Recurrent Neural
Networks

Sequence Data

1year a | | vs. EIectronicTechnoIong | News Add ticker

1 YEAR CHANGE 76.04%

May 2019 Sep 2019 Jan 2020 May

+16.63% +40.68% +0.05%

RMEE =E sy & v & BY (@) =E O v
Deep learning is a popular area in Al ® x FEZFIZARAR|IGE, e

Shéndu xuéxi shi Al de rémén lingyu.

& 9 38 / 5000 L D) [E] 7z <

State-Space Model
2y a;,/viul/mv‘f\d’l W]L Mt T

7
*hghiddenstate "

e X.:input

e Y.: output

¢ Yta hz =f(ht—17 Xt; 0)
e h_,:initial state

Y(t)

Time

Recurrent Neural Network

e /1, hidden state Y(t)
e X.:input h, * * *}_*\ *
0 3

e Y.: output . . .
~ o+ t 1 f f

e Y,h =f(h_y,X;0) X(t)

e h_,:initial state t=0

Time

Fully-connect NN vs. RNN
e /1,: a vector summarizes all past inputs (a.k.a. “memory”)
e 1_, affects the entire dynamics (typically set to zero)

e X, affects outputs and states after ¢

e Y. dependson X, ..., X,

Recurrent Neural Network

e /1, hidden state Y(t)
i SN IR BE.
. > > > >

e Y.: output

. f { f f 1 { 1
o Y. h, = f(h_. X,; 0) X(t) | J
e h_,:initial state t=0 L

Fully-connect NN vs. RNN
 RNN can be viewed as repeated applying fully-connected NNs

e h,= (WX, + Wn_, + b))
+ Y, = o (WPh, + o)
e 6,0, are activation functions (sigmoid, ReLU, tanh, etc)

Recurrent Neural Network

Y(t)

X(t)
t=0

Time

Stack K layers of fully-connected NN
o ht(k): hidden state
e X.:input

. Y output OMQAO‘Y(V C /UA/

h(l) = FO(RD, X0 &
h(k) _f (h(k)l’ t(k 1)

eV = fz(ht(K) 0)

o hfkl) initial states

Training Recurrent Neural Network @/(

J(1), Trae
e /i, hidden state mww)
e X: input vy v() v Yr-2) Y(T-1) ¥(I)
. Yt: output
o h ¥ |n|t|alstate | = a2 = X(T o

= (Y (0 - Yt

e Data: {(X,, D,)},_, (RNN canﬁwandle more general data format)
T

, Loss L(0) = Z £(Y,D
=1
e Goal: learn @ by gradient-based method
e Back propagation

Back Propagation Through Time

o h,= o (WHX +WUbp _ + b))
o Y = 0,(WPh, + b®) I .7

Y (0) Y (1) Y(2) Y(T-2) Y(T-1) Y(T)

o Zt(l): pre-activation of hidden state
(ht - Gl(Zt(l))) h, ceee
o Zt(z) . pre-activation of output

(Yt = 02(21(2))) X(0) X(1) X(2) X(T-2) X(T-1) X

Extensions

What if Y, depends on the entire inputs?
e Biredictional RNN:
* AN RNN for forward dependenaes t=0,...,T

e An RNN for E bagﬂ@[@pendenues t=T,..0
o Y, = fo(h!, h}; 0)

l‘
Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
. / l /> ‘ o000 : /= : / '
et < < <
X(0) X(1) X(2) X(T-2) \ X(T-1) X(T)
A A A A A A hb(inf)
X(0) X(1) \ X(2) X(T-2) X(T-1) X(T)

L — L

Extensions

RNN for sequence classification (sentiment analysis)

0\(1;—0;%?055 § imfr, / 7 }
1 (Y

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

ETEEEEE
"RG0

X(0) X(1) X(2)

X(T-1) X(T)

N NN

A F* R S N S

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

> 1

Practical issues of RNN

Linear RNN derivation (6 (‘2) c 2

= w £l/(.(W
| h{ h ()

g, £\ v (
‘b, W e "/hm)

t_(&}(d))\w o z
')\)(91\\ [

(13 o K\/\/“”> 7 /) exp [onse
< | =) e Skl

Practical issues of RNN: training

Gradient explosion and gradlent vanishing

9;,0111'0/\((W(H)

X £ <

Techniques for avoiding gradient explosion

b 191 7 thwe)
sy TN T ?Z g

Tgl L9
e |dentity initialization W(/(/ = l

e Truncated backprop through time ?

* Only backprop for a few steps 7 N [
Loss

>
H
>
H
>
}.,l
ng
)_>|
ne
M
ng
>
ne
ng
>

-
-
-
-
.
M
-
-
-
M
-
M
-
-
-

Preserve Long-Term Memory % W/W'Js oy
K%
(o s

e Difficult for reserve long-term memory

e The hidden state A, is constantly being written (short-term memory)
e Use a separate cell to maintain long-term memory

® ® ©
t 1 |
I)

{ i J{ 4 T

| |

© ® ©
&) ())
Memory ¢; t % 1

Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, "97)
e RNN architecture for learning long-term dependencies

e o: layer with sigmoid activation (Oh by)

aedt W2t a@h | "

A
/ T\ ~ N
= —) ® T >
A | Lot A
. /_’T)’\

Neural Network Pointwise Vector
Layer Operation Transfer Concatenate Copy

Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, "97)
e Core idea: maintain separate state /1, and cell ¢, (memory)
e h1,: full update every step .
-mpartiallﬁpdate through gates
e o layer outputs imp,ortance ([(‘)j]) for each entry and only modify those
entries of ¢,

&) ® ®
1 1

A
s N\ (O N N
e—o— >
A lelel]] A
\I)_')’\|)-’
© ® ©

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Long Short-Term Memory Network

_

(Forget gate ﬁj

e f. outputs whether we want to “forget” things in c,
e Compute ¢,_; § f, (element-wise)
e (i) = 0: want to forget c,(i)
e (i) = 1: we want to keep the information in ¢ (i)

®

PR |
d)'AI

é‘A@—

Cel o

fe =0 Wg-[hi—1,2¢] + by)

Sy d

Long Short-Term Memory Network

Input gate 1,
e [, extracts useful information from X, to update memory

- . W-(
e ¢,: information from X/to update memory

e i,: which dimension in the memory should be updated by X,
~ . N . . . ~ s
e () — l:we want to use the information in ¢,(j) 0 update memory

e ;(f) = 0:¢,(j) should not contribute to memory

R iy
n A A D ol 0
QIQ g '® . 76!) - E?E|-> E:tanh(WC-[ht_l,xt] + ic:)

ural Network Pointwise Vector /\/
LLLLL Operation Transfer Concatenate Copy ~

Long Short-Term Memory Network

Memory update

G =fi®c +h®E

o f, forget gate; i, input date

* f, ® c,_;: drop useless information in old memory

* [, @ C,: add selected new information from current input

Long Short-Term Memory Network

Output gate o,
e Next hidden state i, = 0, © tanh(c,)
e tanh(c,): non-Tinear transformation over all past information
W . . .
 0,: choose important dimensions for the next state
e 0(j) = 1 :tanh(c(j))is Wate

° 07(j) — 0 : tanh(c,(J)) is not important

Rl _
htT
Canh> Or — 0O (WO [ht_l,xt] + bo)
O @ ~—
) h; = os@tanh (Cy)
hi—1 hi \,_L___\\\J\——w

I

Long Short-Term Memory Network
& ® 6

e i, = 0, © tanh(c,) 1 t
e, =f0c¢_+1,0C¢ a blo—s \{ AN
S /—> J ’\ J_'

I
© ® &)

Remarks:
1. No more matrix multiplications for ¢,

2. LSTM does no uarantees for gradient explosion/vanishing
3. LSTMis t inant architecture for sequence modeling from ’13 - "16.

4. Why tanh -

LSTM Variant

Peephold Connections (Gers & Schmidhuber '00)
 Allow gates to take in ¢, information

® ®)
(T\ (" A\ 4 T\
\I o J ’\I o>
&) © &)

LSTM Variant

Simplified LSTM

0 Assume@g;};@
e Only tw es are needed: fewer parameters

ey
. A o* ELJ’\ A o*
© ® ©

P‘@" Ct=ft*Ct—1+(1—ft)*ét

LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. '14)
e Merge h, and ¢,;: much fewer parameters

R PR
© 0 ©

ze =0 (W, - [hy—1, 7))
re =0 (Wr ' [ht—laxt])
h; = tanh (W - [ry « hy_1,24])

he_1q

ht:(l—zt)*ht_l—FZt*ilt

LSTM application: language model

e Autoregressive language model(P(X; 9)!=5Hf=1P(Xt | X.; 0)
5) - —_—
(ST |

e X:asentence
e Sequential generation
e LSTM language model
e X.: word at position .
e Y,: softmax over all words

e Data: a collection of texts:
o Wiki

P(WI"The") P(WI"..quick") P(WI". brown") P(WI"..fox")

| Softmax I l Softmax I | Softmax I l Softmax l
A A 1\ v
—hg— RNN |7h1—- RNN I-hz—-l RNN I-hr-l RNN l»h4—>

IlThell Ilquickll llbrown" llfoxll

LSTM application: text classification

Bi-dreictional LSTM and them run softmax on the final hidden state.

‘ SPAM

E CLASSIFIER
S

INBOX

SoE

SPAM FOLDER

=

Y(O) Y(1) Y(2) Y(T 2) Y(T 1) Y(T)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
; E h,(inf)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)

>t

Attention Mechanism

W

Machine Translation

e Before 2014: Statistical Machine Translation (SMT)
. Extremely complex systems that require massive human efforts
e Separately designed componentsJ T
* Alot of feature engineering >

e Lots of linguistic domai owledge and expertise

e Before 2016:
e Google Translate is based on statistical machine learning

e What happened in 2014?

e Neural machine translation (NMT)
— —

Sequence to Sequence Model

e Neural Machine Translation (NMT)
e Learning to translate via a single end-to-end neural network.

e Source language sentence X, target language sentence Y = f(X; 6)

— — N SN
TS——

e Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)
e Two RNNs: f,, .and f,,.
e Encoderj,, .

e Takes X as input, and output the initial hidden state for decoder
¢/ Can use bidirectional RNN

e Decoder f,,.:

e |t takes in the hidden state from f, .to generate Y
e Can us@ssive language model
(212

Sequence to Sequence Model

The sequence-to-sequence model
Target sentence (output)

Encoding of the source sentence. r A \
Provides initial hidden state , . .
for Decoder RNN. @ hit me with a pie <END>
. : 2\ §| 2} g‘ g‘ g‘
pa 5 5 5 5 g0 T 0 -,
=) © © 4y © © © © D
o el (o |o ./ O he [O1: (o] = @] : [@e]: [o]: [o]: (@ o
O e (O | | |O® | O Ol : |O[:|O0[: |0 o[-0 Q.
S el |© || |©® 10110 10 o| |0 |0 O @
O e O J |\ [o) o o o] o O =
QO
c 1 =
i a L <START>| he hit me with a pie
\) —
Y
Source sentence (input) Decoder RNN is a Language Model that generates

target sentence, conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.

Training Sequence to Sequence Model

e Collect a huge paired dataset and train it end-to-end via BPTT
e Loss induced by MLE P(Y | X) = P(Y | f,,.(X))

= negative log = negative log = negative log
1 T prob of “he” prob of “with” prob of <END>
D)/ S (7} PRy Ay A [Ry Ay A 2

t=1 A N N A A 3

V1 V2 Y3 Y Vs Ve V7
N N N N

A

~
-
-~
Cd

P o
= &
CE o o o o o o o 8_
2 oo >{e1o181 8|18 ®
O o] |o| [(o] |o] |e| [o] |o -
(&)

c =
— P
il a m’ entarté <START> he hit me with a pie
\ J \ J

Y Y
Source sentence (from corpus) Target sentence (from corpus)

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.

Deep Sequence to Sequence Model

e Stacked seqg2seq model

Translation
generated
Encoder:
Builds up } Decoder
sentence
meaning
Source Feeding in
last word

sentence

Machine Translation

e 2016: Google switched Google Translate from SMT to NMT

45

40

35

30

25

20

15

10

W Phrase-based SMT

MW Syntax-based SMT

B Neural MT

2013

2014

2015

2016

2017

______—

2018

2019

