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Basic version: finite hypothesis class

Finite hypothesis class: with probability  over the choice 
of a training set of size , for a bounded loss , we have  

1 − δ
n ℓ

sup
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi) − $(x,y)∼D [ℓ( f(x), y)] = O ( log |ℱ | + log 1/δ
n )



VC-Dimension

Motivation: Do we need to consider every classifier in ? 
Intuitively, pattern of classifications on the training set should 
suffice. (Two predictors that predict identically on the training set 
should generalize similarly). 

Let  be a class of binary classifiers. 

The growth function  is defined as: 

. 

The VC dimension of  is defined as: 
 

ℱ

ℱ = {f : ℝd → {+1, − 1}}

Πℱ : ℕ → *
Πℱ(m) = max

(x1,x2,…,xm)
{( f(x1), f(x2), …, f(xm)) ∣ f ∈ ℱ}

ℱ
VCdim(ℱ) = max{m : Πℱ(m) = 2m} .



VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability  over 
the choice of a training set, for a bounded loss , we have  

 

Examples: 
• Linear functions: VC-dim = O(dimension) 
• Neural network: VC-dimension of fully-connected net with width 

 and  layers is  (Bartlett et al., ’17).
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Problems with VC-dimension bound

1. In over-parameterized regime, bound >> 1. 
2. Cannot explain the random noise phenomenon: 

• Neural networks that fit random labels and that fit true labels 
have the same VC-dimension.



PAC Bayesian Generalization Bounds

Setup: Let  be a prior over function in class , let  be the 
posterior (after algorithm’s training). 

Theorem: with probability  over the choice of a training set, 
for a bounded loss , we have 
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Rademacher Complexity

Intuition: how well can a classifier class fit random noise? 

(Empirical) Rademacher complexity: For a training set 
, and a class , denote:  

 . 

where  (Rademacher R.V. ). 

(Population) Rademacher complexity:  

.

S = {x1, x2, …, xn} ℱ
R̂n(S) = $σ sup
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σi f(xi)

σi ∼ Unif{+1, − 1}

Rn = $S [R̂n(s)]
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Rademacher Complexity Generalization Bound

Theorem: with probability  over the choice of a training set, 
for a bounded loss , we have

 

and  
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Use Rademacher complexity theory, we can obtain a 

generalization bound  where  are  
labels, and  is the kernel (e.g., NTK) matrix. 

O( y⊤(H*)−1y/n) y ∈ ℝn n
H* ∈ ℝn×n
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Norm-based Rademacher complexity bound

Theorem: If the activation function is  is -Lipschitz. Let  
 

then  where 
 is the input data matrix. 

σ ρ
ℱ = {x ↦ WH+1σ(Whσ(⋯σ(W1x)⋯),∥WT

h ∥1,∞ ≤ B ∀h ∈ [H]}
Rn(6) ≤ ∥X⊤∥2,∞(2ρB)H+1 2 ln d

X = [x1, …, xn] ∈ ℝd×n
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Comments on generalization bounds

• When plugged in real values, the bounds are rarely non-trivial 
(i.e., smaller than 1) 

• “Fantastic Generalization Measures and Where to Find them” 
by Jiang et al. ’19 : large-scale investigation of the correlation of 
extant generalization measures with true generalization.

Image credits to Andrej Risteski
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Comments on generalization bounds

• Uniform convergence may be unable to explain generalization 
of deep learning [Nagarajan and Kolter, ’19] 
• Uniform convergence: a bound for all  
• Exists example that 1) can generalize, 2) uniform 

convergence fails. 

• Rates: 
• Most bounds: . 
• Local Rademacher complexity: .

f ∈ ℱ
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Separation between NN and kernel

• For approximation and optimization, neural network has no 
advantage over kernel. Why NN gives better performance: 
generalization. 

• [Allen-Zhu and Li ’20] Construct a class of functions such that 
 for some : 

• no kernel is sample-efficient; 
• Exists a neural network that is sample-efficient.

ℱ
y = f(x) f ∈ ℱ
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Separation between NN and kernel

Deff kernel
method is a linear mentalbad

with an embedding 4 29 3M Hilbert
Spall

it turns an element tf H into

a prediction function y Cf 41 17
E TH

The method uses samples Xi it Xifdd
observes Mili u

ft Stan axilla
if Tn

e g arguing
Hi count text't



Separation between NN and kernel
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Separation between NN and kernel

I

Pt M uniform distribution over Hisd

2d element
C G ILSXs

5C final
29

Hot parting choose a basis

ftp it
Yi Heil if it 5 y

ed

if I Yi I
Know whether i s in for not

identify 5 learn CE a



Separation between NN and kernel
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Separation between NN and kernel
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Separation between NN and kernel
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Separation between NN and kernel
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Double descent

• There are cases where the model gets bigger, yet the (test!) 
loss goes down, sometimes even lower than in the classical 
“under-parameterized” regime. 

• Complexity: number of parameters.

Belkin, Hsu, Ma, Mandal ‘18



Double descent 

Widespread phenomenon, across architectures (Nakkiran et al. 
’19):



Double descent 

Widespread phenomenon, across architectures (Nakkiran et al. 
’19):



Double descent

Widespread phenomenon, also in kernels (can be formally proved 
in some concrete settings [Mei and Montanari ’20]), random 
forests, etc.



Double descent 

Also in other quantities such as train time, dataset, etc (Nakkiran 
et al. ’19):



Double descent 

Optimal regularization can mitigate double descent [Nakkiran et 
al. ’21]:



Double descent 

Optimal regularization can mitigate double descent [Nakkiran et 
al. ’21]:



Implicit Regularization



Implicit Bias

Margin: 

• Linear predictors: 
• Gradient descent, mirror descent, natural gradient descent, 

steepest descent, etc maximize margins with respect to 
different norms. 

• Non-linear: 
• Gradient descent maximizes margin for homogeneous neural 

networks. 
• Low-rank matrix sensing: gradient descent finds a low-rank 

solution.


