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Specific Setups

■ “Average” approximation: given a distribution  

 

■ “Everywhere” approximation 

μ
∥f − g∥μ = ∫x

| f(x) − g(x) |dμ(x)

∥f − g∥∞ = sup
x

| f(x) − g(x) | ≥ ∥f − g∥μ
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Multivariate Approximation

Theorem: Let  be a continuous function that satisfies 
 (Lipschitzness). 

Then there exists a 3-layer ReLU neural network with 

 nodes that satisfy  

 

g
∥x − x′ ∥∞ ≤ δ ⇒ |g(x) − g(x′ ) | ≤ ϵ

O( 1
δd )

∫[0,1]d
| f(x) − g(x) |dx = ∥f − g∥1 ≤ ϵ

Figure credit to Andrej Risteski
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Universal Approximation

Definition: A class of functions  is universal 
approximator over a compact set  (e.g., ), if for 
every continuous function  and a target accuracy , 
there exists  such that  

ℱ
S [0,1]d

g ϵ > 0
f ∈ ℱ

sup
x∈S

| f(x) − g(x) | ≤ ϵ



Stone-Weierstrass Theorem

Theorem: If  satisfies 
1. Each  is continuous. 
2.  
3.  
4.  is closed under multiplication and vector space 

operations, 
Then  is a universal approximator: 

. 

ℱ
f ∈ ℱ

∀x, ∃f ∈ ℱ, f(x) ≠ 0
∀x ≠ x′ , ∃f ∈ ℱ, f(x) ≠ f(x′ )
ℱ

ℱ
∀g : S → R, ϵ > 0,∃f ∈ ℱ,∥f − g∥∞ ≤ ϵ
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Example: cos activation
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Example: cos activation
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Other Examples

Exponential activation

ReLU activation
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Curse of Dimensionality

■ Unavoidable in the worse case
Ja

non parametric



Barron’s Theory

■ Can we avoid the curse of dimensionality for “nice” functions? 
■ What are nice functions?  

■ Fast decay of the Fourier coefficients 

■ Fourier basis functions: 
  

■ Fourier coefficient:  

■ Fourier integral / representation:  

{ew(x) = ei⟨w,x⟩ = cos(⟨w, x⟩) + i sin(⟨w, x⟩) ∣ w ∈ ℝd}

̂f(w) = ∫ℝd
f(x)e−i⟨w,x⟩dx

f(x) = ∫ℝd

̂f(w)ei⟨w,x⟩dw

time G frequency
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Barron’s Theorem

Theorem (Barron ‘93): For any  where 
 is the unit ball, there exists a 

3-layer neural network   with  neurons and 

sigmoid activation function such that  

.

g : 31 → ℝ
31 = {x ∈ ℝ : ∥x∥2 ≤ 1}

f O( C2

ϵ
)

∫31

( f(x) − g(x))2dx ≤ ϵ

Definition: The Barron constant of a function  is: 

.

f
C ≜ ∫ℝd

∥w∥2| ̂f(w) |dw

I
C small



Examples

■ Gaussian function:  

■ Other functions: 
■ Polynomials 
■ Function with bounded derivatives

f(x) = (2πσ2)d/2exp (− ∥x∥2
2

2σ2 )
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Proof Ideas for Barron’s Theorem

Step 1: show any continuous function can be written as an infinite 
neural network with cosine-like activation functions. 
(Tool: Fourier representation.) 

Step 2: Show that a function with small Barron constant can be 
approximated by a convex combination of a small number of 
cosine-like activation functions. 
(Tool: subsampling / probabilistic method.) 

Step 3: Show that the cosine function can be approximated by 
sigmoid functions. 
(Tool: classical approximation theory.)



Simple Infinite Neural Nets

Theorem: Suppose  is differentiable, if 

, then 

g : ℝ → ℝ
x ∈ [0,1] g(x) = ∫

1

0
1{x ≥ b} ⋅ g′ (b)db + g(0)

Definition: An infinite-wide neural network is defined by a 
signed measure  over neuron weights  

.

ν (w, b)
f(x) = ∫w∈ℝd,b∈ℝ

σ(w⊤x + b)dν(w, b)
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Step 1: Infinite Neural Nets

The function can be written as  

.f(x) = f(0) + ∫ℝd
| ̂f(w) | (cos(bw + ⟨w, x⟩) − cos(bw))dw
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Step 1: Infinite Neural Nets Proof

The function can be written as  

.f(x) = f(0) + ∫ℝd
| ̂f(w) | (cos(bw + ⟨w, x⟩) − cos(bw))dw
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Step 2: Subsampling

Writing the function as the expectation of a random variable: 

.f(x) = f(0) + ∫ℝd

| ̂f(w) |∥w∥2
C ( C

∥w∥2
(cos(bw + ⟨w, x⟩) − cos(bw))) dw
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Step 2: Subsampling

Writing the function as the expectation of a random variable: 

. 

Sample one  with probability  for  times.

f(x) = f(0) + ∫ℝd

| ̂f(w) |∥w∥
C ( C

∥w∥ (cos(bw + ⟨w, x⟩) − cos(bw))) dw

w ∈ ℝd | ̂f(w) |∥w∥2
C
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Step 3: Approximating the Cosines

Lemma: Given , 

there exists a 2-layer neural network   of size  with 
sigmoid activations, such that .

gw(x) = C
∥w∥2

(cos(bw + ⟨w, x⟩) − cos(bw))
f0 O(1/ϵ)

sup
x∈[−1,1]

| f0(y) − hw(y) | ≤ ϵ
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Depth Separation

So far we only talk about 2-layer or 3-layer neural networks. 

Why we need Deep learning? 

Can we show deep neural networks are strictly better than 
shallow neural networks?

approximation
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A brief history of depth separation

Early results from theoretical computer science 

Boolean circuits: a directed acyclic graph model for computation 
over binary inputs; each node (“gate”) performs an operation (e.g. 
OR, AND, NOT) on the inputs from its predecessors.



A brief history of depth separation

Early results from theoretical computer science 

Boolean circuits: a directed acyclic graph model for computation 
over binary inputs; each node (“gate”) performs an operation (e.g. 
OR, AND, NOT) on the inputs from its predecessors. 

Depth separation: the difference of the computation power: 
shallow vs deep Boolean circuits. 

Håstad (’86): parity function cannot be approximated by a small 
constant-depth circuit with OR and AND gates.



Modern depth-separation in neural networks

• Related architectures / models of computation 
• Sum-product networks [Benjio, Delalleau ’11] 

• Heuristic measures of complexity 
• Bound of number of linear regions for ReLU networks 

[Montufar, Pascanu, Cho, Bengio ‘14] 

• Approximation error 
• A small deep network cannot be approximated by a small 

shallow network [Telgarsky ’15]



Shallow Nets Cannot Approximate Deep Nets

Theorem (Telgarsky ’15): For every , there exists 
a function  representable as a network 
of depth , with  nodes, and ReLU activation 
such that, for every network  of depth  
and  nodes, and ReLU activation, we have  

.

L ∈ ℕ
f : [0,1] → [0,1]

O(L2) O(L2)
g : [0,1] → ℝ L

≤ 2L

∫[0,1]
| f(x) − g(x) |dx ≥ 1

32



Intuition

A ReLU network  is piecewise linear, we can subdivide domain 
into a finite number of polyhedral pieces  such 
that in each piece,  is linear: .

f
(P1, P2, . . . , PN)

f ∀x ∈ Pi, f(x) = Aix + bi

Deeper neural networks can make exponentially more regions 
than shallow neural networks.  
Make each region has different values, so shallow neural 
networks cannot approximate.
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Benefits of depth for smooth functions

Theorem (Yarotsky ’15): Suppose  has 
all partial derivatives of order  with coordinate-wise 
bound in , and let  be given. Then there 

exists a  - depth and -size network so 

that .

f : [0,1]d → ℝ
r

[−1,1] ϵ > 0

O(ln 1
ϵ

) ( 1
ϵ )

O( d
r )

sup
x∈[0,1]d

| f(x) − g(x) | ≤ ϵ der



Remarks

• All results discussed are existential: they prove that a good 
approximator exists. Finding one efficiently (e.g., using gradient 
descent) is the next topic (optimization). 

• The choices of non-linearity are usually very flexible: most 
results we saw can be re-proven using different non-linearities. 

• There are other approximation error results: e.g., deep and 
narrow networks are universal approximators. 

• Depth separation for optimization and generalization is widely 
open.


