
CSE 543 / 599I - Deep Learning

Lecture 5: Clarke differential
April 12, 2022

Lecturer: Simon Du Scribe: Prashant Rangarajan

We continue with a discussion on optimization of neural networks. Often activation functions
are not smooth (for example ReLU), in which case we can’t use gradient descent directly. In this
lecture we formalize the notion of the Clark Differential as a relaxation of the gradient.

1 Subdifferential and Subgradient
Definition 1.1. Given a function f : Rd → R, for every x, the subdifferential set is defined as:

∂sf(x) :=
{
s ∈ Rd : ∀x′ ∈ Rd, f(x′) ≥ f(x) + s⊤(x′ − x)

}
The subdifferential is a set of tangents which lie below the predictor, each element of which is

referred to as a subgradient.
For example, in the case of ReLU i.e. f(x) = max(0, x), we have ∂sf(x) = [0, 1].

We can use these subgradients to perform subgradient descent:

Problem: min
x

f(x)

Update Step: xt+1 = xt − ηgt where gt ∈ ∂sf(xt)

Sometimes when the neural net is not convex the subgradient may not be well defined. Consider
the function f(x) depicted in figure 1. We try to obtain the set of subgradients at x = −1. Using
the definition of subgradient, we can say that for all s ∈ R,

f(x′) ≥ −1 + s(x′ − (−1))

Now, in the case when x′ = −2, the above inequality reduces to s ≥ 1, and for x′ = 1, we
get s ≤ 0. Hence, there doesn’t exist a subgradient at this point. So, to get some notion of this
differential for such functions, we can relax the condition of requiring the inequality to hold for all
x′. This gives rise to the Clark differential.

2 Clark Differential
Definition 2.1. Given a function f : Rd → R, for every x, the Clark differential ∂f(x) is defined
as:

∂f(x) := conv
({

s ∈ Rd : ∃{xi}∞i=1 s.t. xi → x,∇f(xi) → s
})
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Figure 1: Non-convex function f(x)

Here conv(S) represents the convex hull of the set S:

conv(S) = {v : v =
n∑

i=1

λiui, ui ∈ S, λi ≥ 0,
n∑

i=1

λi = 1}

For example, in the case of ReLU(x), at x = 0, we have a sequence {xi}∞i=1 = −1, −1
2
, . . . → 0

where ∇f(xi) → 0, while there is another sequence 1, 1
2
, . . . → 0 s.t. ∇f(xi) → 1. Hence,

∂f(x) = conv({0, 1}) = [0, 1].
In the case of the function from figure 1, at x = −1, we have a sequence {xi}∞i=1 = −2, −3

2
, . . . →

−1 where ∇f(xi) → −1, while there is another sequence 0, −1
2
, . . . → −1 s.t. ∇f(xi) → −1.

Thus, ∂f(−1) = [−1, 1].

Existence of Clark Differential To get sufficient conditions as to when the Clark Differential
exists, we can use the following property.

Definition 2.2. A function f : Rd → R is locally Lipschitz if ∀x ∈ Rd, there exists a neighborhood
S of x, such that f is Lipschitz in S. Hence, ∀x′ ∈ S, ∃L s.t. |f(x)− f(x′)| ≤ L|x− x′|.

Some key properties of the differential:

• If f is Locally Lipschitz, then ∂f exists everywhere.

• If f is convex, then ∂f = ∂sf

• If f is differentiable, then ∂f = {∇f}
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3 Positive Homogeneity
Positive Homogeneity is another useful tool that we can use in the analysis of gradients.

Definition 3.1. A function g : Rd → R is said to be positively homogeneous of degree L if
g(αx) = αLg(x) for α ≥ 0.

Some examples:

• ReLU: σ(αx) = ασ(x) (1-homogeneous).

• Norm: ∥αx∥ = α∥x∥ (1-homogeneous)

• Monomial of degree L i.e. of the form
∏d

i=1 x
pi
i where

∑d
i=1 pi = L :

d∏
i=1

(αxi)
pi = α

∑
i pi

∏
i

xpi
i = αL

∏
i

xpi
i (L-homogeneous)

• Consider a multi-layer ReLU network

f(x;w) = f(x; (W1, . . . ,Wi, . . . ,WH+1)) = WH+1σ(WHσ(. . .Wiσ(. . .W1x . . . ) . . . ))

where x ∈ Rd,W1 ∈ Rm×d, W2, . . .WH ∈ Rm×m, WH+1 ∈ Rm.

– Layers of a ReLU network are 1-homogeneous in the parameters for that layer:

f(x; (W1, . . . , αWi, . . . ,WH+1))

= WH+1σ(WHσ(. . . αWiσ(. . .W1x . . . ) . . . ))

= αWH+1σ(WHσ(. . .Wiσ(. . .W1x . . . ) . . . ))

= αf(x; (W1, . . . ,Wi, . . . ,WH+1)) = αf(x;w)

– The entire network is (H + 1)-homogeneous in the full set of parameters:

f(x; (αW1, . . . , αWH+1))

= αWH+1σ(αWHσ(. . . σ(αW1x) . . .))

= αH+1WH+1σ(WHσ(. . . σ(W1x) . . .))

= αH+1f(x;w)

Special property of ReLU Networks For the ReLU network f(x;w) = WH+1σH(· · ·W2σ1(W1x)),
we get the following property ∀h, 1 ≤ h ≤ H + 1:⟨

Wh,
d

dWh

f(x;w)

⟩
= f(x;w)

So this inner product is independent of h.
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Proof. Let Ah be a diagonal matrix with activations of the output after layer h on the diagonal:

Ah = diag (σ(Whσ(. . . σ(W1x) . . . ))) Ah ∈ Rm×m

We know that in the case of ReLU, σ(z) = zσ′(z). Using this, we can rewrite the network as
follows:

f(x;w) = WH+1AHWHAH−1 · · ·A1W1x

The gradient of the network with respect to layer h is thus:

d
dWh

f(x;w) = (WH+1AH · · ·Wh+1Ah)
⊤(Ah−1Wh−1 · · ·W1x)

⊤

And so we can say that:⟨
Wh,

d
dWh

f(x;w)

⟩
=

⟨
Wh, (WH+1AH · · ·Wh+1Ah)

⊤(Ah−1Wh−1 · · ·W1x)
⊤⟩

= tr
(
W⊤

h (WH+1AH · · ·Wh+1Ah)
⊤(Ah−1Wh−1 · · ·W1x)

⊤)
= tr

(
(WH+1AH · · ·Wh+1Ah)

⊤(WhAh−1Wh−1 · · ·W1x)
⊤)

= tr
(
(WhAh−1Wh−1 · · ·W1x)

⊤(WH+1AH · · ·Wh+1Ah)
⊤)

= tr (WH+1AH · · ·Wh+1AhWhAh−1Wh−1 · · ·W1x)

= f(x;w)

f is 1-homogeneous with respect to x (and L-homogeneous for w). We can also obtain a more
general result in the case of an L-homogeneous function.

Lemma 3.2. If f : Rd → R is Locally Lipschitz and L-positively homogeneous, then for any
x ∈ Rd and s ∈ ∂f(x), we have ⟨s, x⟩ = Lf(x)

The proof is left as an exercise.

4 Norm Preservation
Positive homogeneity can be used to describe the dynamics of gradient descent. If predictions are
positive homogeneous with respect to each layer, then gradient flow preserves norms of layers.

Gradient Inclusion Discrete-time dynamics can be complex. In order to simplify this, we can
use continuous- time dynamics.
As η → 0, we get a simpler version of the discrete dynamics known as gradient flow or an active
gradient flow.

xt+1 = xt − η∇f(xt) =⇒
dx(t)

dt
= −∇f(x(t))
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In the case of Clark differential, we use the notion of Gradient inclusion:

dx(t)

dt
∈ −∂f(x(t))

Norm preservation by gradient inclusion In the idealized setting of the gradient flow, we can
prove norm preservation.

Theorem 4.1. (Simon S. Du, Hu, and Lee (2018))
Suppose α > 0, and f(x; (W1, . . . , αWi, . . . ,WH+1)) = αf(x; (W1, . . . ,Wi, . . . ,WH+1)) i.e. the
predictions are 1-positively homogeneous in each layer. Then, for h, h′ ∈ [H + 1] × [H + 1], the
gradient inclusion maintains for all t ≥ 0:

1

2
∥Wh(t)∥2 −

1

2
∥Wh(0)∥2 =

1

2
∥Wh′(t)∥2 − 1

2
∥Wh′(0)∥2

Proof. Assume that the loss function used to update the weights is of the form ℓ(f(x; (W1 . . .WH+1)), y).
Then, we can say using gradient inclusion that:

dWh(t)

dt
= −∇ℓ(Wh(t)) = −ℓ′(f(x;w), y) · ∂f

∂Wh

using Chain Rule. Thus, we can say that:

1

2
∥Wh(t)∥2 −

1

2
∥Wh(0)∥2 =

∫ t

0

d

dτ
∥Wh(τ)∥2dτ

=

∫ t

0

⟨
Wh,

dWh(τ)

dτ

⟩
dτ (Chain rule)

=

∫ t

0

⟨
Wh,−ℓ′(f(x;w), y) · ∂f

∂Wh

⟩
dτ

=

∫ t

0

−ℓ′(f(x;w), y)

⟨
Wh,

∂f

∂Wh

⟩
dτ

=

∫ t

0

−ℓ′(f(x;w), y)f(x;w)dτ

where we used the Lemma 3.2 in the last step. Hence, the RHS independent of h. Thus, 1
2
∥Wh(t)∥2−

1
2
∥Wh(0)∥2 is a constant for all h ∈ [H + 1], and so the result holds.
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