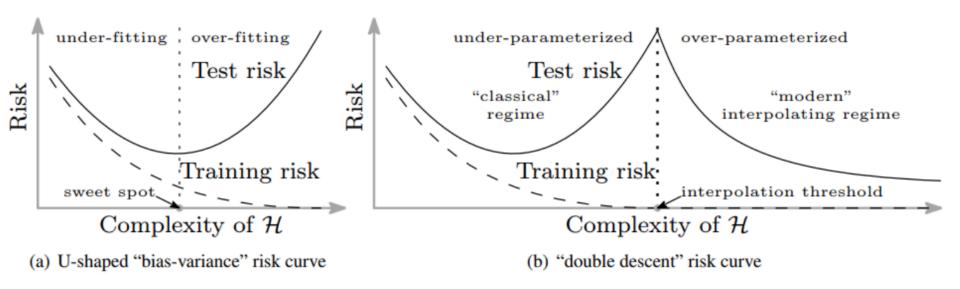
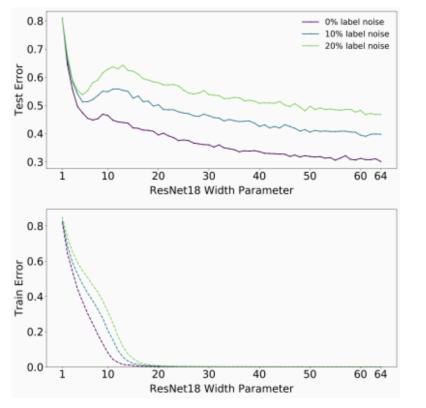
Deep Learning Generalization



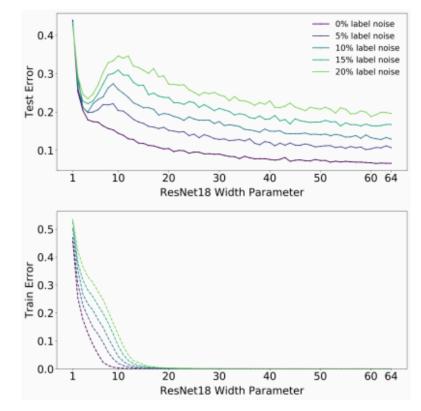
Belkin, Hsu, Ma, Mandal '18

- There are cases where the model gets bigger, yet the (test!) loss goes down, sometimes even lower than in the classical "under-parameterized" regime.
- Complexity: number of parameters.

Widespread phenomenon, across architectures (Nakkiran et al. '19):

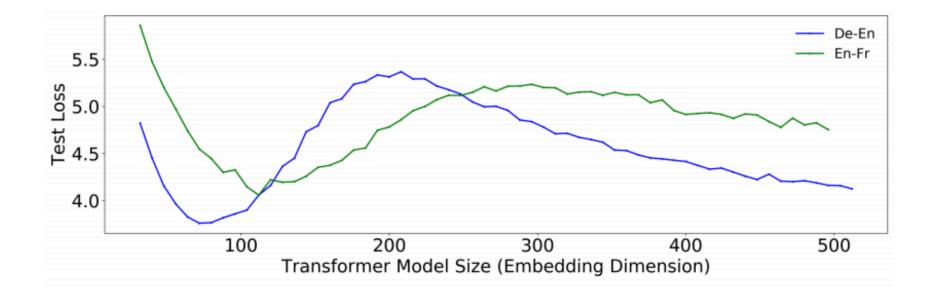


(a) **CIFAR-100.** There is a peak in test error even with no label noise.

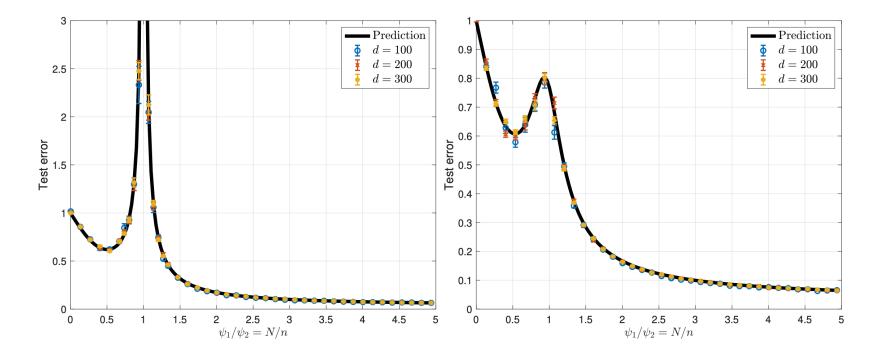


(b) **CIFAR-10.** There is a "plateau" in test error around the interpolation point with no label noise, which develops into a peak for added label noise.

Widespread phenomenon, across architectures (Nakkiran et al. '19):



Widespread phenomenon, also in kernels (can be formally proved in some concrete settings [Mei and Montanari '20]), random forests, etc.



Also in other quantities such as train time, dataset, etc (Nakkiran et al. '19):

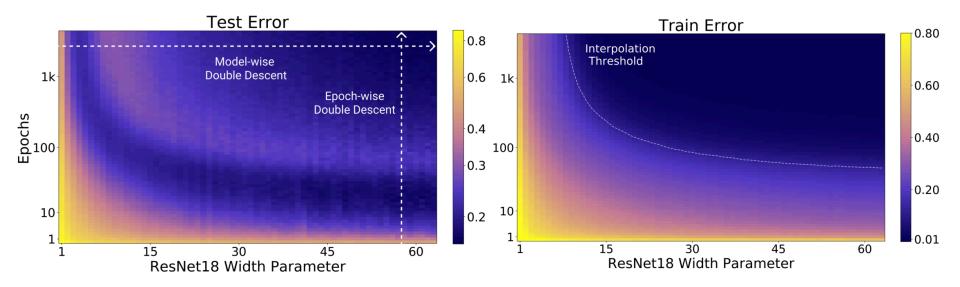


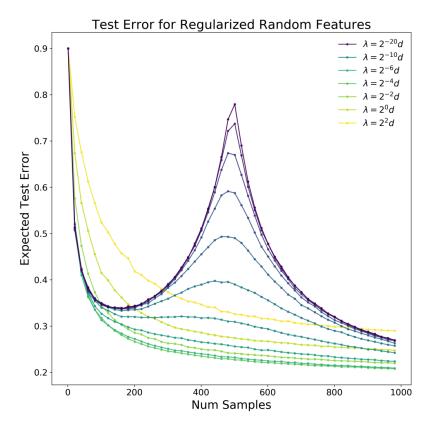
Figure 2: Left: Test error as a function of model size and train epochs. The horizontal line corresponds to model-wise double descent-varying model size while training for as long as possible. The vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent as train time increases. **Right** Train error of the corresponding models. All models are Resnet18s trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.

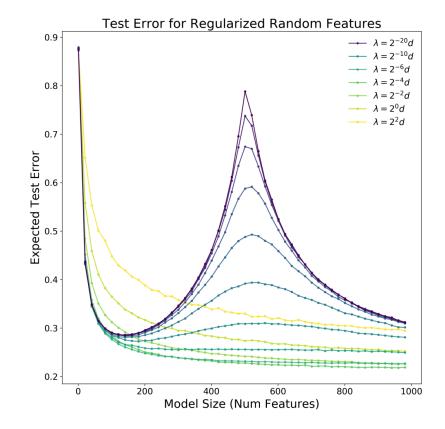
Optimal regularization can mitigate double descent [Nakkiran et al. '21]:

0.9 Unregularized $\lambda = 0.0005$ $\lambda = 0.001$ $\lambda = 0.003$ 0.8 $-\lambda = 0.005$ \rightarrow $\lambda = 0.01$ Optimally Regularized Test Error €0.7 0.5 0.4 10 20 30 40 0 50 60 CNN Model Size (width)

Effect of Regularization: CNNs on CIFAR-100

Optimal regularization can mitigate double descent [Nakkiran et al. '21]:





a) Test Classification Error vs. Number of Trainng Samples.

(b) Test Classification Error vs. Model Size (Number of Random Features).

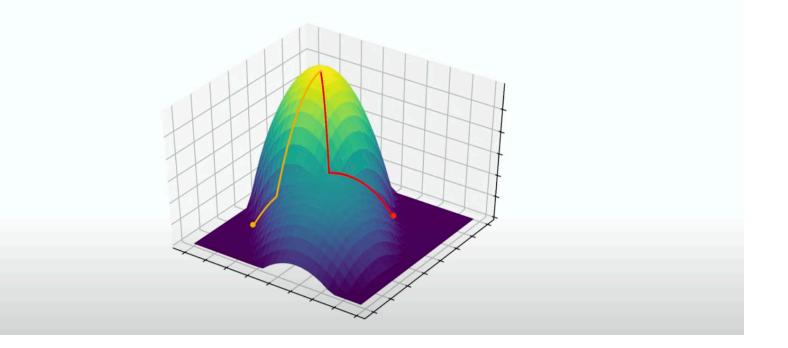
Implicit Regularization

Different optimization algorithm

➔ Different bias in optimum reached

➔ Different Inductive bias

➔ Different generalization properties



Implicit Bias

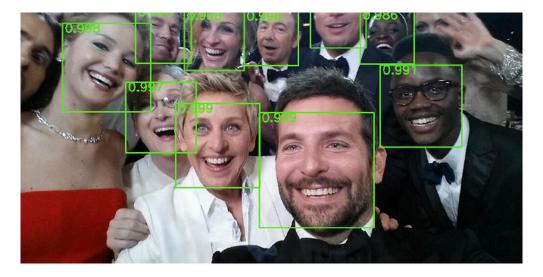
Margin:

- Linear predictors:
 - Gradient descent, mirror descent, natural gradient descent, steepest descent, etc maximize margins with respect to different norms.
- Non-linear:
 - Gradient descent maximizes margin for homogeneous neural networks.
 - Low-rank matrix sensing: gradient descent finds a low-rank solution.

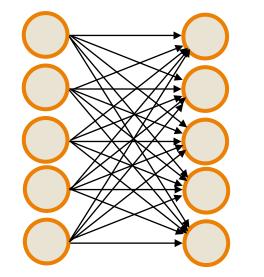
Convolutional Neural Networks

Neural Network Architecture

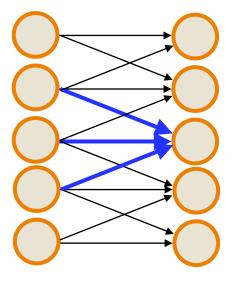
Objects are often **localized in space** so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.



Similarly, to identify edges or other local structure, it makes sense to only look at **local information**



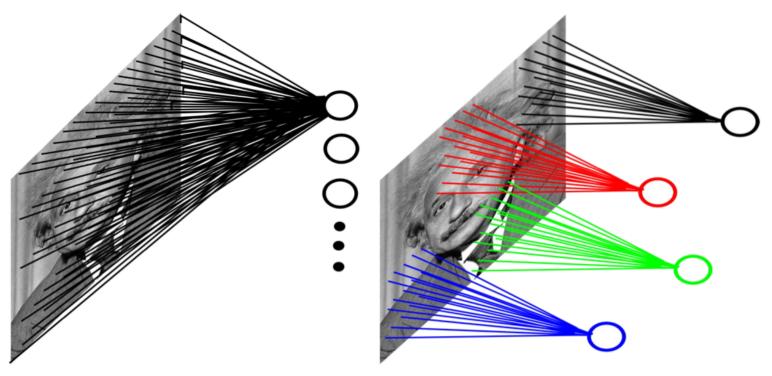
VS.



2d Convolution Layer

Example: 200x200 image

- Fully-connected, 400,000 hidden units = 16 billion parameters
- Locally-connected, 400,000 hidden units 10x10 fields = 40 million params
- Local connections capture local dependencies



Convolution of images (2d convolution)

$$(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

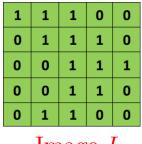
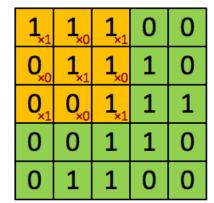
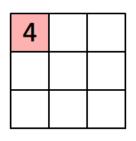


Image I

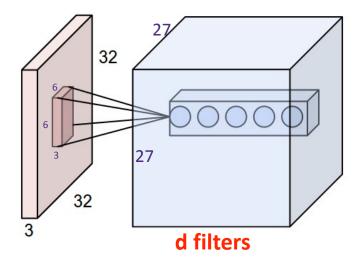


Image



Convolved Feature I * K

Stacking convolved images



Repeat with d filters!

Pooling

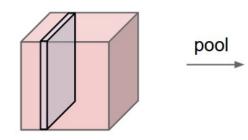
Pooling reduces the dimension and can be interpreted as "This filter had a high response in this general region"

Single depth slice

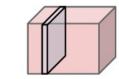
	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4
_				
				У

max pool with 2x2 filters and stride 2

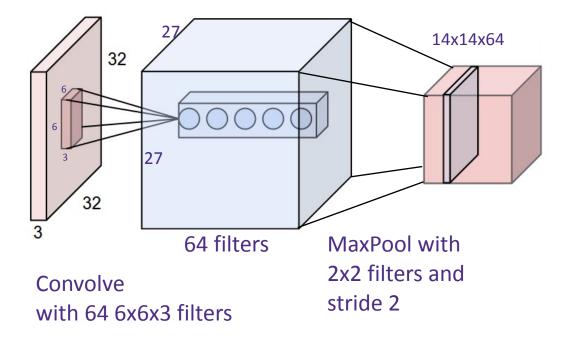
6	8
3	4



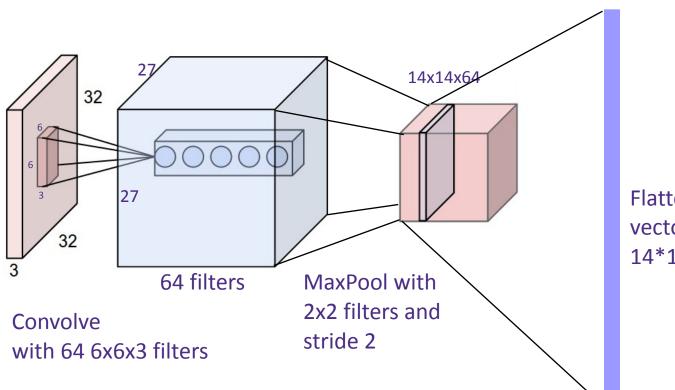
Х



Pooling Convolution layer

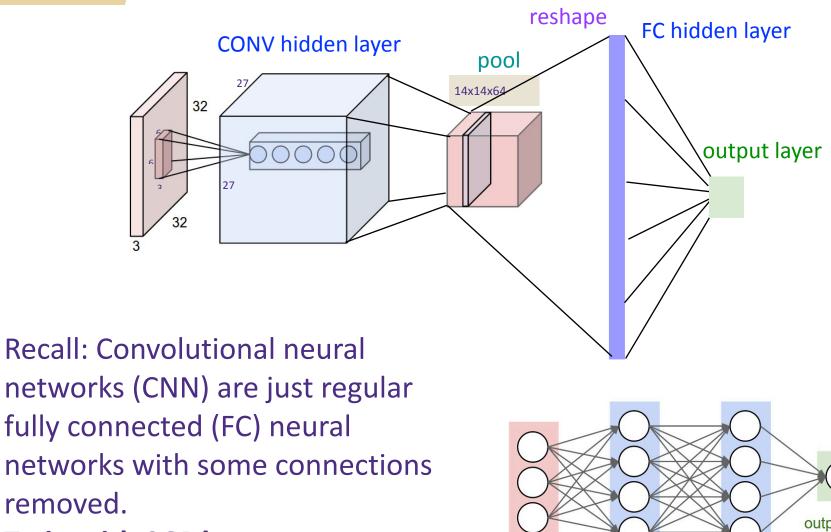


Flattening

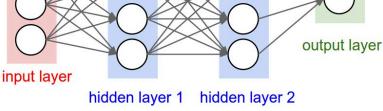


Flatten into a single vector of size 14*14*64=12544

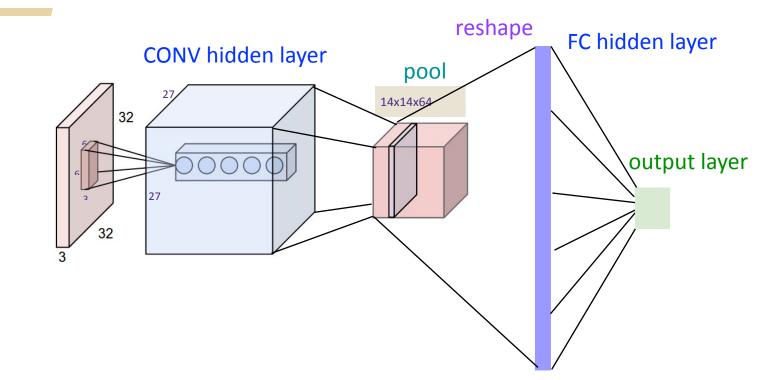
Training Convolutional Networks



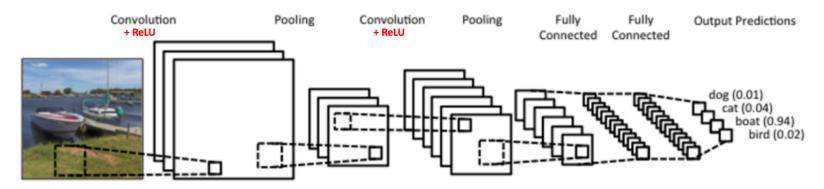
Train with SGD!

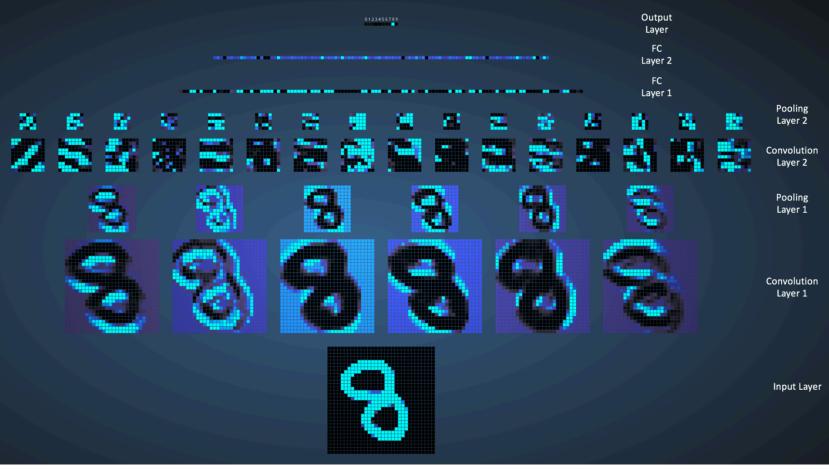


Training Convolutional Networks

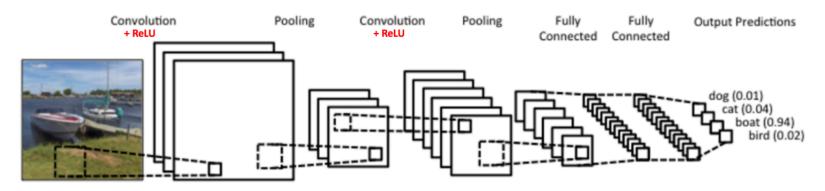


Real example network: LeNet





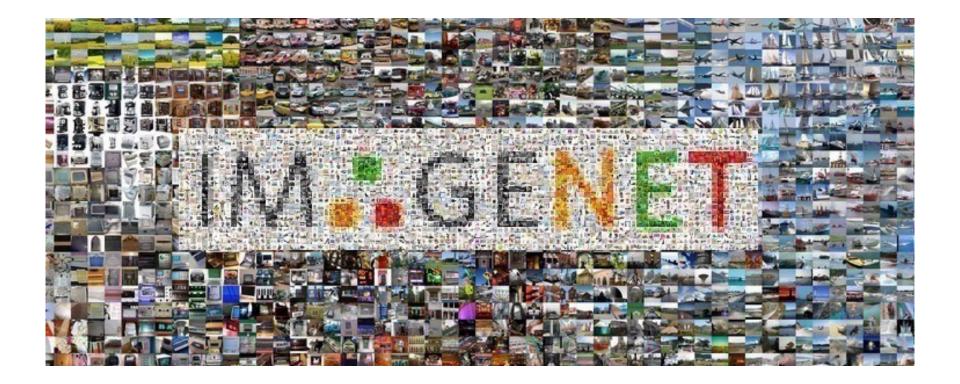
Real example network: LeNet



Famous CNNs

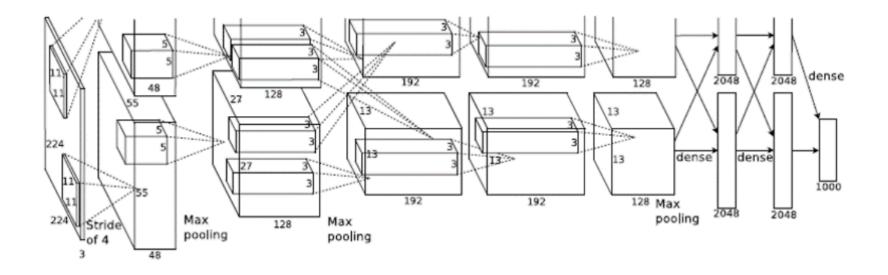
ImageNet Dataset

~14 million images, 20k classes



Deng et al. "Imagenet: a large scale hierarchical image database" '09

Breakthrough on ImageNet: ~the beginning of deep learning era



Krizhevsky, Sutskever, Hinton "ImageNet Claasification with Deep Convolutional Neural Networks", NIPS 2012.

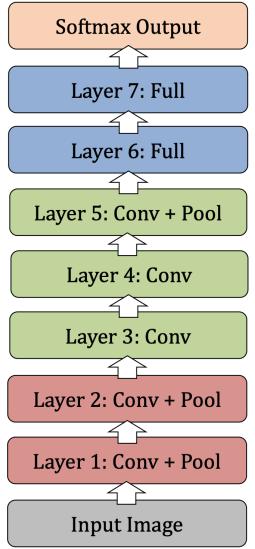
AlexNet

8 layers, ~60M parameters

Top5 error: 18.2%

Techniques used: ReLU activation, overlapping pooling, dropout, ensemble (create 10 patches by cropping and average the predictions), data-augmentation (intensity of RGB channels)

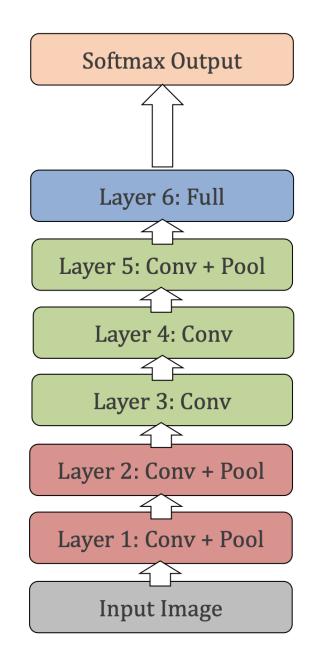
bing pooling, te 10 average the ntation s) Layer 1: Con Input In



Remove top fully-connected layer 7

Drop ~16 million parameters

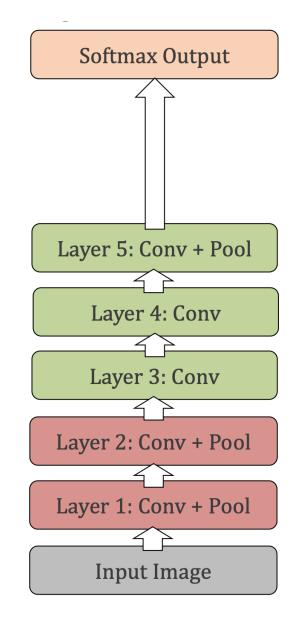
1.1% drop in performance



Remove both fully connected layers 6 and 7

Drop ~50 million parameters

5.7% drop in performance

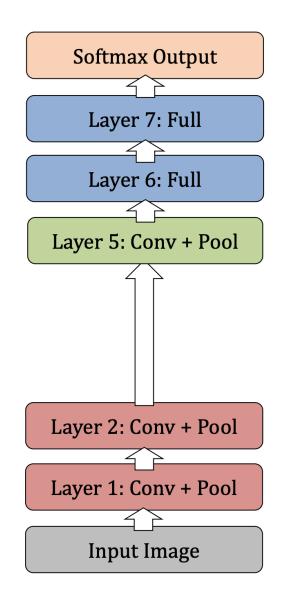


AlexNet

Remove upper convolutio / feature extractor layers (layer 3 and 4)

Drop ~1 million parameters

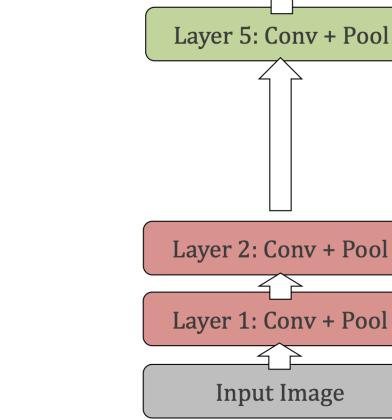
3% drop in performance



Remove top fully connected layer 6,7 and upper convolution layers 3,4.

33.5% drop in performance.

Depth of the network is the key.



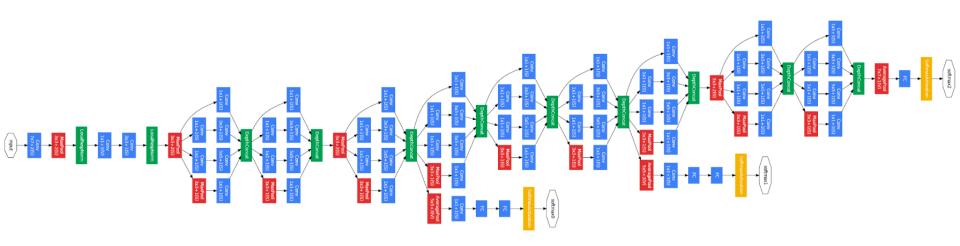
Softmax Output

Motivation: multiscale nature of images

Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]

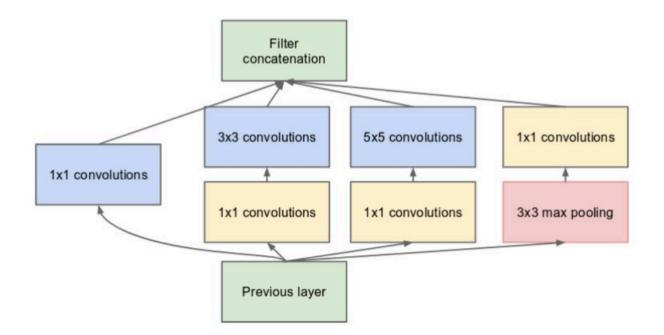


Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]

Inception Module



Multiple filter scales at each layer

Dimensionality reduction to keep computational requirements down

[Going Deep with Convolutions, Szegedy et al. '14]

Residual Networks

Motivation: extremely deep nets are hard to train (gradient explosion/ vanishing)

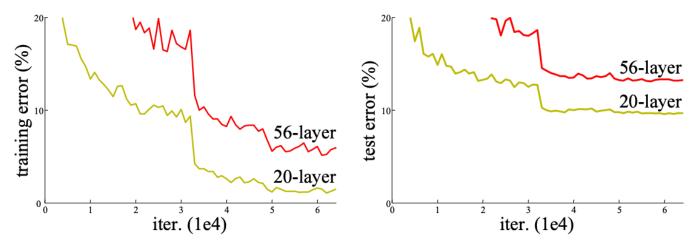
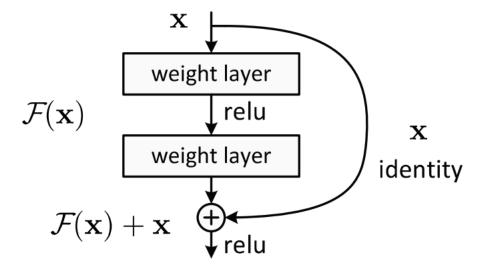


Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Residual Networks

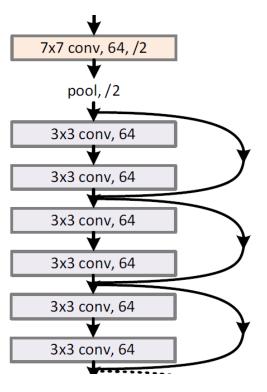
Idea: identity shortcut, skip one or more layers.

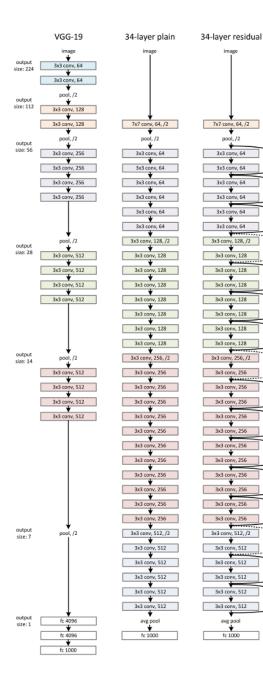
Justification: network can easily simulate shallow network ($F \approx 0$), so performance should not degrade by going deeper.



Residual Networks

- 3.57% top-5 error on ImageNet
- First deep network with > 100 layers.
- Widely used in many domains (AlphaGo)



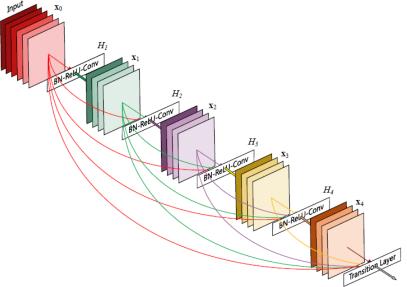


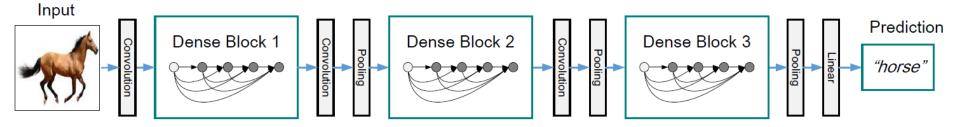
Densely Connected Network

Idea: explicit forward output of layer to all future layers (by concatenation)

Intuition: helps vanishing gradients, encourage reuse features (reduce parameter count)

Issues: network maybe too wide, need to be careful about memory consumption





Neural Architecture / Hyper-Parameter Search

Many design choices:

- Number of layers, width, kernel size, pooling, connections, etc.
- Normalization, learning rate, batch size, etc.

Strategies:

- Grid search
- Random search [Bergestra & Bengio '12]
- Bandit-based [Li et al. '16]
- Gradient-based (DARTS) [Liu et al. '19]
- Neural tangent kernel [Xu et al. '21]