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Gradient descent finds global minima



Types of stationary points

• Stationary points:  
• Global minimum: 

 
• Local minimum: 

 
• Local maximum: 

 
• Saddle points: stationary points 

that are not a local min/max

x : ∇f(x) = 0

x : f(x) ≤ f(x′ )∀x′ ∈ ℝd

x : f(x) ≤ f(x′ )∀x′ : ∥x − x′ ∥ ≤ ϵ

x : f(x) ≥ f(x′ )∀x′ : ∥x − x′ ∥ ≤ ϵ
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Landscape Analysis

• All local minima are global! 
• Gradient descent can escape saddle points.



Strict Saddle Points (Ge et al. ’15, Sun et al. ’15)

• Strict saddle point: a saddle point and λmin(∇2f(x)) < 0
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Escaping Strict Saddle Points
• Noise-injected gradient descent can escape strict saddle points 

in polynomial time [Ge et al., ’15, Jin et al., ’17]. 

• Randomly initialized gradient descent can escape all strict 
saddle points asymptotically [Lee et al., ’15].  
• Stable manifold theorem. 

• Randomly initialized gradient descent can take exponential time 
to escape strict saddle points [Du et al., ’17].

If 1) all local minima are global, and 2) 
are saddle points are strict, then 
noise-injected (stochastic) gradient 
descent finds a global minimum in 
polynomial time



What problems satisfy these two conditions
• Matrix factorization 

• Matrix sensing 

• Matrix completion 

• Tensor factorization 

• Two-layer neural network with quadratic activation



What about neural networks?
• Linear networks (neural networks with linear activations 

functions): all local minima are global, but there exists saddle 
points that are not strict [Kawaguchi ’16].  

• Non-linear neural networks with: 
• Virtually any non-linearity, 
• Even with Gaussian inputs, 
• Labels are generated by a neural network of the same 

architecture, 
There are many bad local minima [Safran-Shamir ’18, Yun-Sra-
Jadbaie ’19].



Global convergence of 
gradient descent



Global convergence of gradient descent
Theorem (Du et al. ’18, Allen-Zhu et al. ’18, Zou et al 19’) If the 
width of each layer is poly(n) where n is the number of data. 
Using random initialization with a particular scaling, gradient 
descent finds an approximate global minimum in polynomial time.



Gradient Flow: a Kernel Point of View
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