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Neural Tangent Kernel Formula



What determines the convergence rate?



Neural Tangent Kernel



Fully-Connect NTK



Pairwise Comparisons



Graph Neural Network



Graph Neural Tangent Kernel

Method COLLAB IMDB-B IMDB-M PTC
GNN GCN 79% 74% 51% 64%

GIN 80% 75% 52% 65%
GK WL 79% 74% 51% 60%

GNTK 84% 77% 53% 68%



Gap between NN and NTK



Deep Learning 
Generalization



Measure of Generalization
Generalization: difference in performance on train vs. test.  
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Problems with the theoretical idealization
Data is not identically distributed: 

• Images (Imagenet) are scraped in slightly different ways 

• Data has systematic bias (e.g., patients are tested based on 
symptoms they exhibit) 

• Data is result of interaction (reinforcement learning) 

• Domain / distribution shift



Meta Theorem of Generalization

Meta theorem of generalization: with probability  over the 
choice of a training set of size , we have  

 

Some measures of complexity: 
• (Log) number of elements  
• VC (Vapnik-Chervonenkis) dimension 
• Rademacher complexity 
• PAC-Bayes 
• …
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Classical view of generalization
Decoupled view of generalization and optimization: 

•
Optimization: find a global minimum:  

• Generalization: how well does the global optimizer generalize 

Practical implications: to have a good generalization, make 
sure  is not too “complex”. 
Strategies: 
• Direct capacity control: bound the size of the network / 

amount of connections, clip the weights, etc. 
• Regularization: add a penalty term for “complex” predictors: 

weight decay (  norm), dropout, etc.
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