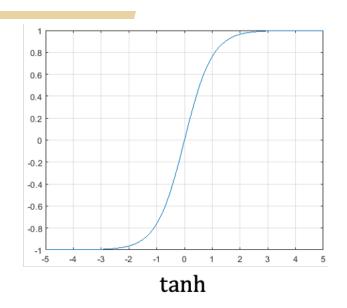
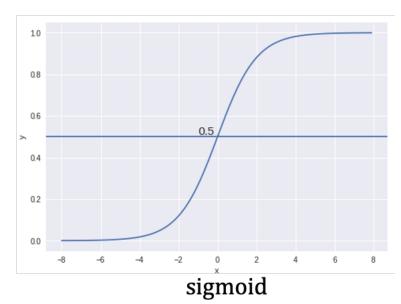
Important Techniques in Neural Network Training

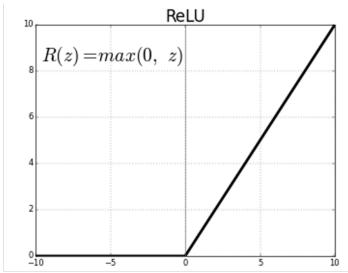
Gradient Explosion / Vanishing

- Deeper networks are harder to train:
 - Intuition: gradients are products over layers
 - Hard to control the learning rate

Activation Functions

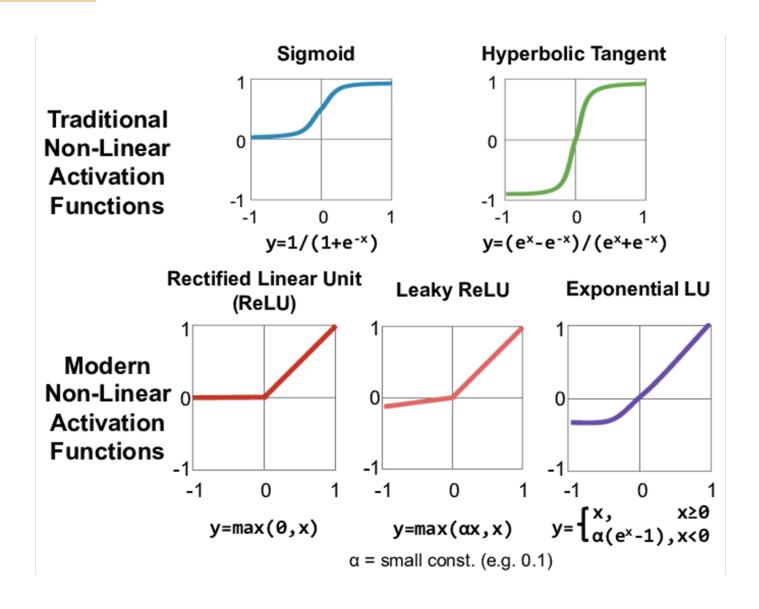






Rectified Linear United

Activation Function



Initialization

- Zero-initialization
- Large initialization
- Small initialization

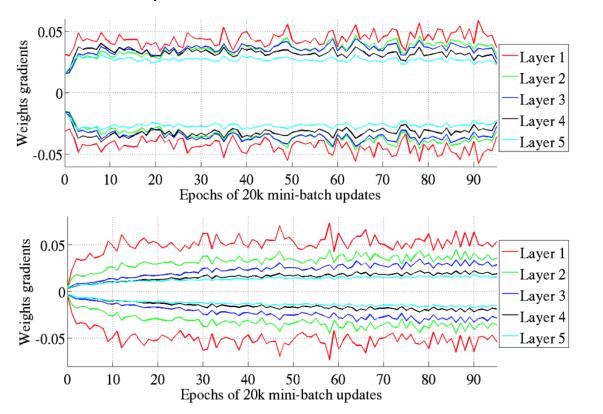
- Design principles:
 - Zero activation mean
 - Activation variance remains same across layers

Xavier Initialization (Glorot & Bengio, '10)

$$W_{ij}^{(h)} \sim \text{Unif} \left[-\frac{\sqrt{6}}{\sqrt{d_h + d_{h+1}}}, \frac{\sqrt{6}}{\sqrt{d_h + d_{h+1}}} \right]$$

$$b^{(h)} = 0$$

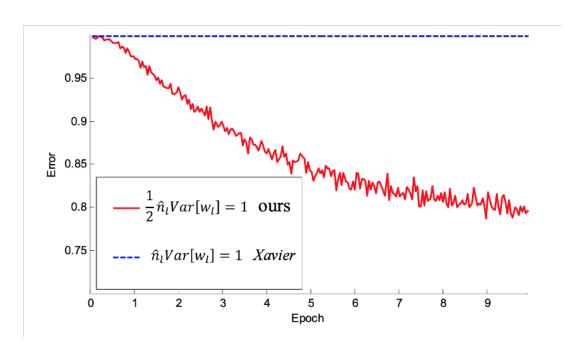
- Experiments (tanh activation)



Kaiming Initialization (He et al. '15)

•
$$W_{ij}^{(h)} \sim \mathcal{N}\left(0, \frac{2}{d_h}\right)$$
.

- $b^{(h)} = 0$
- Designed for ReLU activation
- 30-layer neural network

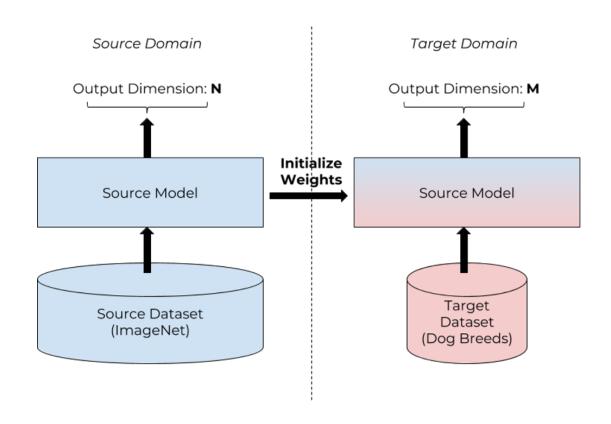


Kaiming Initialization (He et al. '15)

Kaiming Initialization (He et al. '15)

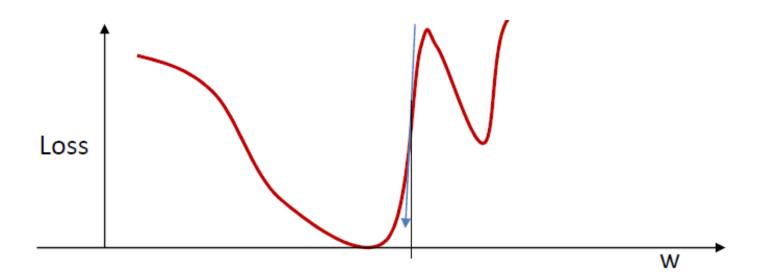
Initialization by Pre-training

- Use a pre-trained network as initialization
- And then fine-tuning

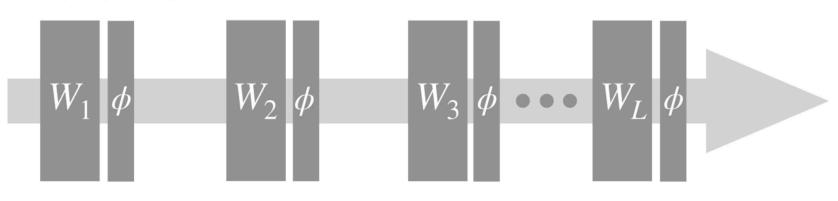


Gradient Clipping

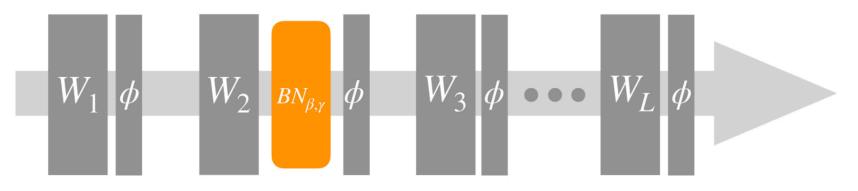
- The loss can occasionally lead to a steep descent
- This result in immediate instability
- If gradient norm bigger than a threshold, set the gradient to the threshold.

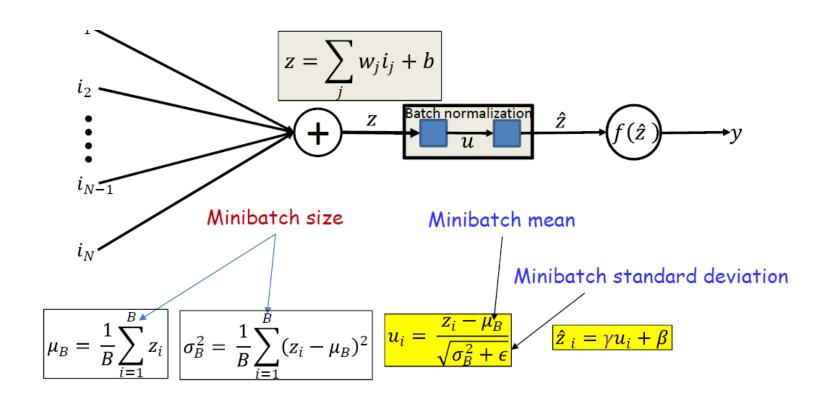


- Normalizing/whitening (mean = 0, variance = 1) the inputs is generally useful in machine learning.
 - Could normalization be useful at the level of hidden layers?
 - Internal covariate shift: the calculations of the neural networks change the distribution in hidden layers even if the inputs are normalized
- Batch normalization is an attempt to do that:
 - Each unit's pre-activation is normalized (mean subtraction, std division)
 - During training, mean and std is computed for each minibatch (can be backproped!



Adding a BatchNorm layer (between weights and activation function)





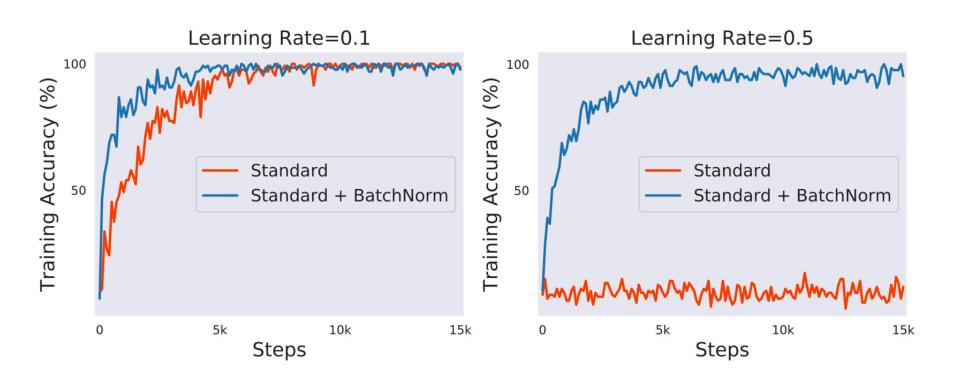
- BatchNorm at training time
 - Standard backprop performed for each single training data
 - Now backprop is performed over entire batch.

$$\frac{\partial Div}{\partial \sigma_B^2} = \frac{-1}{2} (\sigma_B^2 + \epsilon)^{-3/2} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}$$

$$\frac{\partial Div}{\partial \mu_B} = \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}$$

$$i_1 \frac{\partial Div}{\partial z_i} = \frac{\partial Div}{\partial u_i} \cdot \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{\partial Div}{\partial \sigma_B^2} \cdot \frac{2(z_i - \mu_B)}{B} + \frac{\partial Div}{\partial \mu_B} \cdot \frac{1}{B}$$

$$i_2 \frac{\partial Div}{\partial z_i} = \frac{\partial Div}{\partial u_i} \cdot \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{\partial Div}{\partial \sigma_B^2} \cdot \frac{2(z_i - \mu_B)}{B} + \frac{\partial Div}{\partial \mu_B} \cdot \frac{1}{B}$$
The rest of backprop continues from $\frac{\partial Div}{\partial z_i}$



What is BatchNorm actually doing?

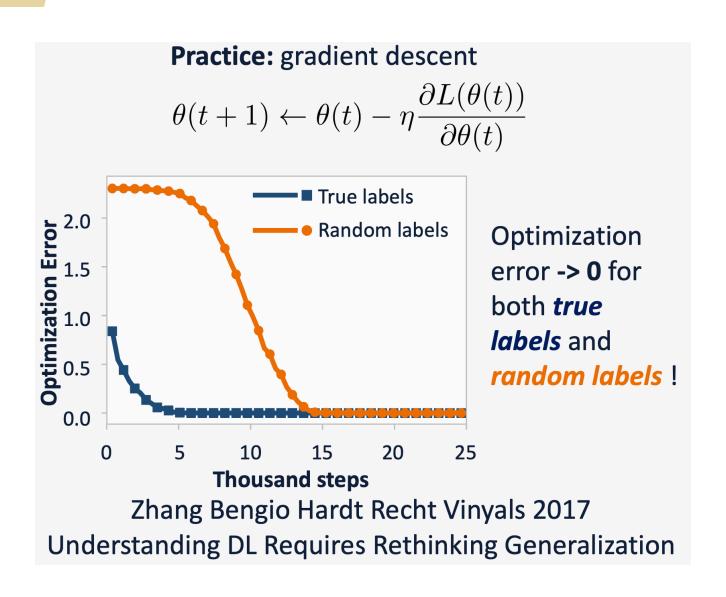
- May not due to covariate shift (Santurkar et al. '18):
 - Inject non-zero mean, non-standard covariance Gaussian noise after BN layer: removes the whitening effect
 - Still performs well.
- Only training β , γ with random convolution kernels gives nontrivial performance (Frankle et al. '20)
- BN can use exponentially increasing learning rate! (Li & Arora '19)

More normalizations

- Layer normalization (Ba, Kiros, Hinton, '16)
 - Batch-independent
 - Suitable for RNN, MLP
- Weight normalization (Salimans, Kingma, '16)
 - Suitable for meta-learning (higher order gradients are needed)
- Instant normalization (Ulyanov, Vedaldi, Lempitsky, '16)
 - Batch-independent, suitable for generation tasks
- Group normalization (Wu & He, '18)
 - Batch-independent, improve BatchNorm for small batch size

Non-convex
Optimization Landscape

Gradient descent finds global minima



Types of stationary points

- Stationary points: $x : \nabla f(x) = 0$
- Global minimum:

$$x: f(x) \le f(x') \, \forall x' \in \mathbb{R}^d$$

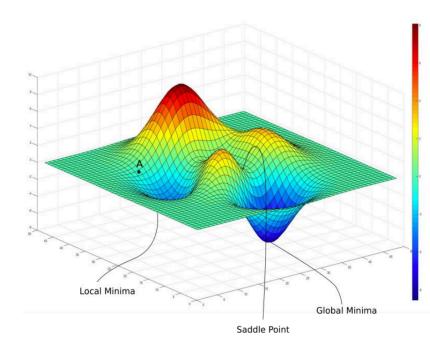
• Local minimum:

$$x: f(x) \le f(x') \, \forall x': \|x - x'\| \le \epsilon$$

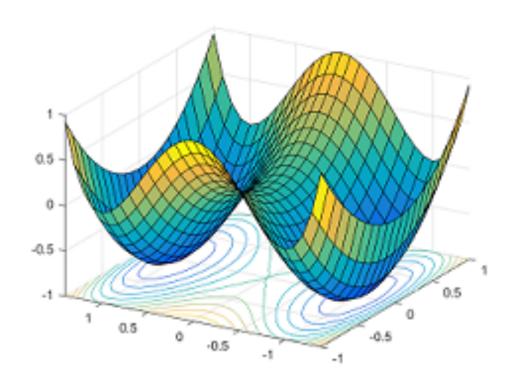
· Local maximum:

$$x: f(x) \ge f(x') \forall x': ||x - x'|| \le \epsilon$$

 Saddle points: stationary points that are not a local min/max

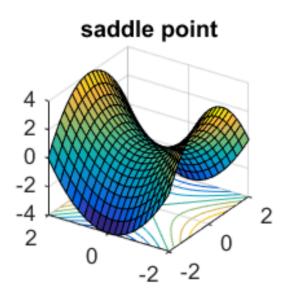


Landscape Analysis



- All local minima are global!
- Gradient descent can escape saddle points.

Strict Saddle Points (Ge et al. '15, Sun et al. '15)



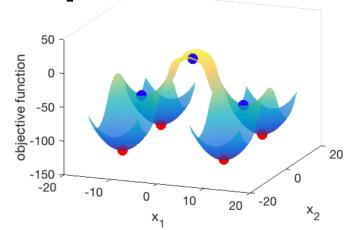
• Strict saddle point: a saddle point and $\lambda_{\min}(\nabla^2 f(x)) < 0$

Escaping Strict Saddle Points

- Noise-injected gradient descent can escape strict saddle points in polynomial time [Ge et al., '15, Jin et al., '17].
- Randomly initialized gradient descent can escape all strict saddle points asymptotically [Lee et al., '15].
 - Stable manifold theorem.

 Randomly initialized gradient descent can take exponential time to escape strict saddle points [Du et al., '17].

If 1) all local minima are global, and 2) are saddle points are strict, then noise-injected (stochastic) gradient descent finds a global minimum in polynomial time



What problems satisfy these two conditions

- Matrix factorization
- Matrix sensing
- Matrix completion
- Tensor factorization
- Two-layer neural network with quadratic activation

What about neural networks?

• Linear networks (neural networks with linear activations functions): all local minima are global, but there exists saddle points that are not strict [Kawaguchi '16].

- Non-linear neural networks with:
 - Virtually any non-linearity,
 - Even with Gaussian inputs,
 - Labels are generated by a neural network of the same architecture,

There are many bad local minima [Safran-Shamir '18, Yun-Sra-Jadbaie '19].