Neural Tangent Kernel

Neural Tangent Kernel Formula

L-layer NN. For h = 1,...,L:

$$\begin{split} \Sigma^{(0)}(\boldsymbol{x}, \boldsymbol{x}') &= \boldsymbol{x}^{\top} \boldsymbol{x}', \\ \boldsymbol{\Lambda}^{(h)}(\boldsymbol{x}, \boldsymbol{x}') &= \begin{pmatrix} \Sigma^{(h-1)}(\boldsymbol{x}, \boldsymbol{x}) & \Sigma^{(h-1)}(\boldsymbol{x}, \boldsymbol{x}') \\ \Sigma^{(h-1)}(\boldsymbol{x}', \boldsymbol{x}) & \Sigma^{(h-1)}(\boldsymbol{x}', \boldsymbol{x}') \end{pmatrix} \in \mathbb{R}^{2 \times 2}, \\ \Sigma^{(h)}(\boldsymbol{x}, \boldsymbol{x}') &= c_{\sigma} \underset{(u,v) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Lambda}^{(h)})}{\mathbb{E}} \left[\sigma(u) \sigma(v) \right], \\ \dot{\Sigma}^{(h)}(\boldsymbol{x}, \boldsymbol{x}') &= c_{\sigma} \underset{(u,v) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Lambda}^{(h)})}{\mathbb{E}} \left[\dot{\sigma}(u) \dot{\sigma}(v) \right]. \end{split}$$

Final output:

$$\Theta^{(L)}(\boldsymbol{x},\boldsymbol{x}') = \sum_{h=1}^{L+1} \left(\Sigma^{(h-1)}(\boldsymbol{x},\boldsymbol{x}') \cdot \prod_{h'=h}^{L+1} \dot{\Sigma}^{(h')}(\boldsymbol{x},\boldsymbol{x}') \right)$$

L-layer recursion. Encodes NN's architecture.

Dependency on the derivative: Gradient decent algorithm.

What determines the convergence rate?

Convergence Rate

Projections

Neural Tangent Kernel

Recipe for designing new kernels

$$f_{\mathrm{NN}}\left(\theta_{\mathrm{NN}},x\right) > k\left(x,x'\right) = \mathbb{E}_{\theta_{\mathrm{NN}} \sim \mathcal{W}}\left[\left\langle \frac{\partial f_{\mathrm{NN}}\left(\theta_{\mathrm{NN}},x\right)}{\partial \theta_{\mathrm{NN}}}, \frac{\partial f_{\mathrm{NN}}\left(\theta_{\mathrm{NN}},x'\right)}{\partial \theta_{\mathrm{NN}}}\right\rangle\right]$$

Transform a neural network of any architecture to a kernel!

Fully-connected NN → Fully-connected NTK Convolutional NN → Convolutional NTK Graph NN → Graph NTK

Fully-Connect NTK

Features

FC NTK

Classifier	Avg Acc	P95	ΡΜΑ
FC NTK	82%	72%	96%
FC NN	81%	60%	95%
Random Forest	82%	68%	95%
RBF Kernel	81%	72%	94%

Pairwise Comparisons

Classification Accuracy

Graph Neural Network

Graph Neural Tangent Kernel

Graph Graph NN

Graph NTK

	Method	COLLAB	IMDB-B	IMDB-M	PTC
GNN	GCN	79%	74%	51%	64%
	GIN	80%	75%	52%	65%
GK	WL	79%	74%	51%	60%
	GNTK	84%	77%	53%	68%

Gap between NN and NTK

100 80 60 40 20 0 Classification Accuracy ■ RBF Kernel / FC-NN ■ CNN + learning rate ■ CNN + all techniques

CIFAR-10 Image Classification O

Open Problems:

Why there is a gap: finite-width? learning rate?

...

Understanding techniques: batch-norm dropout data-augmentation

Deep Learning Generalization

Measure of Generalization

Generalization: difference in performance on train vs. test.

$$\frac{1}{n}\sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(f(x), y)]$$

Assumption (x_i, y_i) *i*.*i*.*d*. ~ \mathscr{D}

Problems with the theoretical idealization

Data is not identically distributed:

- Images (Imagenet) are scraped in slightly different ways
- Data has systematic bias (e.g., patients are tested based on symptoms they exhibit)
- Data is result of interaction (reinforcement learning)
- Domain / distribution shift

Meta Theorem of Generalization

Meta theorem of generalization: with probability $1 - \delta$ over the choice of a training set of size *n*, we have

$$\sup_{f \in \mathscr{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x, y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\sqrt{\frac{\text{Complexity}(\mathscr{F}) + \log(1/\delta)}{n}}\right)$$

Some measures of complexity:

- (Log) number of elements
- VC (Vapnik-Chervonenkis) dimension
- Rademacher complexity
- PAC-Bayes
- •

Classical view of generalization

Decoupled view of generalization and optimization:

Optimization: find a global minimum: $\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{m} \ell(f(x_i), y_i)$

• Generalization: how well does the global optimizer generalize

Practical implications: to have a good generalization, make sure \mathcal{F} is not too "complex".

Strategies:

- **Direct capacity control:** bound the size of the network / amount of connections, clip the weights, etc.
- **Regularization:** add a penalty term for "complex" predictors: weight decay (ℓ_2 norm), dropout, etc.