Recurrent Neural
Networks




Sequence Data
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State-Space Model
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e X.:input

e Y.: output

¢ Yta hz =f(ht—17 Xt; 0)
e h_,:initial state

Y(t)

Time



Recurrent Neural Network

e /1, hidden state Y(t)
e X.:input h, * * *}_*\ *
0 3

e Y.: output . . .
~ o+ t 1 f f

e Y,h =f(h_y,X;0) X(t)

e h_,:initial state t=0

Time

Fully-connect NN vs. RNN
e /1,: a vector summarizes all past inputs (a.k.a. “memory”)
e 1_, affects the entire dynamics (typically set to zero)

e X, affects outputs and states after ¢

e Y. dependson X, ..., X,




Recurrent Neural Network

e /1, hidden state Y(t)
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e Y.: output

. f { f f 1 { 1
o Y. h, = f(h_. X,; 0) X(t) | J
e h_,:initial state t=0 L

Fully-connect NN vs. RNN
 RNN can be viewed as repeated applying fully-connected NNs

e h,= (WX, + Wn_, + b))
+ Y, = o (WPh, + o)
e 6,0, are activation functions (sigmoid, ReLU, tanh, etc)




Recurrent Neural Network

Y(t)

X(t)
t=0

Time

Stack K layers of fully-connected NN
o ht(k): hidden state
e X.:input

. Y output OMQAO‘Y(V C /UA/

h(l) = FO(RD, X0 &
h(k) _f (h(k)l’ t(k 1)

eV = fz(ht(K) 0)

o hfkl) initial states




Training Recurrent Neural Network @/(

J(1), Trae
e /i, hidden state mww)
e X: input vy v() v Yr-2) Y(T-1) ¥(I)
. Yt: output
o h ¥ |n|t|alstate | = a2 = X(T o

= (Y (0 - Yt

e Data: {(X,, D,)},_, (RNN canﬁwandle more general data format)
T

, Loss L(0) = Z £(Y,D
=1
e Goal: learn @ by gradient-based method
e Back propagation



Back Propagation Through Time

o h,= o (WHX +WUbp _ + b))
o Y = 0,(WPh, + b®) I .7

Y (0) Y (1) Y(2) Y(T-2) Y(T-1) Y(T)

o Zt(l): pre-activation of hidden state
(ht - Gl(Zt(l))) h, ceee
o Zt(z) . pre-activation of output

(Yt = 02(21(2))) X(0) X(1) X(2) X(T-2) X(T-1) X



Extensions

What if Y, depends on the entire inputs?
e Biredictional RNN:
* AN RNN for forward dependenaes t=0,...,T

e An RNN for E bagﬂ@[@pendenues t=T,..0
o Y, = fo(h!, h}; 0)
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Extensions

RNN for sequence classification (sentiment analysis)
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Practical issues of RNN

Linear RNN derivation (6 ( ‘2 ) c 2
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Practical issues of RNN: training

Gradient explosion and gradlent vanishing
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Techniques for avoiding gradient explosion
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e |dentity initialization W(/(/ = l

e Truncated backprop through time ?

* Only backprop for a few steps 7 N [
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Preserve Long-Term Memory % W/W'Js oy
K%
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e Difficult for reserve long-term memory

e The hidden state A, is constantly being written (short-term memory)
e Use a separate cell to maintain long-term memory
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Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, "97)
e RNN architecture for learning long-term dependencies

e o: layer with sigmoid activation (Oh by )
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Neural Network Pointwise Vector
Layer Operation Transfer Concatenate Copy




Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, "97)
e Core idea: maintain separate state /1, and cell ¢, (memory)
e h1,: full update every step .
-mpartiallﬁpdate through gates
e o layer outputs imp,ortance ([(‘)j]) for each entry and only modify those
entries of ¢,
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Long Short-Term Memory Network

_

( Forget gate ﬁj

e f. outputs whether we want to “forget” things in c,
e Compute ¢,_; § f, (element-wise)
e (i) = 0: want to forget c,(i)
e (i) = 1: we want to keep the information in ¢ (i)
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Long Short-Term Memory Network

Input gate 1,
e [, extracts useful information from X, to update memory

- . W-(
e ¢,: information from X/to update memory

e i,: which dimension in the memory should be updated by X,
~ . N . . . ~ s
e () — l:we want to use the information in ¢,(j) 0 update memory

e ;(f) = 0:¢,(j) should not contribute to memory
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Long Short-Term Memory Network

Memory update

G =fi®c +h®E

o f, forget gate; i, input date

* f, ® c,_;: drop useless information in old memory

* [, @ C,: add selected new information from current input



Long Short-Term Memory Network

Output gate o,
e Next hidden state i, = 0, © tanh(c,)
e tanh(c,): non-Tinear transformation over all past information
W . . .
 0,: choose important dimensions for the next state
e 0(j) = 1 :tanh(c(j))is Wate

° 07(j) — 0 : tanh(c,(J)) is not important
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Long Short-Term Memory Network
& ® 6

e i, = 0, © tanh(c,) 1 t
e, =f0c¢_+1,0C¢ a blo—s \{ AN
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Remarks:
1. No more matrix multiplications for ¢,

2. LSTM does no uarantees for gradient explosion/vanishing
3. LSTMis t inant architecture for sequence modeling from ’13 - "16.

4. Why tanh -




LSTM Variant

Peephold Connections (Gers & Schmidhuber '00)
 Allow gates to take in ¢, information
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LSTM Variant

Simplified LSTM

0 Assume@g;};@
e Only tw es are needed: fewer parameters
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LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. '14)
e Merge h, and ¢,;: much fewer parameters
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LSTM application: language model

e Autoregressive language model(P(X; 9)!=5Hf=1P(Xt | X.; 0)
5) - —_—
(ST |

e X:asentence
e Sequential generation
e LSTM language model
e X.: word at position .
e Y,: softmax over all words

e Data: a collection of texts:
o Wiki

P(WI"The") P(WI"..quick") P(WI". brown") P(WI"..fox")

| Softmax I l Softmax I | Softmax I l Softmax l
A A 1\ v
—hg— RNN |7h1—- RNN I-hz—-l RNN I-hr-l RNN l»h4—>

IlThell Ilquickll llbrown" llfoxll




LSTM application: text classification

Bi-dreictional LSTM and them run softmax on the final hidden state.
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Attention Mechanism

W



Machine Translation

e Before 2014: Statistical Machine Translation (SMT)
. Extremely complex systems that require massive human efforts
e Separately designed componentsJ T
* Alot of feature engineering >

e Lots of linguistic domai owledge and expertise

e Before 2016:
e Google Translate is based on statistical machine learning

e What happened in 2014?

e Neural machine translation (NMT)
— —




Sequence to Sequence Model

e Neural Machine Translation (NMT)
e Learning to translate via a single end-to-end neural network.

e Source language sentence X, target language sentence Y = f(X; 6)
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e Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)
e Two RNNs: f,, .and f,,.
e Encoderj,, .

e Takes X as input, and output the initial hidden state for decoder
¢/ Can use bidirectional RNN

e Decoder f,,.:

e |t takes in the hidden state from f, .to generate Y
e Can us@ssive language model
(212




Sequence to Sequence Model

The sequence-to-sequence model
Target sentence (output)

Encoding of the source sentence. r A \
Provides initial hidden state , . .
for Decoder RNN. @ hit me with a pie <END>
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Source sentence (input) Decoder RNN is a Language Model that generates

target sentence, conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.




Training Sequence to Sequence Model

e Collect a huge paired dataset and train it end-to-end via BPTT
e Loss induced by MLE P(Y | X) = P(Y | f,,.(X))

= negative log = negative log = negative log
1 T prob of “he” prob of “with” prob of <END>
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Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.




Deep Sequence to Sequence Model

e Stacked seqg2seq model

Translation
generated
Encoder:
Builds up } Decoder
sentence
meaning
Source Feeding in
last word

sentence



Machine Translation

e 2016: Google switched Google Translate from SMT to NMT
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