
CSE 543 / 599I - Deep Learning

Lecture 8/9: Global convergence of Gradient Descent
April 26, 2022

Lecturer: Simon Du Scribe: Prashant Rangarajan

One would expect that locating the global minimum when training a neural network via gradient
descent would be a very difficult task. However, surprisingly, in practice we find that the opti-
mization error does go to zero while training, indicating that these models do generalize quite well
and reach the global minima.[1] Approaches such as landscape analysis that analyze the geometry
of the objective function fail to sufficiently demonstrate why gradient descent attains the global
minimum.

We now try to prove this phenomenon using an approach that directly analyzes the trajectory of
gradient descent.

1 Main Result
Theorem 1.1. (Du et al. ’18 [2], Allen-Zhu et al. ’18 [3], Zou et al ’19 [4]) If the width of each
layer is poly(n) where n is the number of data. Using random initialization with a particular
scaling, gradient descent finds an approximate global minimum in polynomial time.

In the over parameterized regime, we can show that randomly initialized gradient descent prov-
ably optimizes deep neural networks.
If gradient descent approximates the global minimum w∗ as follows: |f(w)− f(w∗)| ≤ ϵ, then the
convergence time would of the form poly(log(1

ϵ
), n, L).

2 Gradient Flow
To analyze the trajectory of gradient descent, we use the previously studied concept of gradient
flow. This can be generalized to the case of gradient step with finite step size by introducing an
additional discretization step to the process.
Let ui(t) = f(θ, xi) denote the prediction function for input xi at time t, and let the loss be of the
form

L(θ) = 1

n

n∑
i=1

ℓ(f(θ, xi), yi) =
1

n

n∑
i=1

ℓ(ui(t), yi)

Then,
∂L(θ)
∂θ

=
1

n

n∑
i=1

ℓ′(ui(t), yi) ·
∂ui(t)

∂θ

1

Also, by the definition of gradient flow, we know that:

dθ(t)

dt
= −∂L(θ)

∂θ

Now, in the typical optimization problem where the loss function is strongly convex, by classical
theory we know that there exists a unique global minimum θ∗ s.t. θ(t) → θ∗. However, in the
case of over-parameterized neural networks, where we have m = poly(n), many combinations of
parameters can give a training loss of zero i.e. there is no unique global minimizer.
Instead, if we look at the prediction function ui(t), we do have a unique global minimum where
ui(t) → yi . So in this approach we prefer to study the trajectory of ui(t).

3 Dynamics of the prediction function
As we know, the predictor is given by ui(t) = f(θ, xi). In vectorized notation let u(t) =
(u1(t), . . . un(t)) and y = (y1, . . . yn). Then, by Chain Rule we can say:

dui(t)

dt
=

〈
∂ui(t)

∂θ
,
θ(t)

dt

〉
=

〈
∂ui(t)

∂θ
,− 1

n

n∑
j=1

ℓ′(uj(t), yj) ·
∂uj(t)

∂θ(t)

〉

= [ℓ′(u1(t), y1), . . . , ℓ
′(un(t), yn)] ·

[〈
∂ui(t)

∂θ(t)
,
∂u1(t)

∂θ(t)

〉
, . . . ,

〈
∂ui(t)

∂θ(t)
,
∂un(t)

∂θ(t)

〉]
We have rewritten dui(t)

dt
as the inner product of two vectors. The second vector itself consists of

inner products as elements and could be interpreted as a type of kernel.
Introducing some notation, let H(t) ∈ Rn×n be a Gram matrix such that

(H(t))ij =

〈
∂ui(t)

∂θ(t)
,
∂uj(t)

∂θ(t)

〉
Also, we define ℓ′(u(t),y) ∈ Rn s.t. [ℓ′(u(t),y)]i = ℓ′(ui(t), yi).
Then, the dynamics of the overall prediction is:

du(t)

dt
= − 1

n
H(t)ℓ′(u(t),y)

For example, if we consider a simple quadratic loss ℓ(u(t),y) = 1
2
∥u(t)− y∥2, then we get:

du(t)

dt
= − 1

n
H(t)(u(t)− y)

Note that H(t) does not depend on the loss function, but only on the predictor function.

2

Theorem 3.1. If ∃λ0 > 0 ∀t s.t. λmin(H(t)) ≥ λ0, then we get global convergence for gradient
flow.

d
(
1
2
∥u(t)− y∥2

)
dt

= − 1

n
(u(t)− y)⊤H(t)(u(t)− y)

≤ −λ0

n
∥u(t)− y∥2

The derivative of the loss being bounded by a negative factor of the loss clearly indicates that there
the dynamics will converge. We can more formally show this as follows:

Consider the term d
dt

(
exp

(
λ0t
n

)
1
2
∥u(t)− y∥2

)
. Expanding and using the above inequality, we

get:

d

dt

(
exp

(
λ0t

n

)
1

2
∥u(t)− y∥2

)
=

λ0

2n
exp

(
λ0t

n

)
∥u(t)− y∥2

+
d
(
1
2
∥u(t)− y∥2

)
dt

exp

(
λ0t

n

)
≤ exp

(
λ0t

n

)
∥u(t)− y∥2

(
λ0

2n
− λ0

n

)
< 0

Clearly
(
exp(λ0t

n
)1
2
∥u(t)− y∥2

)
is decreasing with t. At t = 0, let 1

2
∥u(0)− y∥2 = C. Then ∀t,(

exp

(
λ0t

n

)
1

2
∥u(t)− y∥2

)
≤ C

In other words (
1

2
∥u(t)− y∥2

)
≤ C exp

(
−λ0t

n

)
As t → ∞, the loss converges linearly to 0 with u(t) → y.

4 Gradient Flow for Kernel Regression
In order to prove Theorem 3.1, we need to apply different analysis techniques for different func-
tions to get the corresponding λ0. Let us consider the example of a Kernel Function. A kernel
can be thought of as an infinite dimensional linear regression. The predictor function in this case
would be ui(t) = ϕ(xi)

⊤θ(t) where ϕ(xi) is the corresponding feature map of the kernel function.
Then, the Gram Matrix H(t) is actually equivalent to the Kernel matrix:

Hi,j(t) =

〈
∂ui(t)

∂θ(t)
,
∂uj(t)

∂θ(t)

〉
= ⟨ϕ(xi), ϕ(xj)⟩ = K(xi, xj)

In this case, since the kernel function doesn’t depend on t, neither does H .
If the kernel is full rank, then we get λmin(H(t)) ≥ λ0. Also, in general, if the kernel is universal,
the result holds and hence we get global convergence.

3

5 Gradient Flow for Neural Networks
While in the case of kernels we have a gram matrix that is independent of t. But the analysis won’t
be as straightforward in the case of a neural network.

We use the example of a simple 2-layer neural network. Let the predictor be

f(θ, x) =
1√
m

m∑
r=1

arσ(w
⊤
r x)

where x ∈ Rd, wr ∈ Rd, ar ∈ R, σ(·) : ReLU . Note that we need to scale by a factor of 1/
√
m in

order to prove the required bounds.
For simplicity, let us assume the following:
Initialization: ar ∼ Unif{1,−1}, wr ∼ N (0, I).
Training: Only the first layer of weights wi are trained. The problem still continues to be non-
convex despite this assumption. So, the optimization problem is

min
w1,...,wm

1

n

n∑
i=1

f(xi,a,w)− yi)
2

Now, as we know,
du(t)

dt
= − 1

n
H(t)(u(t)− y)

Key Idea: We show that ∀t, H(t) ≈ H∗, where H∗ is a constant matrix (called the neural
tangent kernel) of the form

H∗
i,j = lim

m→∞
Ew∼Dinit

〈
∂f(xi, a, w)

∂w(t)
,
∂f(xj, a, w)

∂w(t)

〉
This implies that there isn’t much change in the Gram matrix with t. This would mean that

du(t)

dt
≈ − 1

n
H∗(u(t)− y)

If H∗ is a full rank matrix, then it follows from the prior discussion that gradient descent will
globally converge.

4

Let u(t) = f(x,a,w). Then, H(t) can be simplified as follows:

Hi,j(t) =

〈
∂ui(t)

∂w(t)
,
∂uj(t)

∂w(t)

〉
=

m∑
r=1

〈
∂ui(t)

∂wr(t)
,
∂uj(t)

∂wr(t)

〉
∂ui(t)

∂wr(t)
=

1√
m

m∑
r=1

arxi1{wr(t)
⊤xi ≥ 0}

∴ Hi,j(t) =
m∑
r=1

1

m

〈
arxi1{wr(t)

⊤xi ≥ 0}, arxj1{wr(t)
⊤xj ≥ 0}

〉
=

1

m
x⊤
i xj

m∑
r=1

1{wr(t)
⊤xi ≥ 0, wr(t)

⊤xj ≥ 0}

Proposition 5.1. H(t) ≈ H∗ in the case of the 2 layer neural network.

Proof. In order to prove this, we claim the following:

1. H(0) ≈ H∗ (Initialization)

2. H(t) ≈ H(0) ∀t ≥ 0 (Training)

If both these claims hold, then the result follows (and we can also say that gradient descent con-
verges globally). We validate these claims individually in the following sections.

5.1 Claim 1: Initialization
We want to show that H(0) ≈ H∗. To do this, we need the following result:

Theorem 5.2. Hoeffding’s Inequality: Let Z1, . . . , Zn be i.i.d bounded random variables such
that |Zi| ≤ 1. If n = Ω

(
log(1/δ)

ϵ2

)
where 0 < δ, ϵ < 1, then with probability (1− δ), we have∣∣∣∣∣ 1n

n∑
i=1

Zi − E[Zi]

∣∣∣∣∣ ≤ ϵ

Now, we know that

Hi,j(0) = x⊤
i xj

1

m

m∑
r=1

1{wr(0)
⊤xi ≥ 0, wr(0)

⊤xj ≥ 0}

This is an average of m bounded random variables (the indicator variables), so we can directly
apply Hoeffding’s inequality to say that it converges to H∗

i,j , where

H∗
i,j = Ew∼N(0,I)x

⊤
i xj1{w⊤xi ≥ 0, w⊤xj ≥ 0}

5

So, when m is large enough, we get |Hi,j(0)−H∗
i,j| ≤ ϵ.

∴ ∥H∗ −H(0)∥F ≤
∑

i,j |Hi,j(0) −H∗
i,j| ≤ n2ϵ. We can always pick a small enough ϵ to have

an arbitrary approximation. This proves our claim.
Note: This result also highlights the power of over-parameterization of neural networks, as we
need a large m (i.e. width of the layer) in order to prove the required concentration bound for
result.

5.2 Claim 2: Training
We want to show that H(t) ≈ H(0) ∀t.

For simplicity we assume the following:

1. We train till time t (can extend to t → ∞ case.)

2. yi = O(1) i.e yi is a constant

3. ∥xi∥ = 1

Note: With these assumptions, the matrix H∗ obtained in claim 1 would reduce to: H∗
i,j =

x⊤
i xj

(
π−arccosx⊤

i xj

2π

)
Key Idea - Lazy Training: Every weight vector only moves a little bit, and this change scales
with 1√

m
. In other words, as the width increases, the movement decreases. This regime of training

is called lazy training.

Now, we can say:

∥wr(t)− wr(0)∥2 =
∥∥∥∥∫ t

0

dwr(τ)

dτ
dτ

∥∥∥∥ ≤
∫ t

0

∥∥∥∥dwr(τ)

dτ

∥∥∥∥ dτ
=

∫ t

0

∥∥∥∥∥ 1√
m

1

n

n∑
i=1

(ui(τ)− yi)arxi1{w⊤
r xi ≥ 0}

∥∥∥∥∥ dτ
Now, if we assume ui(τ) to be constant in [0, t], then the integrand would entirely be a constant
(say C), and we would get:

∥wr(t)− wr(0)∥2 ≤ C

∫ t

0

1√
m
dτ ≤ Ct√

m

With an increase in m, clearly the weights move less.

ReLU Smoothness: Now, to complete the proof, we need to bound the change in H(t). We
show this in the case of the ReLU activation function.
Smoothness is a property whereby a small deviation in the parameters will result in a small devi-
ation in the quantity of interest. While ReLU does not have a smooth derivative, when we have

6

a Gaussian initialization of weights, we can derive a version of smoothness for the kernel matrix.
We know that:

Hi,j(t) =
1

m
x⊤
i xj

m∑
r=1

1{wr(t)
⊤xi ≥ 0, wr(t)

⊤xj ≥ 0}

Hence, we can say:

Hi,j(t)−Hi,j(0) =
1

m
x⊤
i xj

m∑
r=1

1{wr(t)
⊤xi ≥ 0, wr(t)

⊤xj ≥ 0} − 1{wr(0)
⊤xi ≥ 0, wr(0)

⊤xj ≥ 0}

≤ 1

m
x⊤
i xj

m∑
r=1

1{sgn(wr(t)
⊤xi) ̸= sgn(wr(0)

⊤xi)}

+
1

m
x⊤
i xj

m∑
r=1

1{sgn(wr(t)
⊤xj) ̸= sgn(wr(0)

⊤xj)}

The term 1
m

∑m
r=1 1{sgn(wr(t)

⊤xi) ̸= sgn(wr(0)
⊤xi)} represents the number of pattern changes

in the time interval [0, t]. We would like to bound this quantity.

Anti-Concentration Bound: While concentration inequalities bound how much a random vari-
able deviates from a quantity (usually the mean), anti-concentration inequalities give an upper
bound on how much a random variable can concentrate around a quantity.
There is some non-trivial mass of the Gaussian distribution away from the mean that we would
like to bound. The Gaussian Anti-Concentration bound is as follows:

PZ∼N (0,I)(|Z| < R) ≤ 2R√
2π

If wr(0) ∼ N (0, I), then by rotational symmetry, we have wr(0)
⊤xi ∼ N (0, 1) where ∥xi∥2 = 1.

If ∀r, ∥wr(t) − wr(0)∥2 ≤ ∆w, then we know that ∆w → 0 as m → ∞ because ∆w = O(1√
m
)

(from the lazy training regime).
Suppose |wr(0)

⊤xi| ≥ ∆w, then we can say sgn(wr(t)
⊤xi) = sgn(wr(0)

⊤xi) as |wr(t)
⊤xi) −

wr(0)
⊤xi| ≤ ∥xi∥2∥wr(t)− wr(0)∥2 ≤ ∆w ≤ |wr(0)

⊤xi|. Thus,

P(|wr(0)
⊤xi| < ∆w) ≤ 2∆w√

2π

represents the bound on the probability that each pattern changes. But we know that ∆w → 0 as
m → ∞, hence 1

m

∑m
r=1 1{sgn(wr(t)

⊤xi) ̸= sgn(wr(0)
⊤xi)} → 0 as m → ∞.

This means that Hi,j(t) → Hi,j(0) as m → ∞. More formally, if m = O(n
6

ϵ2
), then we get

∥H(t)−H(0)∥F ≤ ϵ. Thus means that H(t) ≈ H(0) and hence we have proved claim 2.

5.3 Neural Nets as a Kernel Predictor
We showed that the dynamics of gradient descent on a neural network is equivalent to a kernel.
We can also show that prediction for a neural network can be equivalent to a kernel predictor.

7

If Xte ∈ Rn is a test point, then when m → ∞, even though we train on a neural network, the
predictor f(θ,Xte) is equivalent to a kernel predictor Kte(H

∗)−1y, where H∗ is the NTK, y ∈ Rn,
and Kte ∈ Rn with [Kte]i = K(xi, Xte).

References
[1] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-

ing deep learning requires rethinking generalization, 2016.

[2] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably opti-
mizes over-parameterized neural networks, 2018.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceed-
ings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 242–252. PMLR, 09–15 Jun 2019.

[4] Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep
neural networks, 2019.

8

