Generalization Theory for Deep Learning

Basic version: finite hypothesis class

Finite hypothesis class: with probability $1-\delta$ over the choice of a training set of size n, for a bounded loss ℓ, we have
$\sup _{f \in \mathscr{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)-\mathbb{E}_{(x, y) \sim D}[\ell(f(x), y)]\right|=O\left(\sqrt{\frac{\log |\mathscr{F}|+\log 1 / \delta}{n}}\right)$

VC-Dimension

Motivation: Do we need to consider every classifier in \mathscr{F} ? Intuitively, pattern of classifications on the training set should suffice. (Two predictors that predict identically on the training set should generalize similarly).

Let $\mathscr{F}=\left\{f: \mathbb{R}^{d} \rightarrow\{+1,-1\}\right\}$ be a class of binary classifiers.
The growth function $\Pi_{\mathscr{F}}: \mathbb{N} \rightarrow \mathbb{F}$ is defined as:

$$
\Pi_{\mathscr{F}}(m)=\max _{\left(x_{1}, x_{2}, \ldots, x_{m}\right)}\left|\left\{\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{m}\right)\right) \mid f \in \mathscr{F}\right\}\right| .
$$

The VC dimension of \mathscr{F} is defined as:

$$
\operatorname{VCdim}(\mathscr{F})=\max \left\{m: \Pi_{\mathscr{F}}(m)=2^{m}\right\}
$$

VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability $1-\delta$ over

 the choice of a training set, for a bounded loss ℓ, we have$$
\sup _{f \in \mathscr{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)-\mathbb{E}_{(x, y) \sim D}[\ell(f(x), y)]\right|=O\left(\sqrt{\frac{\mathrm{VCdim}(\mathscr{F}) \log n+\log 1 / \delta}{n}}\right)
$$

Examples:

- Linear functions: VC-dim = O(dimension)
- Neural network: VC-dimension of fully-connected net with width W and H layers is $\Theta(W H)$ (Bartlett et al., '17).

Problems with VC-dimension bound

1. In over-parameterized regime, bound $\gg 1$.
2. Cannot explain the random noise phenomenon:

- Neural networks that fit random labels and that fit true labels have the same VC-dimension.

Practice: gradient descent

$$
\theta(t+1) \leftarrow \theta(t)-\eta \frac{\partial L(\theta(t))}{\partial \theta(t)}
$$

PAC Bayesian Generalization Bounds

Setup: Let P be a prior over function in class \mathscr{F}, let Q be the posterior (after algorithm's training).

Theorem: with probability $1-\delta$ over the choice of a training set, for a bounded loss ℓ, we have

$$
\begin{gathered}
\sup _{f \in \mathscr{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)-\mathbb{E}_{(x, y) \sim D}[\ell(f(x), y)]\right|= \\
P\left(W_{i j}^{\prime}\right) \sim N\left(0_{\jmath} 1\right) \\
\text { datr-dejendent} \\
\text { bound } \\
\text { does not depend on data }
\end{gathered}
$$

Rademacher Complexity

Intuition: how well can a classifier class fit random noise?
(Empirical) Rademacher complexity: For a training set $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, and a class \mathscr{F}, denote:

$$
\begin{aligned}
& \hat{R}_{n}(S)=\underset{f \in \mathscr{F}}{\mathbb{E}_{\sigma}} \sup _{i=1} \sum_{i}^{n} \sigma_{i} f\left(x_{i}\right) . \\
& +1,-1\} \text { (Rademacher R.V.). }
\end{aligned}
$$

(Population) Rademacher complexity:

$$
R_{n}=\mathbb{E}_{S}\left[\hat{R}_{n}(s)\right] .
$$

Rademacher Complexity Generalization Bound

Theorem: with probability $1-\delta$ over the choice of a training set, for a bounded loss ℓ, we have
$\sup _{f \in \mathscr{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)-\mathbb{E}_{(x, y) \sim D}[\ell(f(x), y)]\right|=O\left(\frac{\hat{R}_{n}}{n}+\sqrt{\frac{\log 1 / \delta}{n}}\right)$
and
$\sup _{f \in \mathscr{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)-\mathbb{E}_{(x, y) \sim D}[\ell(f(x), y)]\right|=O\left(\frac{R_{n}}{n}+\sqrt{\frac{\log 1 / \delta}{n}}\right)$

Kernel generalization bound

Use Rademacher complexity theory, we can obtain a generalization bound $O\left(\sqrt{\left.y^{\top}\left(H^{*}\right)^{-1} y / n\right)}\right.$ where $y \in \mathbb{R}^{n}$ are n labels, and $H^{*} \in \mathbb{R}^{n \times \bar{x}}$ is the kernel (e.g., NTK) matrix.

Norm-based Rademacher complexity bound vel U : $\rho=1$

Theorem: If the activation function is σ is ρ-Lipschitz. Let $\mathscr{F}=\left\{x \mapsto W_{H+1} \sigma\left(W_{h} \sigma\left(\cdots \sigma\left(W_{1} x\right) \cdots\right),\left\|W_{h}^{T}\right\|_{1, \infty} \leq B \forall h \in[H]\right\}\right.$ then $R_{n}(\mathcal{S}) \leq\left\|X^{\top}\right\|_{2, \infty}(2 \rho B)^{H+1} \sqrt{2 \ln d}$ where $X=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{d \times n}$ is the input data matrix.

$$
\begin{aligned}
& \left\|X^{\top}\right\|_{2, \infty}=\max _{i=1, \cdots, d}\left\|X_{1}\right\|_{2} \\
& \left\|W_{n}^{\top}\right\|_{1, \infty}=\operatorname{man}_{\text {vow }}\left\|W_{n}^{m}\right\|_{1}
\end{aligned}
$$

pt: induction layer by layer

Comments on generalization bounds

- When plugged in real values, the bounds are rarely non-trivial (i.e., smaller than 1)
- "Fantastic Generalization Measures and Where to Find them" by Jiang et al. '19: large-scale investigation of the correlation of extant generalization measures with true generalization.

Comments on generalization bounds

- Uniform convergence may be unable to explain generalization of deep learning [Nagarajan and Kolter, '19]
- Uniform convergence: a bound for all $f \in \mathscr{F}$
- Exists example that 1) can generalize, 2) uniform convergence fails.
- Rates:

$$
\begin{aligned}
\text { nou-uniform: } & \text { linear veg vession } \\
& \text { bins }+ \text { Varianie }
\end{aligned}
$$

- Most bounds: $1 / \sqrt{n}$.
- Local Rademacher complexity: $1 / n$.

Separation between NN and kernel

- For approximation and optimization, neural network has no advantage over kernel. Why NN gives better performance: generalization.
- [Allen-Zhu and Li '20] Construct a class of functions \mathscr{F} such that $y=f(x)$ for some $f \in \mathscr{F}$:
- no kernel is sample-efficient; Ueed expouential \# of data
- Exists a neural network that is sample-efficient.
polyusmial samples

Separation between NN and kernel
Defer Kerned method 's a dinar uncuathod with an embedding. $\phi: R d \rightarrow M$, Hilbert
\Rightarrow it turns an element $t \in H$ into a prediction function $y=\langle f, \phi(x)\rangle$

$$
\triangleq f(x)
$$

The method uses $\operatorname{samples}^{n},\left\{x_{i}\right\}_{i=1}^{n}, x_{i} \in D^{d}$ observes $\left\{y_{i}\right\}_{i=1}^{n}$

$$
\begin{aligned}
& \text { serves }\left\{y_{i}\right\}_{i=1}^{n} \operatorname{sinan}^{n}\left(\phi\left(x_{i}\right)\right)_{j=1}^{n}, i \in[n] \\
& f \in \sin)
\end{aligned}
$$

$l, g_{1} \operatorname{argmin} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\langle\phi(k), f\rangle\right)^{2}+\lambda\|f\|^{2}$

Separation between NN and kernel
Thu: \exists a class of functions $\left.C \subseteq\left\{c: D^{d}\right) D\right\}$ and u distribution over De sit.
i) \forall kerned method, $\forall c \in C$,

$$
\begin{aligned}
& \text { given } y_{i}=c\left(x_{i}\right)\left[(c(x)-\langle f, \phi(x)\rangle)^{2}\right] \leqslant \frac{1}{4} \\
& \text { if } \mathbb{E}_{x \sim m}\left[\left(c d^{-1}\right.\right. \text { exponentid }
\end{aligned}
$$

$$
\text { then } \quad u \geqslant 2^{d-1} \text { exponential }
$$

inri) $כ$ simple procedure, that can odpat the true c as long as hid \& the procedure can be simulated by a neural net work $+G 1$)

Separation between NN and kernel
Pf: M: uniform distribution outer $\{-1,1\}^{d}$

$$
C=\left\{C_{S}=\prod_{s \in S} X_{S}, \int C\{1, \cdots, d\}\right\}
$$

Pt of Part ii) choose a basis $\left(\begin{array}{c}-1 \\ 1 \\ \vdots \\ 1 \\ 1\end{array}\right)\left(\begin{array}{c}1 \\ -1 \\ \vdots \\ 1 \\ e_{2}\end{array}\right) \ldots\left(\begin{array}{c}2^{d} \\ 1 \\ 1 \\ \vdots \\ -1\end{array}\right)$

$$
\Rightarrow y_{i}=c_{\rho}\left(e_{i}\right) \text {, if } i \in \delta_{\rho}^{e_{1}} y_{i}=-1
$$

$$
\begin{aligned}
& \text { 和, } y_{i}=-1 \\
& y_{i}=1
\end{aligned}
$$

\Rightarrow Know whether is in Jor not \Rightarrow identify $S \Rightarrow$ lear $(S$ D

Separation between NN and kernel
Part i) C is a basis for $\left\{f:\{-1,1\}^{d}-1,0\right\}$

$$
\mathbb{E}_{x \sim M}\left[C_{\rho}(x) \cdot\left(S^{\prime}(x)\right]=\left\{\begin{array}{ll}
0 & \text { if } \int \neq S^{-1} \\
1 & \text { it } . S=\delta^{-1}
\end{array}\right\}\right.
$$

Goal: $\mathbb{E}_{x \sim M}\left[\left(C_{\delta^{+}(x)-}\langle f, \phi(x)\rangle\right)^{2}\right]$

1) since $f \in \operatorname{span}\left(\phi\left(x_{i}\right)\right)_{j=1}^{n}$

$$
\begin{aligned}
& \text { ice } f \in \operatorname{span}(\phi(N)) i=1 \\
& f=\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right), f(x)=\sum_{i=1}^{n} a_{i}\left\langle\phi\left(x_{i}, \phi(x)\right\rangle\right. \\
& x\left.<\phi\left(x_{i}\right), \phi(x)\right\rangle \\
&= \sum_{\delta([d]} \lambda_{i}, f C \delta(x)
\end{aligned}
$$

Separation between NN and kernel

$$
\begin{aligned}
& \mathbb{E}_{x \sim M}\left[\left(C_{S^{*}}(y)-\langle f, \phi(x)\rangle\right)^{2}\right] \\
& =E_{x-\mu}\left[\left(f^{s}(x)-\sum_{f\left(\left[d_{j}\right)\right.} \sum_{i=1}^{n} a_{i} \cdot \lambda_{i}, s^{n}(g(x))^{2}\right]\right. \\
& =\left(1-\sum_{i=1}^{n} a_{i} \lambda_{i}, s^{*}\right)^{2}+\sum_{S \neq S^{*}}\left(\sum_{i=1}^{n} a_{i} \lambda_{i} s\right)^{2}
\end{aligned}
$$

by ussumptou error $\leqslant \frac{1}{9}$

$$
\begin{aligned}
& \Rightarrow\left(1-\sum_{i=1}^{n} u_{i} \lambda_{i}, s f\right)^{2} \leq \frac{\pi}{4} \\
& \quad \sum_{s \neq S^{+}}^{n}\left(\sum_{i=1}^{n} a_{i} \lambda i, s\right)^{2} \leqslant \frac{1}{4}
\end{aligned}
$$

Separation between NN and kernel
NotatNus

$$
\begin{aligned}
& \begin{array}{l}
\Lambda_{\delta, i}=\lambda_{i}, S_{d}=\sum_{i=1}^{n} \lambda_{i, S}, a_{i, S H} \\
A_{i}=n \times 2
\end{array} \\
& A=n \times 2^{2} \\
& A_{i}, S^{*}=a_{i}, S^{*} \\
& \Omega=\Lambda A: 2^{d} \times 2^{d} \text { dr vank-n } \\
& \left(1-\Omega_{s^{\prime}, s^{*}}\right)^{2}<\frac{1}{4} \rightarrow \Omega_{s^{*}}, s^{*} \geqslant \frac{4}{9} \\
& \leq \frac{1}{4} \text { (ि) } \because \frac{4}{9} \\
& \leqslant \frac{1}{4} \frac{\Omega: 2^{0} \times 2^{d}}{\frac{3}{4} \cdot 2^{4}}
\end{aligned}
$$

Separation between NN and kernel
$\Omega=\operatorname{diag}(\Omega)+\Omega^{\prime}, \Omega^{\prime}:$ off-diagand

$$
\left\|\Omega^{i}\right\|_{F}^{2}=\frac{2^{d}}{9}=\sum \operatorname{eigen}^{2}(\Omega)
$$

$\Rightarrow \Omega^{\prime}$ has $\frac{2}{3}$ at mote $\frac{2^{d}}{4}$ eigen value)
\Rightarrow consider subspace with eigenvalue) $C \frac{2}{3}$ which has dimer sion at lease $\frac{3}{4} \cdot 2^{\alpha}$ $\forall x \in$ subspace

$$
\begin{aligned}
& t \text { subsparl } \operatorname{diag}(\Omega) \times+\Omega^{i} \times \|_{2} \\
& \|\Omega \times\|_{2}=\|>\| \operatorname{diag}(\Omega) \times\left\|_{2}-\right\| \Omega^{2} \times \|_{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\|\Omega \times\|_{2}> & \|\operatorname{diag}(\Omega) \times\|_{2}-\left\|x \Omega^{2}\right\|_{2} \\
\Rightarrow & x \in \operatorname{sean}(\Omega)
\end{array}
$$

Double descent

(a) U-shaped "bias-variance" risk curve

(b) "double descent" risk curve

Belkin, Hsu, Ma, Mandal '18

- There are cases where the model gets bigger, yet the (test!) loss goes down, sometimes even lower than in the classical "under-parameterized" regime.
- Complexity: number of parameters.

Double descent

Widespread phenomenon, across architectures (Nakkiran et al. '19):

(a) CIFAR-100. There is a peak in test error even with no label noise.

(b) CIFAR-10. There is a "plateau" in test error around the interpolation point with no label noise, which develops into a peak for added label noise.

Double descent

Widespread phenomenon, across architectures (Nakkiran et al. '19):

Double descent

Widespread phenomenon, also in kernels (can be formally proved in some concrete settings [Mei and Montanari '20]), random forests, etc.

Double descent

Also in other quantities such as train time, dataset, etc (Nakkiran et al. '19):

Figure 2: Left: Test error as a function of model size and train epochs. The horizontal line corresponds to model-wise double descent-varying model size while training for as long as possible. The vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent as train time increases. Right Train error of the corresponding models. All models are Resnet18s trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4 K epochs.

Double descent

Optimal regularization can mitigate double descent [Nakkiran et al. '21]:

Effect of Regularization: CNNs on CIFAR-100

Double descent

Optimal regularization can mitigate double descent [Nakkiran et

 al. '21]:
a) Test Classification Error vs. Number of Trainng Samples.

(b) Test Classification Error vs. Model Size (Number of Random Features).

Implicit Regularization

Different optimization algorithm
\rightarrow Different bias in optimum reached
\rightarrow Different Inductive bias
\rightarrow Different generalization properties

Implicit Bias

Margin:

- Linear predictors:
- Gradient descent, mirror descent, natural gradient descent, steepest descent, etc maximize margins with respect to different norms.
- Non-linear:
- Gradient descent maximizes margin for homogeneous neural networks.
- Low-rank matrix sensing: gradient descent finds a low-rank solution.

