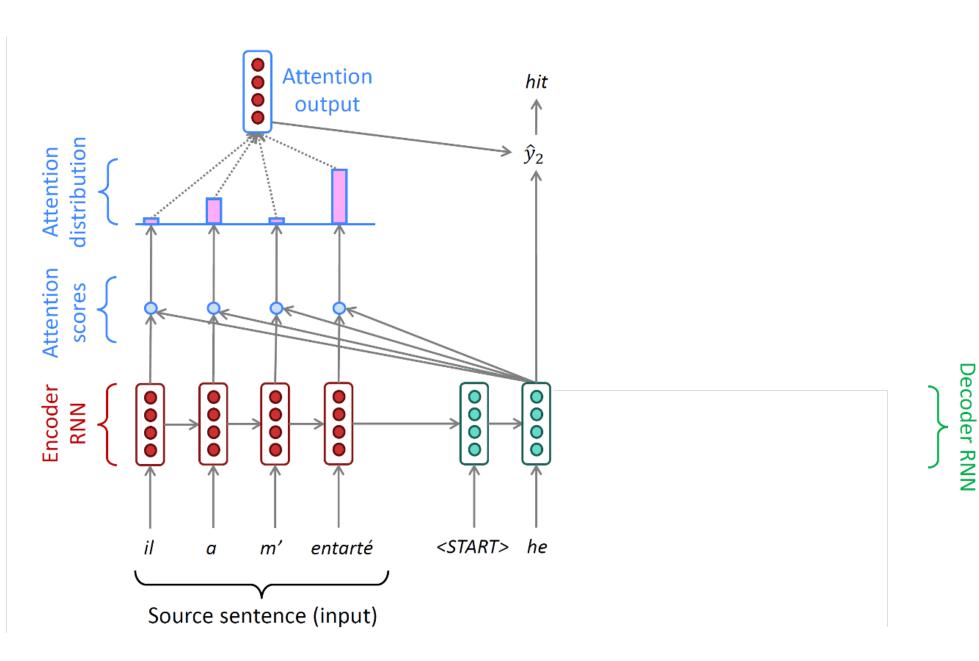


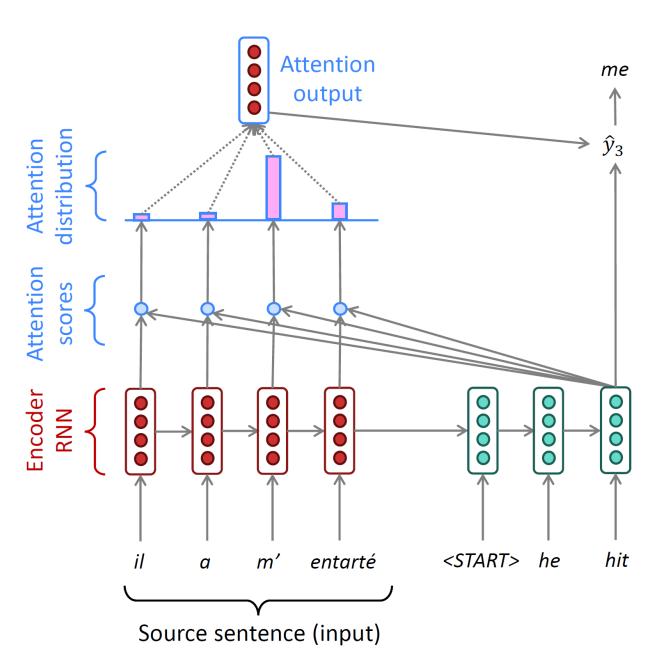


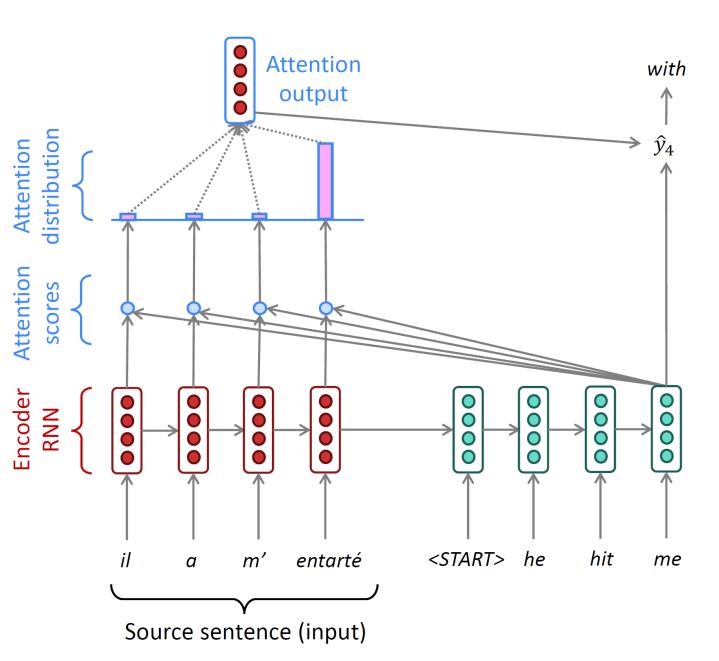


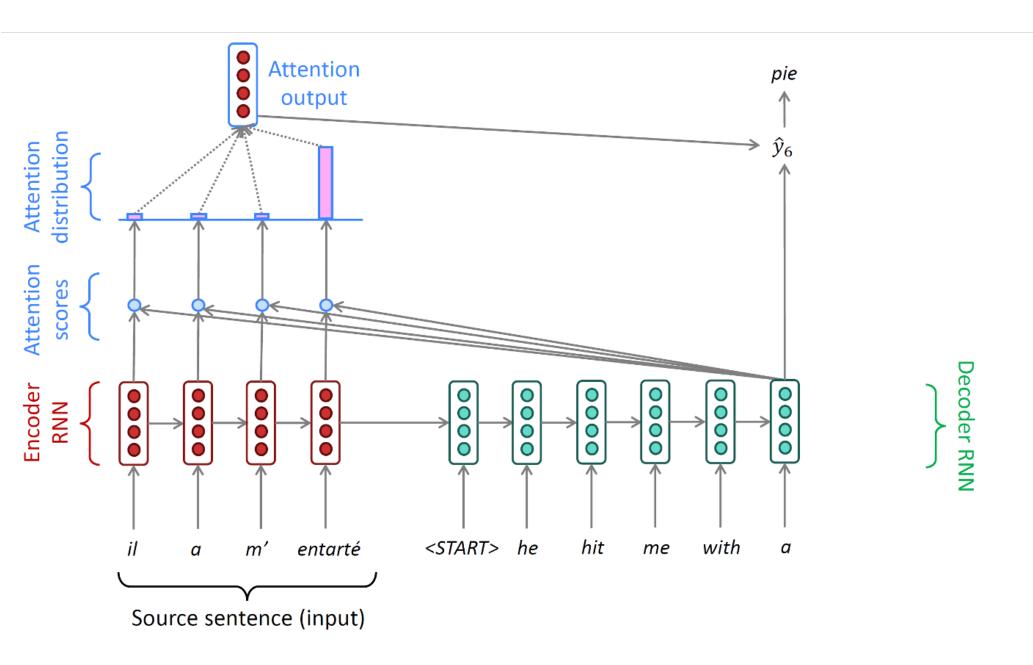
Decoder RNN









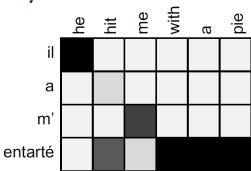


Summary

- ullet Input sequence X, encoder f_{enc} , and decoder f_{dec}
- $f_{enc}(X)$ produces hidden states $h_1^{enc}, h_2^{enc}, \ldots, h_N^{enc}$
- ullet On time step t, we have decoder hidden state h_t
- Compute attention score $e_i = h_t^{\top} h_i^{enc}$
- Compute attention distribution $\alpha_i = P_{att}(X_i) = \operatorname{softmax}(e_i)$
- Attention output: $h_{att}^{enc} = \sum \alpha_i h_i^{enc}$
- $Y_t \sim g(h_t, h_{att}^{enc}; \theta)$
 - ullet Sample an output using both h_t and h_{att}^{enc}

Attention

- It significantly improves NMT.
- It solves the bottleneck problem and the long-term dependency issue.
- Also helps gradient vanishing problem.
- Provides some interpretability
 - Understanding which word the RNN encoder focuses on



- Attention is a general technique
 - Given a set of vector values V_i and vector query q
 - Attention computes a weighted sum of values depending on q

Other use cases:

- Attention can be viewed as a module.
- In encoder and decoder (more on this later)
- A representation of a set of points
 - Pointer network (Vinyals, Forunato, Jaitly '15)
 - Deep Sets (Zaheer et al., '17)
- Convolutional neural networks
 - To include non-local information in CNN (Non-local network, '18)

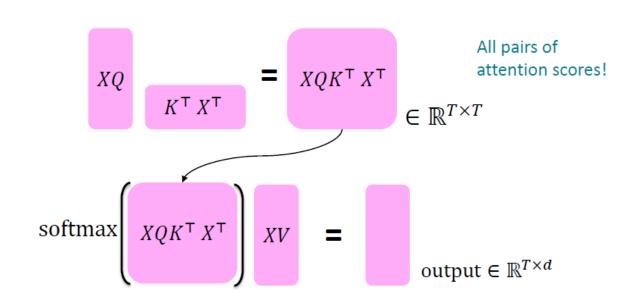
Attention

- Representation learning:
 - \bullet A method to obtain a fixed representation corresponding to a query q from an arbitrary set of representations $\{V_i\}$
 - Attention distribution: $\alpha_i = \text{softmax}(f(v_i, q))$
 - Attention output: $v_{att} = \sum_{i} \alpha_{i} v_{i}$
- Attent variant: $f(v_i, q)$
 - Multiplicative attention: $f(v_i, q) = q^T W h_i$, W is a weight matrix
 - Additive attention: $f(v_i, q) = u^{\mathsf{T}} \mathrm{tanh}(W_1 v_i + W_2 q)$

Key-query-value attention

- Obtain q_t, v_t, k_t from X_t $q_t = W^q X_t; v_t = W^v X_t; k_t = W^k X_t$ (position encoding omitted)
 W^q, W^v, W^k are learnable weight matrices $A_t = S_t + S_t +$

- $\alpha_{i,j} = \operatorname{softmax}(q_i^{\mathsf{T}} k_i); out_i = \sum_i \alpha_{i,j} v_i$
- Intuition: key, query, and value can focus on different parts of input



Attention is all you need (Vsawani '17)

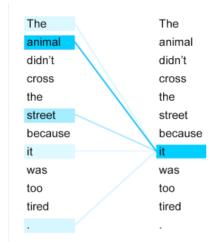
- A pure attention-based architecture for sequence modeling
 - No RNN at all!
- Basic component: self-attention, $Y = f_{SA}(X; \theta)$
 - X_t uses attention on entire X sequence
 - Y_t computed from X_t and the attention output
- Computing Y_t
 - Key k_t , value v_t , query q_t from X_t

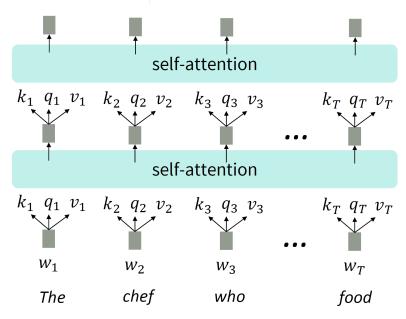
•
$$(k_t, v_t, q_t) = g_1(X_t; \theta)$$

• Attention distribution $\alpha_{t,j} = \operatorname{softmax}(q_t^\top k_j)$

• Attention output
$$out_t = \sum_j \alpha_{t,j} v_j$$

•
$$Y_t = g_2(out_t; \theta)$$





Issues of Vanilla Self-Attention

Attention is order-invariant

- Lack of non-linearities
 - All the weights are simple weighted average

- Capability of autoregressive modeling
 - In generation tasks, the model cannot "look at the future"
 - e.g. Text generation:
 - Y_t can only depend on $X_{i < t}$
 - But vanilla self-attention requires the entire sequence

Position Encoding

- Vanilla self-attention
 - $(k_t, v_t, q_t) = g_1(X_t; \theta)$
 - $\alpha_{t,j} = \operatorname{softmax}(q_t^{\mathsf{T}} k_j)$
 - Attention output $out_t = \sum_{j} \alpha_{t,j} v_j$
- Idea: position encoding:
 - p_i : an embedding vector (feature) of position i
 - $(k_t, v_t, q_t) = g_1([X_t, p_t]; \theta)$ $\psi_t = \widehat{\gamma}$
- In practice: Additive is sufficient: $k_t \leftarrow \tilde{k}_t + p_t, q_t \leftarrow \tilde{q}_t + p_t, v_t \leftarrow \tilde{v}_t + p_t;$ $(\tilde{k}_t, \tilde{v}_t, \tilde{q}_t) = g_1(X_t; \theta)$
- p_t is only included in the first layer

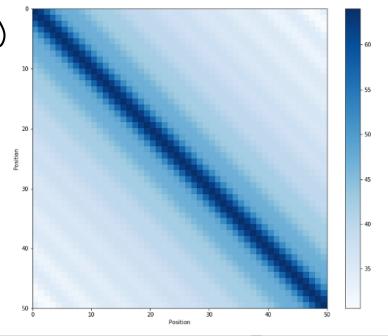
Position Encoding

7, ; = 1, ...50

p_t design 1: Sinusoidal position representation

- Pros:
 - simple
 - naturally models "relative position"
 - Easily applied to long sequences
- Cons:
 - Not learnable
 - Generalization poorly to sequences longer than training data

Index in the sequence



Heatmap of $p_i^T p_i$

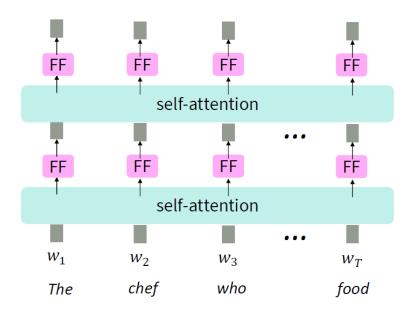
Position Encoding

p_t design 2: Learned representation

- Assume maximum length L, learn a matrix $p \in \mathbb{R}^{d \times T}$, p_t is a column of p
- Pros:
 - Flexible
 - Learnable and more powerful
- Cons:
 - ullet Need to assume a fixed maximum length L
 - ullet Does not work at all for length above L

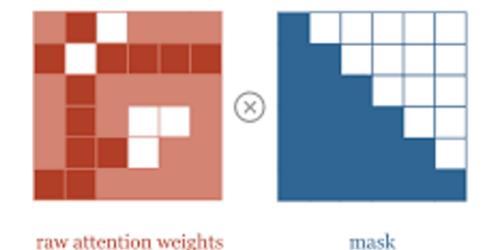
Combine Self-Attention with Nonlinearity

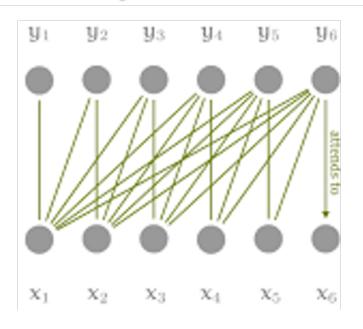
- Vanilla self-attention
 - No element-wise activation (e.g., ReLU, tanh)
 - Only weighted average and softmax operator
- Fix:
 - Add an MLP to process out_i
 - $m_i = MLP(out_i) = W_2 ReLU(W_1 out_i + b_1) + b_2$
 - Usually do not put activation layer before softmaax



Masked Attention

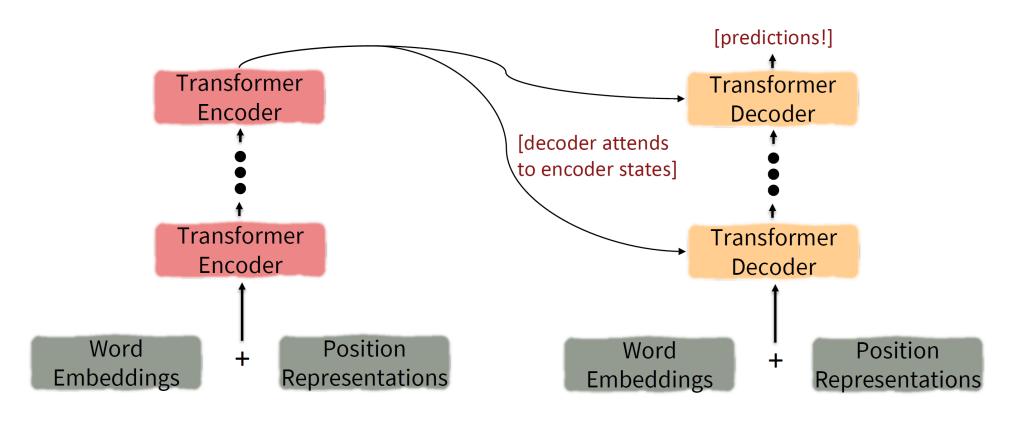
- In language model decoder: $P(Y_t | X_{i < t})$
 - out_t cannot look at future $X_{i>t}$
- Masked attention
 - Compute $e_{i,j} = q_i^{\mathsf{T}} k_j$ as usuall
 - Mask out $e_{i>j}$ by setting $e_{i>j}=-\infty$
 - $e \odot (1 M) \leftarrow -\infty$
 - *M* is a fixed 0/1 mask matrix
 - Then compute $\alpha_i = \operatorname{softmax}(e_i)$
 - Remarks:
 - M = 1 for full self-attention
 - ullet Set M for arbitrary dependency ordering





Transformer

Transformer-based sequence-to-sequence modeling



[input sequence]

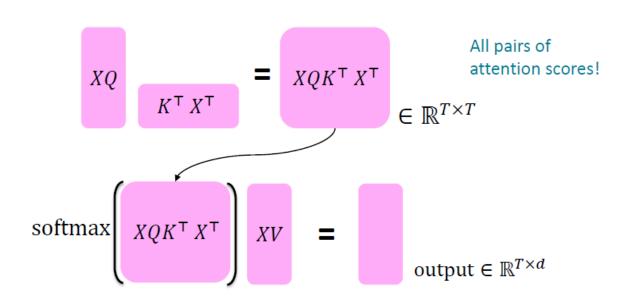
[output sequence]

Key-query-value attention

- Obtain q_t, v_t, k_t from X_t
- $q_t = W^q X_t$; $v_t = W^v X_t$; $k_t = W^k X_t$ (position encoding omitted)
 - W^q , W^v , W^k are learnable weight matrices

$$\boldsymbol{\alpha}_{i,j} = \operatorname{softmax}(q_i^{\top} k_j); out_i = \sum_k \alpha_{i,j} v_j$$

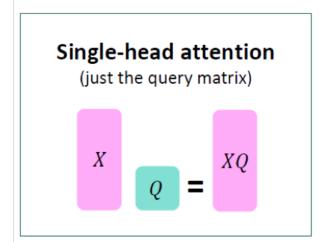
• Intuition: key, query, and value can focus on different parts of input

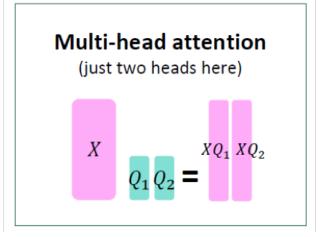


Multi-headed attention

- Standard attention: single-headed attention
 - $X_t \in \mathbb{R}^d$, $Q, K, V \in \mathbb{R}^{d \times d}$
 - We only look at a single position j with high $\alpha_{i,j}$
 - What if we want to look at different *j* for different reasons?
- Idea: define *h* separate attention heads
 - h different attention distributions, keys, values, and queries
 - $Q^{\ell}, K^{\ell}, V^{\ell} \in \mathbb{R}^{d \times \frac{d}{h}} \text{ for } 1 \leq \ell \leq h$ $\alpha_{i,j}^{\ell} = \text{softmax}((q_i^{\ell})^{\top} k_j^{\ell}); out_i^{\ell} = \sum_j \alpha_{i,j}^{\ell} v_j^{\ell}$ $\begin{cases} q_i^{\ell} \\ \downarrow \\ \downarrow \end{cases} \begin{cases} q_i^{\ell} \\ \downarrow \end{cases} \end{cases}$

#Params Unchanged!

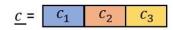


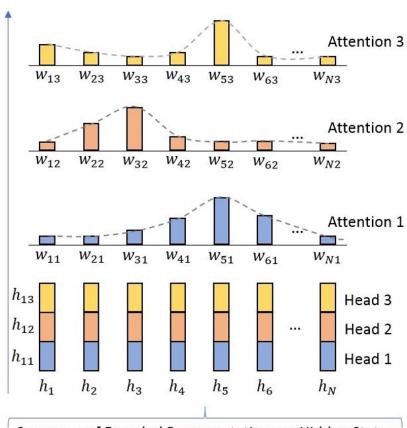


Multi-headed attention

- Standard attention: single-headed attention
 - $X_t \in \mathbb{R}^d$, $Q, K, V \in \mathbb{R}^{d \times d}$
 - \bullet We only look at a single position j with high $\alpha_{i,j}$
 - What if we want to look at different *j* for different reasons?
- Idea: define *h* separate attention heads
 - h different attention distributions, keys, values, and queries
 - $\begin{array}{l} \bullet \ Q^{\ell}, K^{\ell}, V^{\ell} \in \mathbb{R}^{d \times \frac{d}{h}} \ \text{for} \ 1 \leq \ell \leq h \\ \bullet \ \alpha_{i,j}^{\ell} = \operatorname{softmax}((q_i^{\ell})^{\top} k_j^{\ell}); out_i^{\ell} = \sum_{j} \alpha_{i,j}^{\ell} v_j^{\ell} \end{array}$

Utterance Level Representation





Sequence of Encoded Representations or Hidden States

Transformer

Transformer-based sequence-to-sequence model

- Basic building blocks: self-attention
 - Position encoding
 - Post-processing MLP
 - Attention mask
- Enhancements:
 - Key-query-value attention
 - Multi-headed attention
 - Architecture modifications:
 - Residual connection
 - Layer normalization



Transformer

Machine translation with transformer

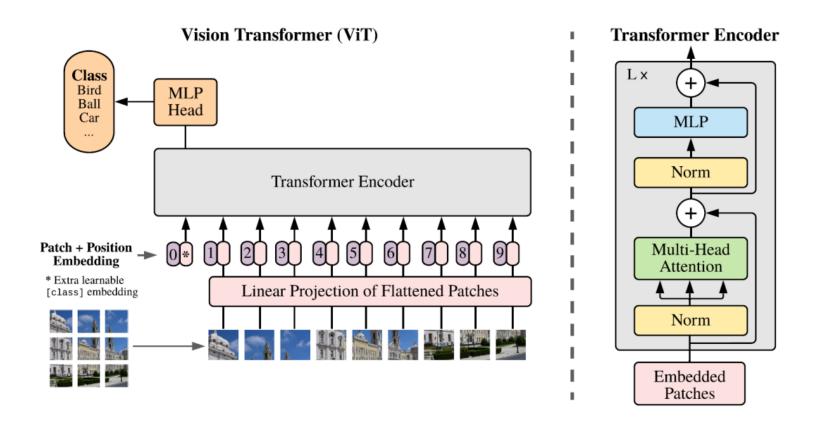
Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

Transformer

- Limitations of transformer: Quadratic computation cost
 - Linear for RNNs
 - Large cost for large sequence length, e.g., $L > 10^{2}$
- Follow-ups:
 - Large-scale training: transformer-XL; XL-net ('20)
 - Projection tricks to O(L): Linformer ('20)
 - Math tricks to O(L): Performer ('20)
 - Sparse interactions: Big Bird ('20)
 - Deeper transformers: DeepNet ('22)

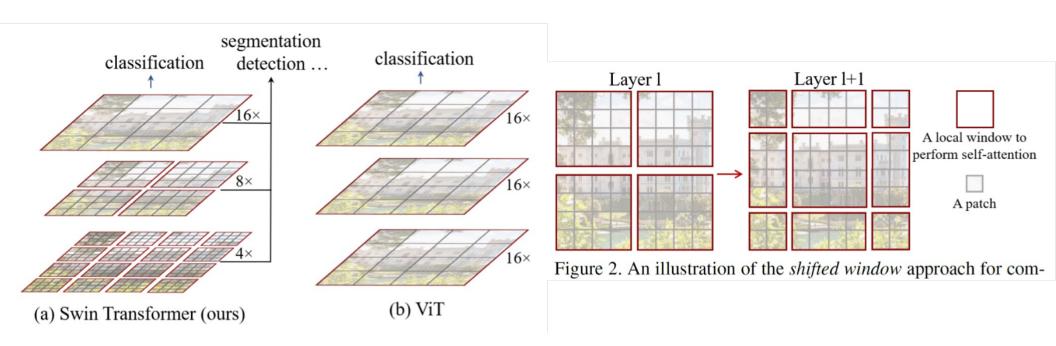
Transformer for Images

- Vision Transformer ('21)
 - Decompose an image to 16x16 patches and then apply transformer encoder

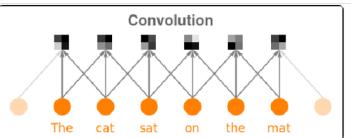


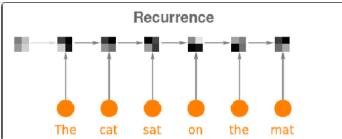
Transformer for Images

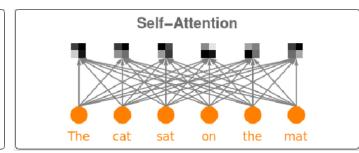
- Swin Transformer ('21)
 - Build hierachical feature maps at different resolution
 - Self-attention only within each block
 - Shifted block partitions to encode information between blocks



CNN vs. RNN vs. Attention



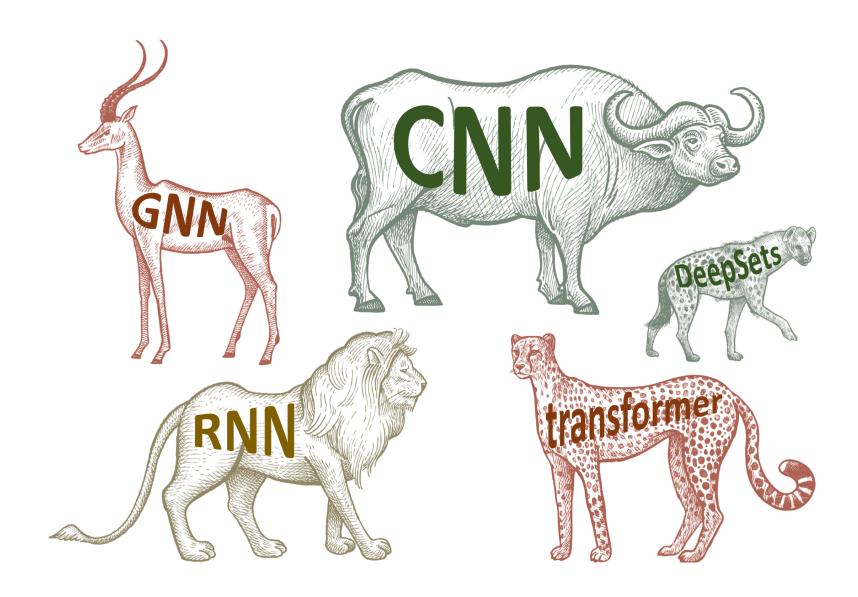




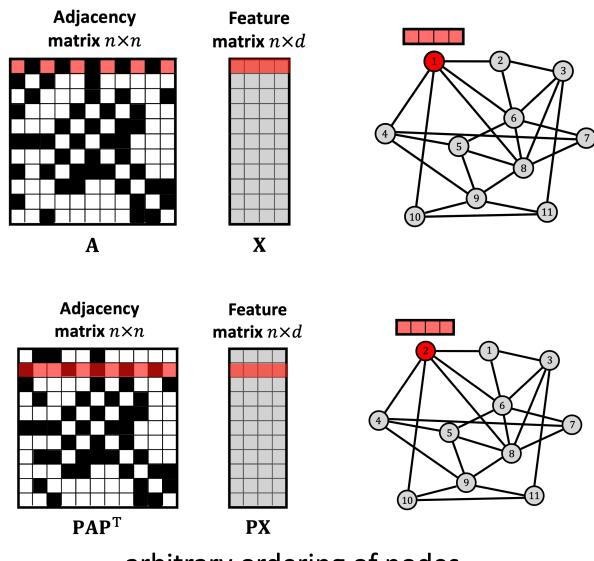
Summary

- Language model & sequence to sequence model:
 - Fundamental ideas and methods for sequence modeling
- Attention mechanism
 - So far the most successful idea for sequence data in deep learning
 - A scale/order-invariant representation
 - Transformer: a fully attention-based architecture for sequence data
 - Transformer + Pretraining: the core idea in today's NLP tasks
- LSTM is still useful in lightweight scenarios

Other architectures

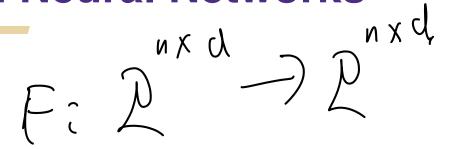


Graph Neural Networks



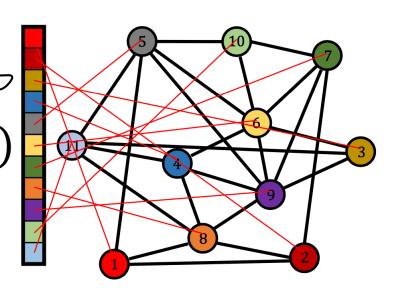
arbitrary ordering of nodes

Graph Neural Networks

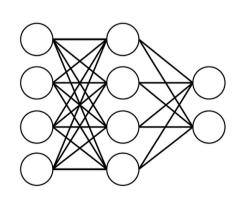


G C/V

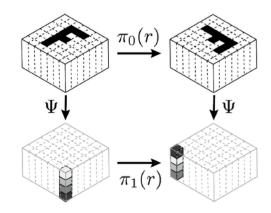
permutation-equivariant $\mathbf{F}(\mathbf{P}\mathbf{X}, \mathbf{P}\mathbf{A}\mathbf{P}^{\mathsf{T}}) = \mathbf{P}\mathbf{F}(\mathbf{X}, \mathbf{A})$



Geometric Deep Learning



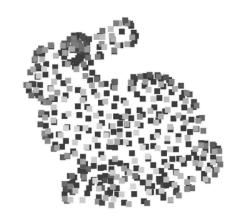
32



PerceptronsFunction regularity

CNNsTranslation

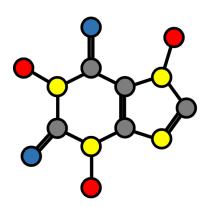
Group-CNNsTranslation+Rotation



DeepSets / Transformers

—)

Permutation

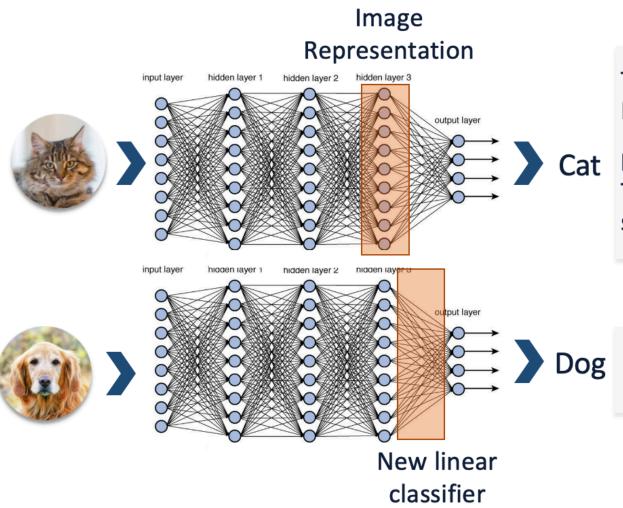


GNNs Permutation

Intrinsic CNNsLocal frame choice

Representation Learning Pre-training

Example in image representation



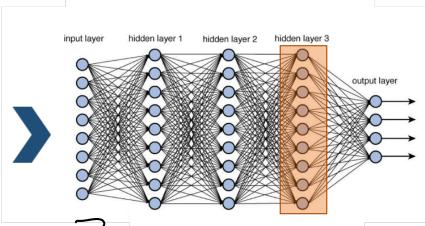
Train a neural network (ResNet) on ImageNet (1M data, 1000 classes)

Representation (feature extractor): The mapping from image to the second-to-the-last layer.

Fix the representation, just re-train the last linear layer.

Example in image representation

Source tasks
(for training representation):
ImageNet



Target task:

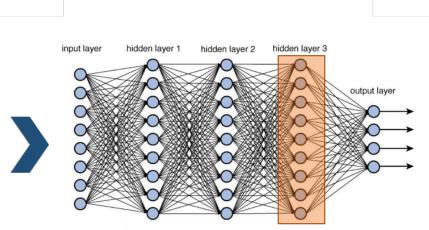
Few-shot Learning on VOC07 dataset (20 classes, 1-8 examples per class)

- Without representation learning:
 5% 10% (random guess = 5%)
- With representation learning:
 50% 80%

Example in image representation

Source tasks
(for training representation):
ImageNet





Target task:

Few-shot Learning on VOC07 dataset (20 classes, 1-8 examples per class)

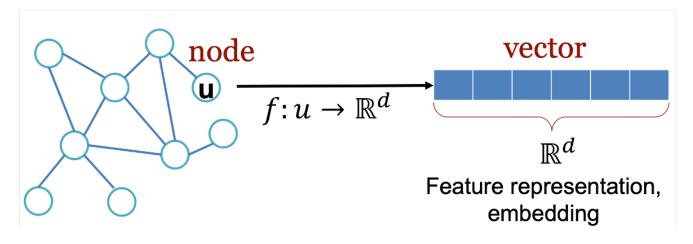
- Without representation learning:
 5% 10% (random guess = 5%)
- With representation learning:
 50% 80%

Examples

Natural Language Processing

Final hidden state:

Graph
Representation
Learning



Representation learning

- A function that maps the raw input to a compact representation (feature vector). Learn an **embedding / feature / representation** from **labeled/unlabeled data**.
- Supervised:
 - Multi-task learning
 - Meta-learning
 - Multi-modal learning
 - ...
- Unsupervised:
 - PCA
 - ICA
 - Dictionary learning
 - Sparse coding
 - Boltzmann machine
 - Autoencoder
 - Contrastive learning
 - Self-supervised learning
 - ...

Desiderata for representations

Many possible answers here.

- **Downstream usability:** the learned features are "useful" for downstream tasks:
 - Example: a linear (or simple) classifier applied on the learned features only requires a small number of labeled samples. A classifier on raw inputs requires a large mount of data.

- Interpretability: the learned features are semantically meaningful, interpretable by a human, can be easily evaluated.
 - Not well-defined mathematically.
 - **Sparsity** is an important subcase.

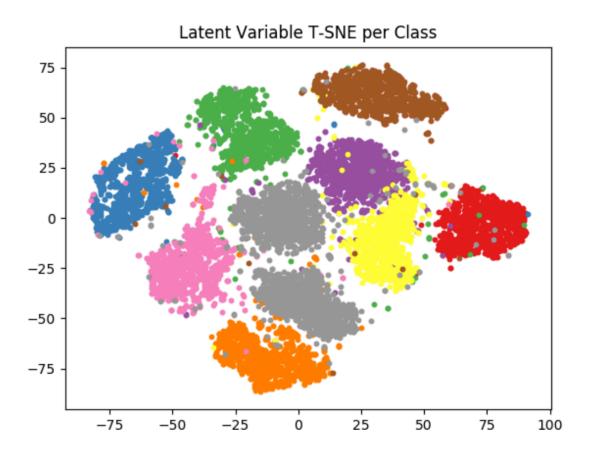
Desiderata for representations

From Bengio, Courville, Vincent '14:

- **Hierarchy / compositionality:** video/image/text are expected to have hierarchial structure: need *deep* learning.
- **Semantic clusterability**: features of the same "semantic class" (e.g. images in the same class) are clustered together.
- Linear interpolation: in the representation space, linear interpolations produce meaningful data points (latent space is convex). Also called *manifold flattening*.
- **Disentanglement**: features capture "independent factors of variation" of data. A popular principle in modern unsupervised learning.

Semantic clustering

Semantic clusterability: features of the same "semantic class" (e.g. images in the same class) are clustered together.

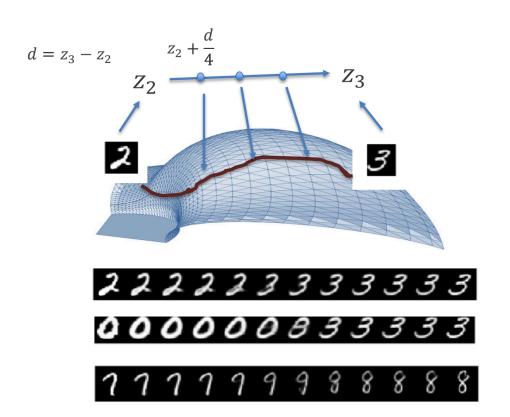


Intuition: If semantic classes are linearly separable, and labels on downstreams tasks depend linearly on semantic classes: we only need to learn a simple classifer.

t-SNE projection (a data visualization method) of VAE-learned features of 10 MNIST classes.

Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce meaningful data points (latent space is convex).



Intuition: the data lies on a manifold which is complicated/curved.

The latent variable manifold is a convex set: moving in straight lies is still on it.

Interpolations for a VAE trained feature on MNIST.

Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce meaningful data points (latent space is convex).

Interpolations for a BigGAN image.

Disentanglement

Disentanglement: features capture "independent factors of variation" of data (Bengio, Courville, Vincent '14).

- Very popular in modern unsupervised learning.
- Strong connections with generative models: $p_{\theta}(z) = \prod_i p_{\theta}(z_i)$.

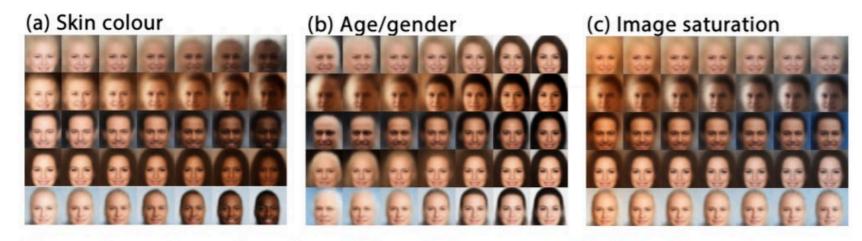


Figure 4: Latent factors learnt by β -VAE on celebA: traversal of individual latents demonstrates that β -VAE discovered in an unsupervised manner factors that encode skin colour, transition from an elderly male to younger female, and image saturation.