Neural Tangent Kernel
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Neural Tangent Kernel Formula

L-layer NN. For h=1,..,,L:

>O(z,2') =22,

A® (. ') = (E(h‘l)(w,w) Bk 1)(33,33 ))> € R?, ) L-layer recursion.

T (h=1) (g »(h-1) :
(', x) (' Encodes NN’s architecture.
»®(z,2') = ¢y E [0 (u) o (v)],
(u0)~N (0,AM)

>z, &) =c, E [6(u)e(v)].
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Final output: Dependency on the derivative:

Gradient decent algorithm.



What determines the convergence rate?
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Neural Tangent Kernel

Recipe for desighing new kernels

N Ofnn (OnN, ) OfnN (OnN, T')
INN (0NN, Z) D k(@,5') = Bow [< Box | 90nm >]

Transform a neural network of any architecture to a kernel!

Fully-connected NN — Fully-connected NTK
Convolutional NN — Convolutional NTK
Graph NN — Graph NTK
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Pairwise Comparisons
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Graph Neural Network
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Graph Neural Tangent Kernel
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Graph Graph NN Graph NTK

COLLAB| IMDB-B |IMDB-M| PTC

GNN GCN 79% 74% 51% 64%
GIN 80% 75% 52% 65%
GK WL 79% 74% 51% 60%

GNTK 34% 77% 53% 68%



Gap between NN and NTK

CIFAR-10 Image Classification Open Problems:

Why there is a gap:
100 finite-width?

learning rate?
80
60
40 Understanding techniques:
20 batch-norm
dropout
0 .
Classification Accuracy data-augmentation

m RBF Kernel / FC-NN m Conv-NTK
B CNN + learning rate B CNN + all techniques



Deep Learning
Generalization




Measure of Generalization

Generalization: difference in performance on train vs. test.

1 n
— 2 £, ) = Bioyyoal (), )
i=1

Assumption (x;,y,) i.i.d. ~ D



Problems with the theoretical idealization

Data is not identically distributed:
* Images (Imagenet) are scraped in slightly different ways

« Data has systematic bias (e.g., patients are tested based on
symptoms they exhibit)

 Data is result of interaction (reinforcement learning)

« Domain / distribution shift



Meta Theorem of Generalization

Meta theorem of generalization: with probability 1 — 6 over the
choice of a training set of size n, we have

o, Complexity(7) + Tog(1/8
sup |~ ' £0£06).3) = Eqeyy-p [£(/(0.) :0<\/ B )>
i=1

feF n

Some measures of complexity:

* (Log) number of elements

VC (Vapnik-Chervonenkis) dimension
Rademacher complexity

PAC-Bayes



Classical view of generalization

Decoupled view of generalization and optimization

. Optimization: find a global minimum: min — 2 Z(f(x),y,)
fEF N

e Generalization: how well does the global optlmlzer generalize

Practical implications: to have a good generalization, make
sure & is not too “complex”.

Strategies:

* Direct capacity control: bound the size of the network /
amount of connections, clip the weights, etc.

 Regularization: add a penalty term for “complex” predictors:
weight decay (£, norm), dropout, etc.



