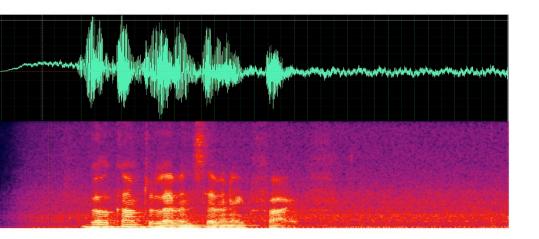
Recurrent Neural Networks

Sequence Data

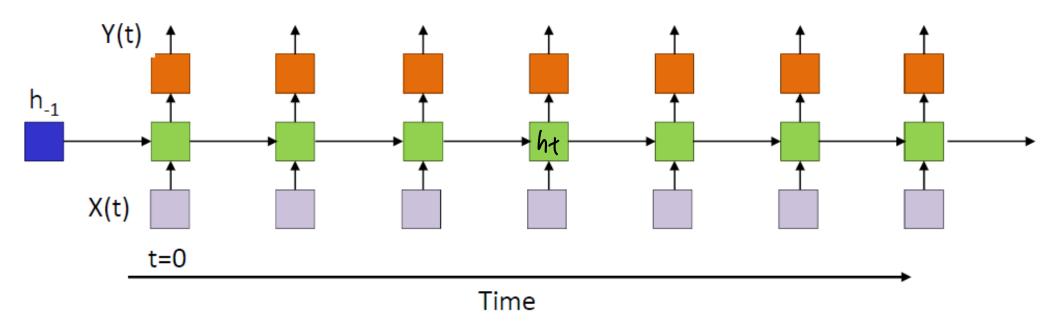


检测语言 英语 中文 德语 ✓	↔ 中文	(简体) 英语 日语 ~	
Deep learning is a popular area in AI.	G × 深度	学习是AI的热门领域。	☆
	Shēnd	ù xuéxí shì Al de rèmén lǐngyù.	
♥ ●	38 / 5000		<

State-Space Model rsmpuess sinformation before time t

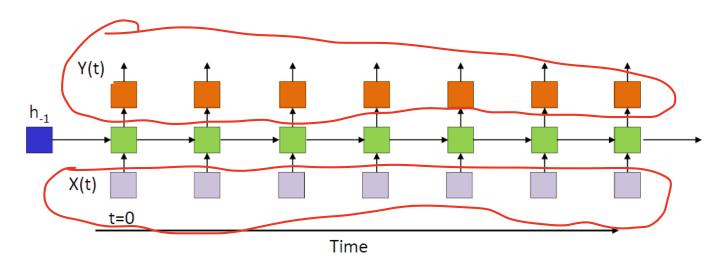
• h_t : hidden state

- X_t : input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



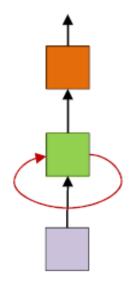
Recurrent Neural Network

- h_t : hidden state
- X_t: input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



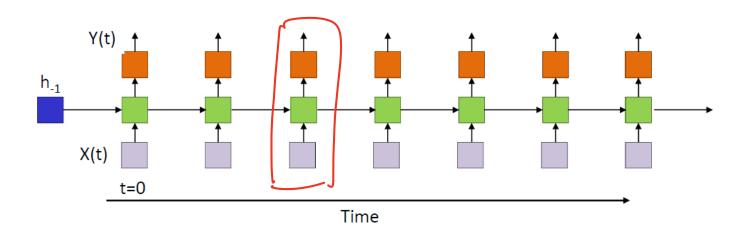
Fully-connect NN vs. RNN

- h_t : a vector summarizes all past inputs (a.k.a. "memory")
- h_{-1} affects the entire dynamics (typically set to zero)
- X_t affects all the outputs and states after t
- Y_t depends on X_0, \ldots, X_t



Recurrent Neural Network

- h_t : hidden state
- X_t : input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



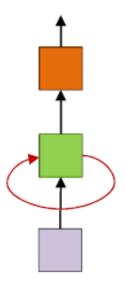
Fully-connect NN vs. RNN

• RNN can be viewed as repeated applying fully-connected NNs

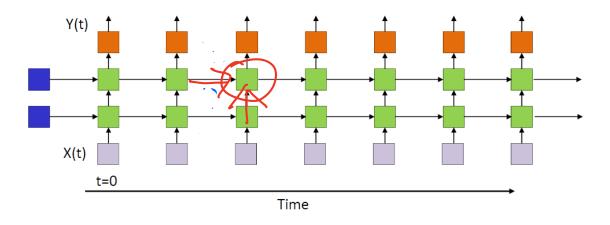
•
$$h_t = \sigma_1(\underbrace{W^{(1)}X_t}_{t-1} + \underbrace{W^{(11)}h_{t-1}}_{t-1} + \underbrace{b^{(1)}}_{t-1})$$

•
$$Y_t = \sigma_2(W^{(2)}h_t + b^{(2)})$$

• σ_1, σ_2 are activation functions (sigmoid, ReLU, tanh, etc)



Recurrent Neural Network



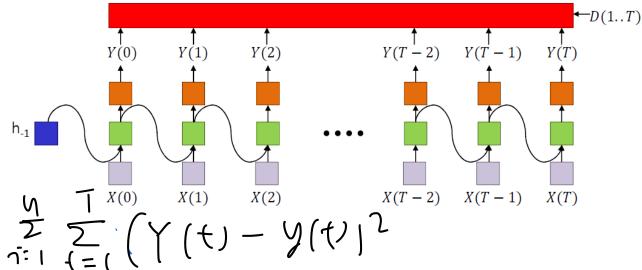
Stack K layers of fully-connected NN

- $h_t^{(k)}$: hidden state

- $h_t^{(1)} = f_1^{(1)}(h_{t-1}^{(1)}, X_t; \theta)$ $h_t^{(k)} = f_1^{(k)}(h_{t-1}^{(k)}, h_t^{(k-1)}; \theta)$ $Y_t = f_2(h^{(K)}, \alpha)$
 - $Y_t = f_2(h_t^{(K)}; \theta)$
 - $h^{(k)}_{1}$: initial states

Training Recurrent Neural Network y(t): the label

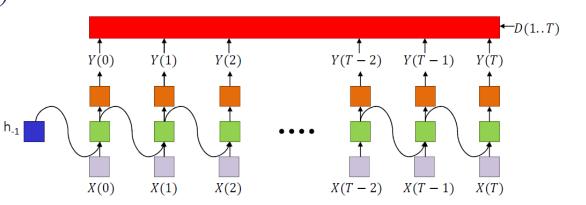
- h_t : hidden state
- X_t : input
- *Y_t*: output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



- Data: $\{(X_t, D_t)\}_{t=1}^T$ (RNN can handle more general data format) • Loss $L(\theta) = \sum_{t=1}^T \ell(Y_t, D_t)$
- Goal: learn θ by gradient-based method
 - Back propagation

Back Propagation Through Time

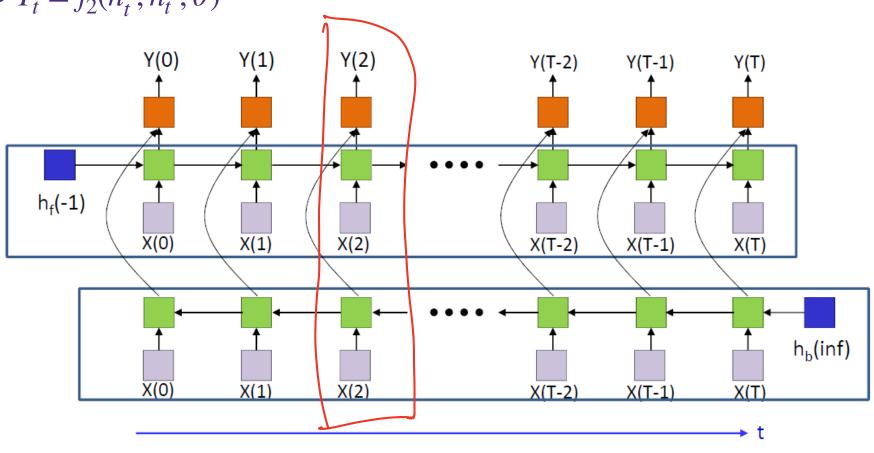
- $h_t = \sigma_1(W^{(1)}X_t + W^{(11)}h_{t-1} + b^{(1)})$
- $Y_t = \sigma_2(W^{(2)}h_t + b^{(2)})$
- $Z_t^{(1)}$: pre-activation of hidden state ($h_t = \sigma_1(Z_t^{(1)})$)
- $Z_t^{(2)}$: pre-activation of output ($Y_t = \sigma_2(Z_t^{(2)})$)



Extensions

What if Y_t depends on the entire inputs?

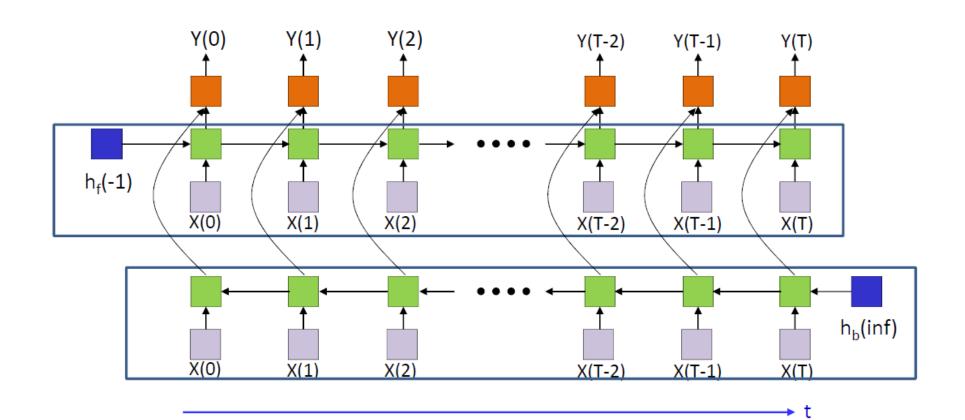
- Biredictional RNN:
 - AN RNN for forward dependencies: t= 0,...,T
 - An RNN for backward dependencies: t= T,...0
 - $Y_t = f_2(h_t^f, h_t^b; \theta)$



Extensions

RNN for sequence classification (sentiment analysis)

• $Y = \max_{t} Y_{t}$ • Cross-entropy loss $I (Y_{t}) = Y_{t}$

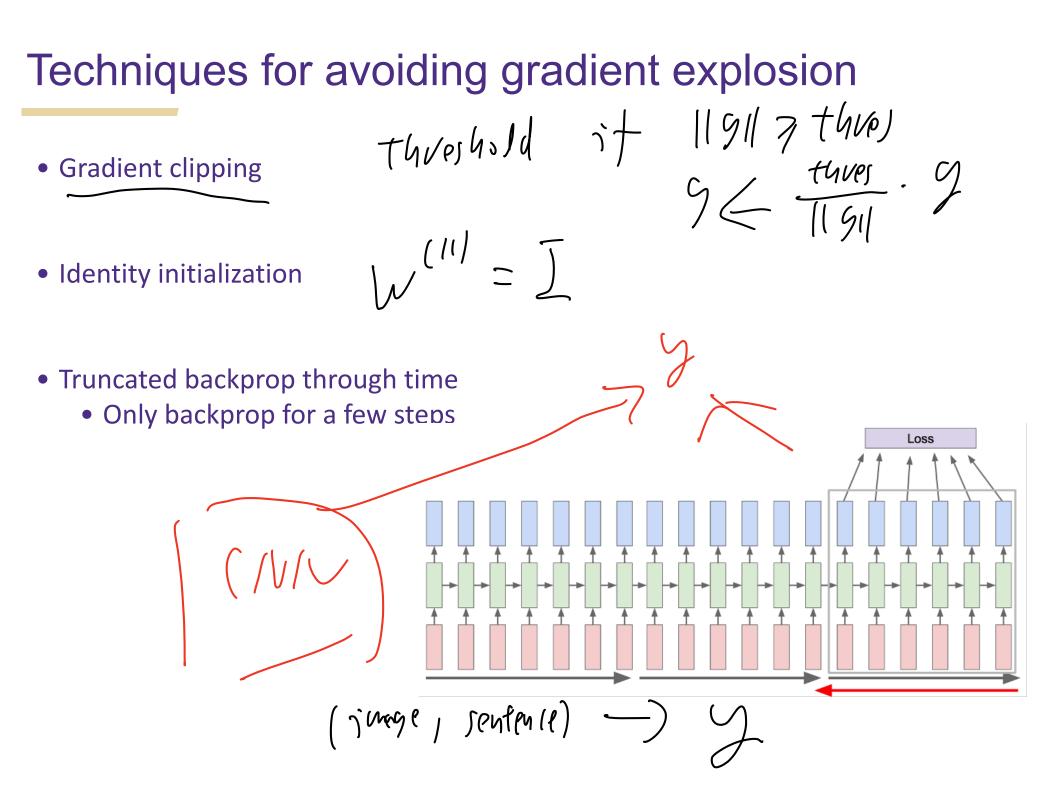


Practical issues of RNN 7 $h_{k} = w^{(n)} h_{t-1} + w^{(n)} X_{k}$ $h_{k} = w^{(n)} h_{t-1} + w^{(n)} h_{k-1}$ $h_{k} = w^{(n)} X_{k} + w^{(n)} (w^{(n)} X_{k-1} + w^{(n)} h_{k-2})$ $= w^{(n)} X_{k} + w^{(n)} (w^{(n)} X_{k-1} + w^{(n)} h_{k-2})$ Linear RNN derivation $W^{(11)}$ kt/ h-1 + Z $(W^{(11)})^{k-1} W^{(11)} \chi_{11}$ $\lambda max (M^{(11)}) > | -) exp large$ $<math>\langle | - \rangle exp Small$

Practical issues of RNN: training

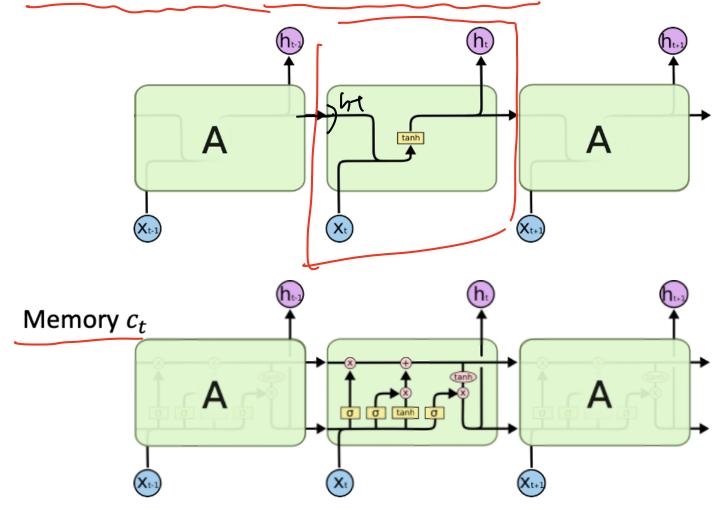
Gradient explosion and gradient vanishing

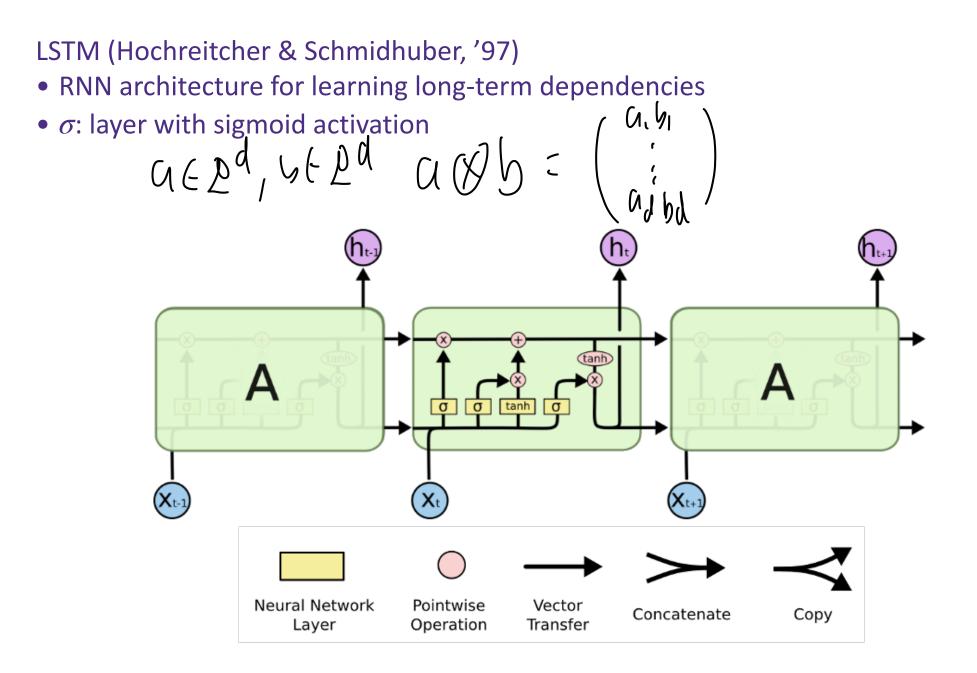
gradient & (W) XXX



Preserve Long-Term Memory

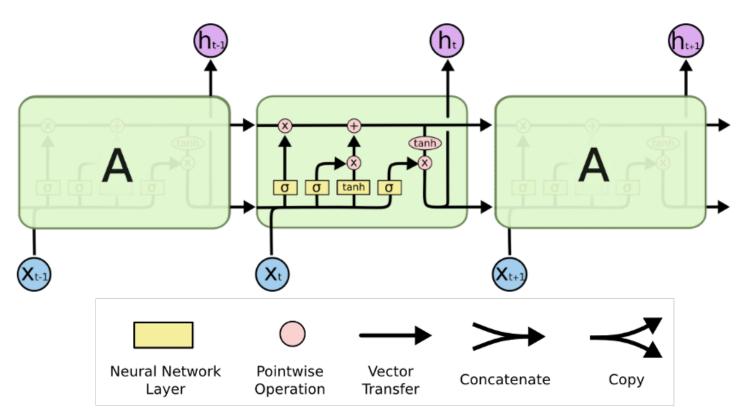
- Difficult for RNN to preserve long-term memory
 - The hidden state h_t is constantly being written (short-term memory)
 - Use a separate cell to maintain long-term memory





LSTM (Hochreitcher & Schmidhuber, '97)

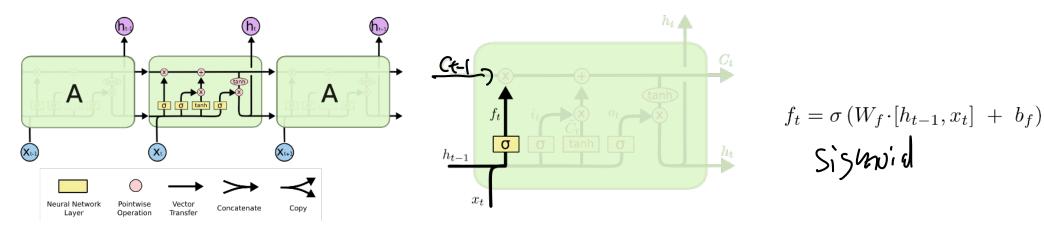
- Core idea: maintain separate state h_t and cell c_t (memory)
- *h_t*: full update every step
- c_t : only partially update through gates
 - σ layer outputs importance ([0,1]) for each entry and only modify those entries of c_t



Forget gate f_t

• f_t outputs whether we want to "forget" things in c_t

- Compute $c_{t-1} \bigotimes f_t$ (element-wise)
- $f_t(i) \rightarrow 0$: want to forget $c_t(i)$
- $f_t(i) \rightarrow 1$: we want to keep the information in $c_t(i)$

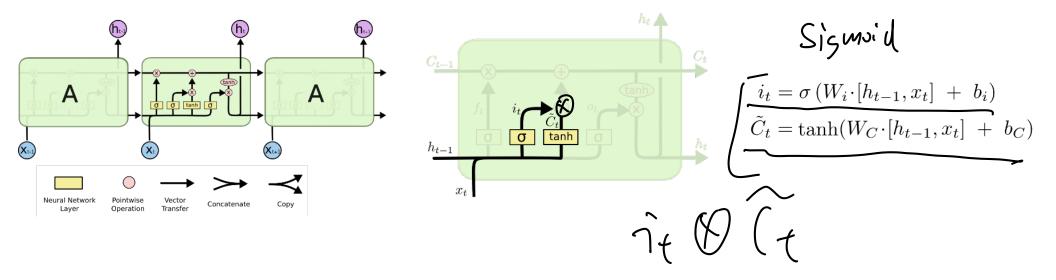


Input gate i_t

i_t extracts useful information from *X_t* to update memory
c̃_t: information from *X'_t* to update memory

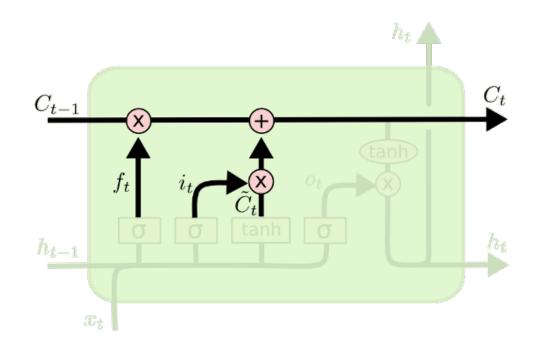
- i_t : which dimension in the memory should be updated by X_t
 - $i_t(j) \rightarrow 1$: we want to use the information in $\tilde{c}_t(j)$ to update memory

• $i_t(t) \rightarrow 0$: $\tilde{c}_t(j)$ should not contribute to memory



Memory update

- $c_t = f_t \otimes c_{t-1} + i_t \otimes \tilde{c}_t$
- f_t forget gate; i_t input date
- $f_t \otimes c_{t-1}$: drop useless information in old memory
- $i_t \otimes \tilde{c}_t$: add selected new information from current input

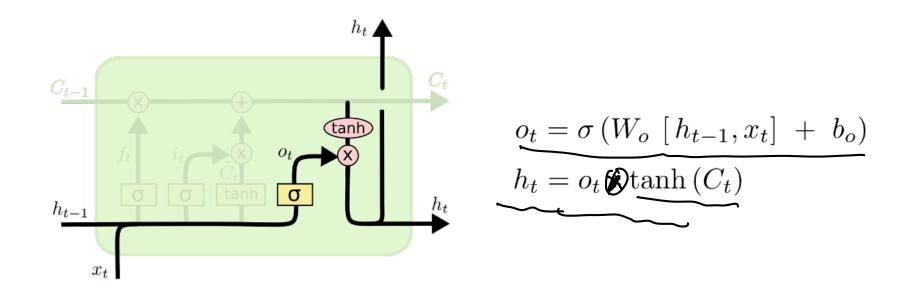


Output gate O_t

• Next hidden state $h_t = o_t \odot tanh(c_t)$

- $tanh(c_t)$: non-linear transformation over all past information
- o_t : choose important dimensions for the next state
 - $o_t(j) \to 1$: $tanh(c_t(j))$ is important for the next state

$$o_t(j) \to 0$$
: tanh $(c_t(j))$ is not important



- $h_t = o_t \odot \tanh(c_t)$
- $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
- \tilde{c}_t

Α

Remarks:

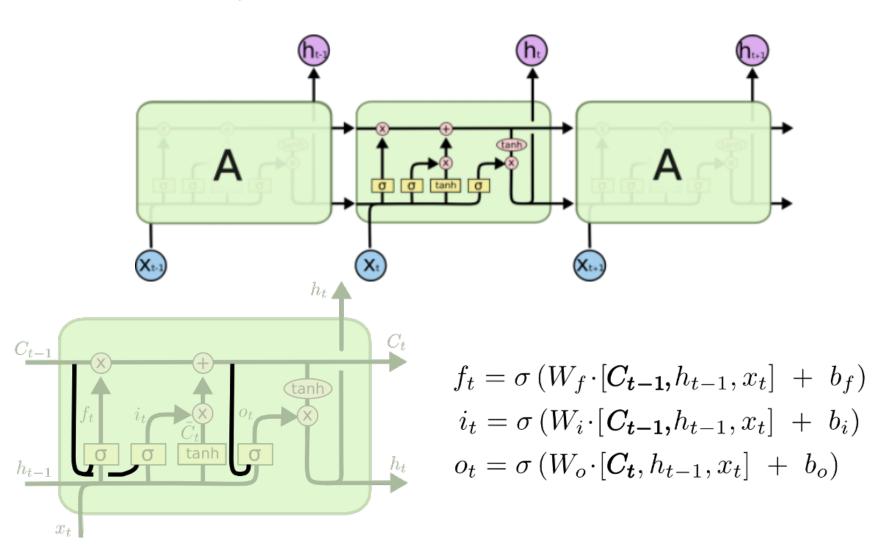
• $Y_t = g(h_t)$

- 1. No more matrix multiplications for c_t
- 2. LSTM does not have guarantees for gradient explosion/vanishing
- 3. LSTM is the dominant architecture for sequence modeling from '13 '16.
- 4. Why tanh

LSTM Variant

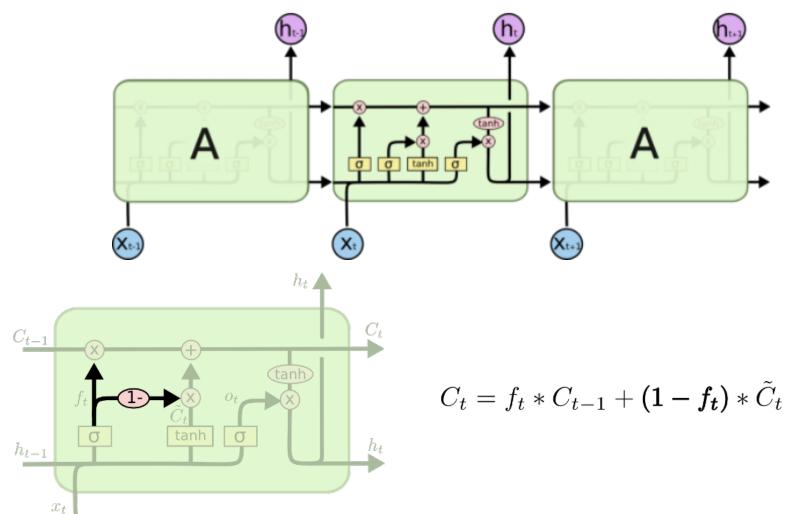
Peephold Connections (Gers & Schmidhuber '00)

• Allow gates to take in c_t information



Simplified LSTM

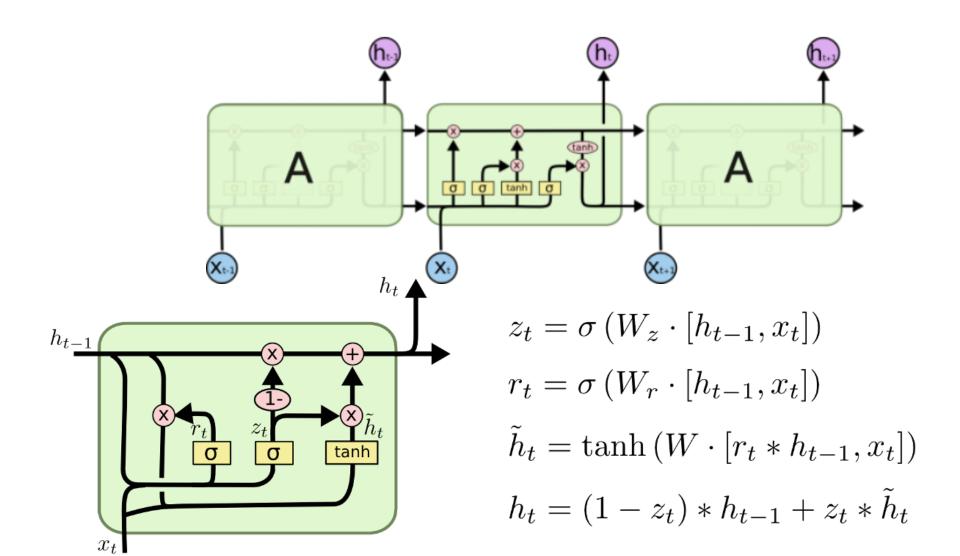
- Assume $i_t = 1 f_t$
- Only two gates are needed: fewer parameters



LSTM Variant

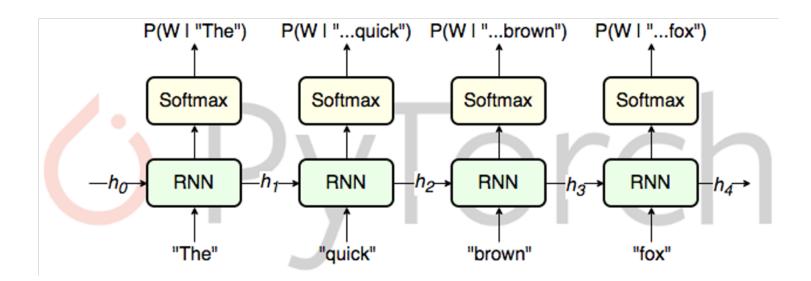
Gated Recurrent Unit (GRU, Cho et al. '14)

• Merge h_t and c_t : much fewer parameters



LSTM application: language model

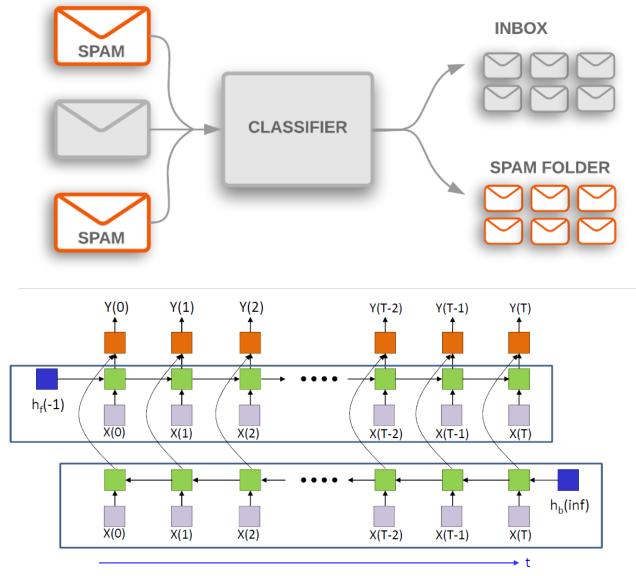
- Autoregressive language model $P(X; \theta) = \prod_{t=1}^{L} P(X_t \mid X_{i < t}; \theta)$
 - X: a sentence
 - Sequential generation
- LSTM language model
 - X_t : word at position t.
 - *Y_t*: softmax over all words
- Data: a collection of texts:
 - Wiki



LSTM

LSTM application: text classification

Bi-dreictional LSTM and them run softmax on the final hidden state.



Attention Mechanism

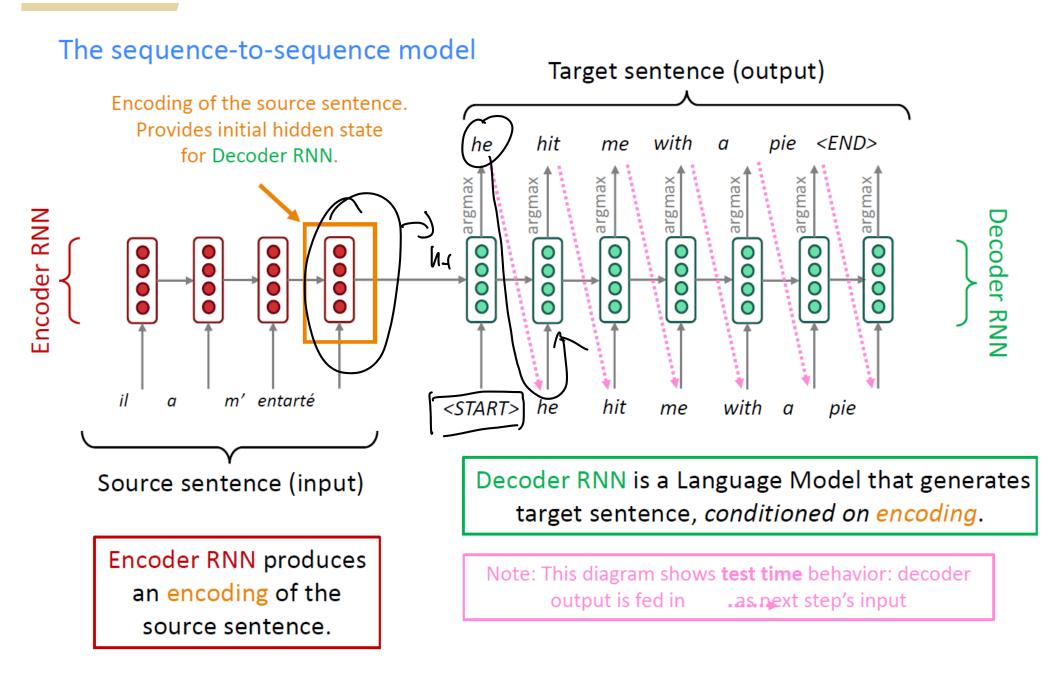
Machine Translation

- Before 2014: Statistical Machine Translation (SMT)
 - Extremely complex systems that require massive human efforts
 - Separately designed components
 - A lot of feature engineering >
 - Lots of linguistic domain knowledge and expertise
- Before 2016:
 - Google Translate is based on statistical machine learning
- What happened in 2014?
 - Neural machine translation (NMT)

Sequence to Sequence Model

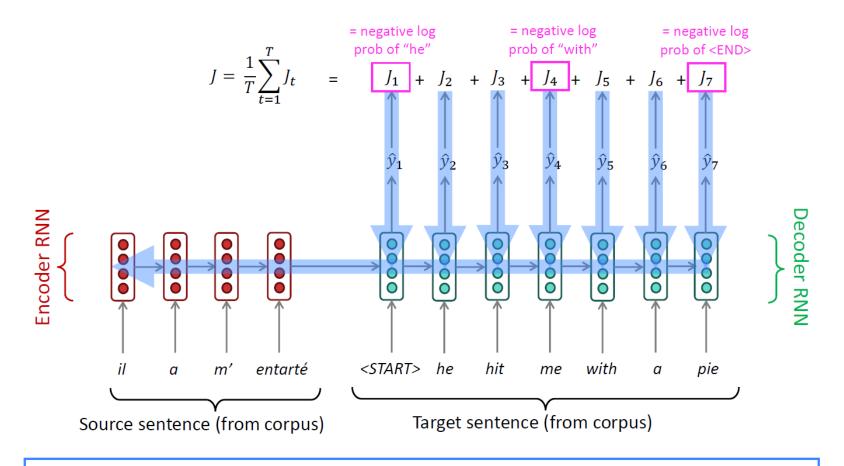
- Neural Machine Translation (NMT)
 - Learning to translate via a **single end-to-end** neural network.
 - Source language sentence X, target language sentence $Y = f(X; \theta)$
- Sequence to Sequence Model (Seq2Seq, Sutskever et al., '14)
 - Two RNNs: f_{enc} and f_{dec}
 - Encoder f_{enc} :
 - Takes X as input, and output the initial hidden state for decoder
 - Can use bidirectional RNN
 - Decoder f_{dec} :
 - It takes in the hidden state from f_{enc} to generate Y
 - Can use autoregressive language model

Sequence to Sequence Model



Training Sequence to Sequence Model

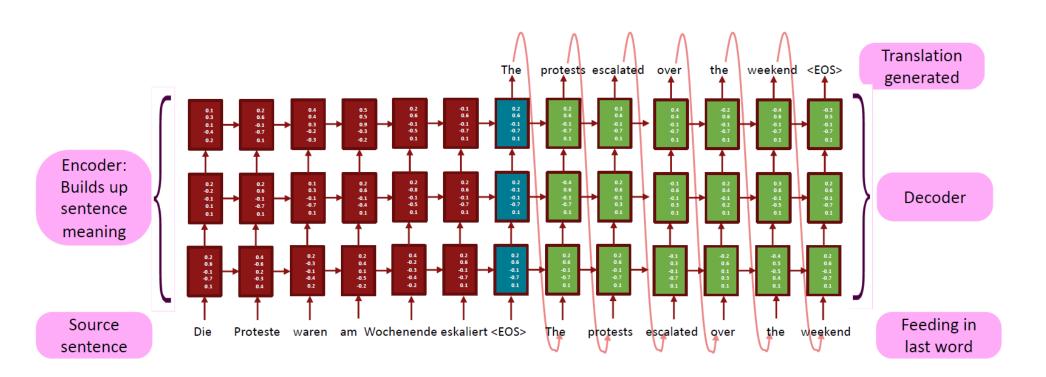
- Collect a huge paired dataset and train it end-to-end via BPTT
- Loss induced by MLE $P(Y|X) = P(Y|f_{enc}(X))$



Seq2seq is optimized as a single system. Backpropagation operates "end-to-end".

Deep Sequence to Sequence Model

• Stacked seq2seq model



Machine Translation

• 2016: Google switched Google Translate from SMT to NMT

