Clarke Differential




Subdifferential and Subgradient

Definition: Given f: RY — R, for every x, the subdifferential set
is defined as

d.f(x) 2 {seRY:Vx' eRY f(x) > f(x)+s'(x'—x)}. The
elements in the subdifferential set are subgradients.



Subdifferential and Subgradient

Definition: Given f: RY — R, for every x, the subdifferential set
is defined as

d.f(x) 2 {seRY:Vx' eRY f(x) > f(x)+s'(x'—x)}. The
elements in the subdifferential set are subgradients.



Subdifferential is not enough

Definition: Given f: RY — R, for every x, the subdifferential set
is defined as

d.f(x) 2 {seRY:Vx' eRY f(x) > f(x)+s'(x'—x)}. The
elements in the subdifferential set are subgradients.



Clarke Differential

Definition: Given f : RY — R, for every x, the Clark differential
Is defined as

df(x) £ conv ({S e RY: 3{x 12, =2 A V)12, — s}).
The elements in the subdifferential set are subgradients.



When does Clarke differential exists

Definition (Locally Lipschitz): f : R4 - R is locally Lipchitz if
Vx € R there exists a neighborhood S of x, such that f is
Lipchitz in S.



Positive Homogeneity

Definition:Ef: R? — R is positive homogeneous of degree L if
flax) = a~f(x) forany a > 0.



Positive Homogeneity



Positive Homogeneity and Clark Differential

Lemma: Suppose f : R? - R is Locally Lipschitz and L

-positively homogeneous. For any x € R% and s € of(x), we
have (s, x) = Lf(x).



Norm Preservation
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Gradient flow and gradient inclusion

Discrete-time dynamics can be complex. Let's use continuous-
time dynamics to simplify:
x(1)

Gradient flow: x,, | = x, — an(xt) = ? = — V/f(x(?))

€ 9f(x(1))

Gradient inclusion:



Norm preservation by gradient inclusion

Theorem (Du, Hu, Lee '18) Suppose a > 0,

f(x, (WH+1’ ceos 0(‘/Vl-, S Wl)) — af(x, (WH-I—l’ .o Wl))’ I.e.,
predictions are 1-homogeneous in each layer. Then for every pair

of layers (i, j) € [H + 1] X [H + 1], the gradient inclusion
maintains: for all > 0,

I , | » _ » | 2
EHWh(f)“F - E”Wh(o)”F = 5||Wh(t)||F - EHWh’(O)”F-



Norm preservation by gradient inclusion



Optimization Methods
for Deep Learning




Gradient descent for non-convex optimization

Decsent Lemma: Let f : RY — R be twice differentiable, and
| V2f]|, < . Then setting the learning rate = 1/, and
applying gradient descent, x, . ; = x, — n Vf(x,), we have:

1
f(xt) _f(xt+1) Z ﬁ”vf(xz)”%



Converging to stationary points

Theorem: In T = 0(%) iterations, we have [|Vf(x)||, L e.
€



Gradient Descent for Quadratic Functions

Problem: min —x ' Ax with A € R%“ being positive-definite.
X

Theorem: Let A .. and 4 . be the largest and the smallest

1

eigenvalues of A. If we setn < , we have

4
1115 < (1 = 1) %]l

max



Momentum: Heavy-Ball Method (Polyak ’64)

Problem: min f(x)
X

Method: v, ; = — Vf(x,) + pv,
X1 = X+ NV




Momentum: Nesterov Acceleration (Nesterov '89)

Problem: min f(x)
X

Method: v, | = — Vf(x, + pv,) + pv,
X1 = X+ Ve

Polyak's Momentum Nesterov Momentum




Newton’s Method

Newton’s Method: x,. ; = x, — n( V*f(x,)) ! Vf(x))
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AdaGrad (Duchi et al. ’11)

Newton Method: x,, | = x, — n( V>f(x,))~! Vf(x,)
AdaGrad: separate learning rate for every parameter

—1
X1 =X — (G g + GI)_l Vix), (G);; = Z (Vf(xt)i)z

\2




RMSProp (Hinton et al. ’12)

AdaGrad: separate learning rate for every parameter

t—1
X1 = X — ﬂ(GH_l + €I)_1 Vf(-x[)a (Gt i = Z ( Vf(xt)i)z

\2

RMSProp: exponential weighting of gradient norms
Xep1 = X — N(Gpyq + 61)_1/2 Vfx), )
(Gt+1)ii — IB(Gt)ii + (1 _ ﬁ)( Vf(xt)i)




AdaDelta (Zeiler ’12)

RMSProp:
X1 =X —n(Gy + GI)_1/2 Vi(x,),
(Gt+1)ii — ﬂ(Gt)ii + (1 — ﬂ)( Vf(xt)i)z

AdaDelta:

X1 = X, — nAx,

Ax, = /u,+ ¢ - (G, + )2 Vfx)
(Gt+1)ii — p(Gt)ii + (1 — ,0)( Vf(xt)i)za
U = pu,+ (1 — p)||Axt||%



Adam (Kingma & Ba ’14)

Momentum:

Vip1 = — V) + v X = X+ v
RMSProp: exponential weighting of gradient norms

X1 = X% — NGy + el)™! Vf(x),
(Gy;; = P(GYy; + (1 = p)( Vf(xt)l-)z
Adam

Vg1 = P+ (1 = B VIx,)

(Gt+1)ii — ﬂz(Gt)ii + (1 _ :BZ)( Vf(xt)i)z

—1/2
X1 =X — (G + €)™y

Default choice nowadays.



Other Optimizers
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