
Important Techniques 
in Neural Network 
Training

 



Gradient Explosion / Vanishing

• Deeper networks are harder to train: 
• Intuition: gradients are products over layers 
• Hard to control the learning rate
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Initialization

• Zero-initialization 
• Large initialization 
• Small initialization 

• Design principles: 
• Zero activation mean 

• Activation variance remains same across layers
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Xavier Initialization (Glorot & Bengio, ’10)

•
 

•  
• Experiments (tanh activation)

W(h)
ij ∼ Unif [− 6

dh + dh+1
, 6

dh + dh+1 ]
b(h) = 0
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Kaiming Initialization (He et al. ’15)

• . 

•  
• Designed for ReLU activation 
• 30-layer neural network

W(h)
ij ∼ # (0, 2

dh )
b(h) = 0
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Kaiming Initialization (He et al. ’15)
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Kaiming Initialization (He et al. ’15)
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Initialization by Pre-training

• Use a pre-trained network as initialization 
• And then fine-tuning
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Gradient Clipping

• The loss can occasionally lead to a steep descent 
• This result in immediate instability 
• If gradient norm bigger than a threshold, set the gradient to the 

threshold.
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Batch Normalization (Ioffe & Szegedy, ’14)

• Normalizing/whitening (mean = 0, variance = 1) the inputs is 
generally useful in machine learning. 
• Could normalization be useful at the level of hidden layers? 
• Internal covariate shift: the calculations of the neural 

networks change the distribution in hidden layers even if the 
inputs are normalized 

• Batch normalization is an attempt to do thatғ 
• Each unit’s pre-activation is normalized (mean subtraction, 

std division) 
• During training, mean and std is computed for each 

minibatch (can be backproped!



Batch Normalization (Ioffe & Szegedy, ’14)
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Batch Normalization (Ioffe & Szegedy, ’14)
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Batch Normalization (Ioffe & Szegedy, ’14)

• BatchNorm at training time 
• Standard backprop performed for each single training data 
• Now backprop is performed over entire batch.
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Batch Normalization (Ioffe & Szegedy, ’14)



What is BatchNorm actually doing?

• May not due to covariate shift (Santurkar et al. ‘18):  
• Inject non-zero mean, non-standard covariance Gaussian 

noise after BN layer: removes the whitening effect 
• Still performs well. 

• Only training  with random convolution kernels gives non-
trivial performance (Frankle et al. ’20) 

• BN can use exponentially increasing learning rate! (Li & Arora 
’19)
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More normalizations

• Layer normalization (Ba, Kiros, Hinton, ’16) 
• Batch-independent 
• Suitable for RNN, MLP 

• Weight normalization (Salimans, Kingma, ’16) 
• Suitable for meta-learning (higher order gradients are 

needed) 
• Instant normalization (Ulyanov, Vedaldi, Lempitsky, ’16) 

• Batch-independent, suitable for generation tasks 
• Group normalization (Wu & He, ‘18) 

• Batch-independent, improve BatchNorm for small batch size



Non-convex 
Optimization Landscape



Gradient descent finds global minima



Types of stationary points

• Stationary points:  
• Global minimum: 

 
• Local minimum: 

 
• Local maximum: 

 
• Saddle points: stationary points 

that are not a local min/max

x : ∇f(x) = 0

x : f(x) ≤ f(x′ )∀x′ ∈ ℝd

x : f(x) ≤ f(x′ )∀x′ : ∥x − x′ ∥ ≤ ϵ

x : f(x) ≥ f(x′ )∀x′ : ∥x − x′ ∥ ≤ ϵ
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Landscape Analysis

• All local minima are global! 
• Gradient descent can escape saddle points.
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Strict Saddle Points (Ge et al. ’15, Sun et al. ’15)

• Strict saddle point: a saddle point and λmin(∇2f(x)) < 0

HKIX x.jo
X

YoqXoTxt 18am

Amin AKO yuixol

denote U Xo 0
the eigenvector

for Amin CA livilz 1

Quadratic IN Kett
THEEAY
Xo is a stationarypoint luther ul Xe YAXe

U Xe G xmiscAlixel
i laming t'Vei



Escaping Strict Saddle Points
• Noise-injected gradient descent can escape strict saddle points 

in polynomial time [Ge et al., ’15, Jin et al., ’17]. 

• Randomly initialized gradient descent can escape all strict 
saddle points asymptotically [Lee et al., ’15].  
• Stable manifold theorem. 

• Randomly initialized gradient descent can take exponential time 
to escape strict saddle points [Du et al., ’17].

If 1) all local minima are global, and 2) 
are saddle points are strict, then 
noise-injected (stochastic) gradient 
descent finds a global minimum in 
polynomial time
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What problems satisfy these two conditions
• Matrix factorization 

• Matrix sensing 

• Matrix completion 

• Tensor factorization 

• Two-layer neural network with quadratic activation



What about neural networks?
• Linear networks (neural networks with linear activations 

functions): all local minima are global, but there exists saddle 
points that are not strict [Kawaguchi ’16].  

• Non-linear neural networks with: 
• Virtually any non-linearity, 
• Even with Gaussian inputs, 
• Labels are generated by a neural network of the same 

architecture, 
There are many bad local minima [Safran-Shamir ’18, Yun-Sra-
Jadbaie ’19].


