
Approximation Theory

Proposal Due 418 11 59PM
oh Canvas

1 1.5 page

Specific Setups

■ “Average” approximation: given a distribution

■ “Everywhere” approximation

μ
∥f − g∥μ = ∫x

| f(x) − g(x) |dμ(x)

∥f − g∥∞ = sup
x

| f(x) − g(x) | ≥ ∥f − g∥μ

It 911in S H 91412dm

Multivariate Approximation

Theorem: Let be a continuous function that satisfies
 (Lipschitzness).

Then there exists a 3-layer ReLU neural network with

 nodes that satisfy

g
∥x − x′ ∥∞ ≤ δ ⇒ |g(x) − g(x′) | ≤ ϵ

O(1
δd)

∫[0,1]d
| f(x) − g(x) |dx = ∥f − g∥1 ≤ ϵ

Figure credit to Andrej Risteski

L

Universal Approximation

Definition: A class of functions is universal
approximator over a compact set (e.g.,), if for
every continuous function and a target accuracy ,
there exists such that

ℱ
S [0,1]d

g ϵ > 0
f ∈ ℱ

sup
x∈S

| f(x) − g(x) | ≤ ϵ

Stone-Weierstrass Theorem

Theorem: If satisfies
1. Each is continuous.
2.
3.
4. is closed under multiplication and vector space

operations,
Then is a universal approximator:

.

ℱ
f ∈ ℱ

∀x, ∃f ∈ ℱ, f(x) ≠ 0
∀x ≠ x′ , ∃f ∈ ℱ, f(x) ≠ f(x′)
ℱ

ℱ
∀g : S → R, ϵ > 0,∃f ∈ ℱ,∥f − g∥∞ ≤ ϵ

9144914

ti ti t I i titz EF

Example: cos activation

xt at blurb
a t

n
WE2m

xd
FGdim
indie ofnodes

Jo d E Q Ibid M

Icsid is universal approximator

Pt O f E Jad is continuous

Ux It St to 0 It 6 0

F g E Frosid
9 E Fasd

2 cosy cos Z COS HZ cos Y Z

III Ya m aicoslwixtbiD.LI s costvixtdid

If É Ii cos
I itvjfxtbitdjltcosllwivixtbid.gl

E F

Example: cos activation

U X X 7th It
define ta cos Efi EF

fix cos I 4
fix's cos o

I

Other Examples

Exponential activation

ReLU activation

Texted

6 is continuous dim 612 0

ZIT
din 6 Z I

Iad is universal
is

User taproot
84 8171 817 Y

Curse of Dimensionality

■ Unavoidable in the worse case
Ja

non parametric

Barron’s Theory

■ Can we avoid the curse of dimensionality for “nice” functions?
■ What are nice functions?

■ Fast decay of the Fourier coefficients

■ Fourier basis functions:

■ Fourier coefficient:

■ Fourier integral / representation:

{ew(x) = ei⟨w,x⟩ = cos(⟨w, x⟩) + i sin(⟨w, x⟩) ∣ w ∈ ℝd}

̂f(w) = ∫ℝd
f(x)e−i⟨w,x⟩dx

f(x) = ∫ℝd

̂f(w)ei⟨w,x⟩dw

time G frequency

a set of functions

X LII X I Xi Vi
Vi is a basis

Barron’s Theorem

Theorem (Barron ‘93): For any where
 is the unit ball, there exists a

3-layer neural network with neurons and

sigmoid activation function such that

.

g : 31 → ℝ
31 = {x ∈ ℝ : ∥x∥2 ≤ 1}

f O(C2

ϵ
)

∫31

(f(x) − g(x))2dx ≤ ϵ

Definition: The Barron constant of a function is:

.

f
C ≜ ∫ℝd

∥w∥2| ̂f(w) |dw

I
C small

Examples

■ Gaussian function:

■ Other functions:
■ Polynomials
■ Function with bounded derivatives

f(x) = (2πσ2)d/2exp (− ∥x∥2
2

2σ2)
Need Off

fix exp 276211mi
let Z zag

d
normalizing constant

C film Farlow 2 2 11714 Hallow

thud
EEMIDETEEN 12EUR95

z YET ON
it 276

s

Proof Ideas for Barron’s Theorem

Step 1: show any continuous function can be written as an infinite
neural network with cosine-like activation functions.
(Tool: Fourier representation.)

Step 2: Show that a function with small Barron constant can be
approximated by a convex combination of a small number of
cosine-like activation functions.
(Tool: subsampling / probabilistic method.)

Step 3: Show that the cosine function can be approximated by
sigmoid functions.
(Tool: classical approximation theory.)

Simple Infinite Neural Nets

Theorem: Suppose is differentiable, if

, then

g : ℝ → ℝ
x ∈ [0,1] g(x) = ∫

1

0
1{x ≥ b} ⋅ g′ (b)db + g(0)

Definition: An infinite-wide neural network is defined by a
signed measure over neuron weights

.

ν (w, b)
f(x) = ∫w∈ℝd,b∈ℝ

σ(w⊤x + b)dν(w, b)
dumb

KT
firstlayer É O

6 TUG
Pf by fundamental

Theorem of calculus

go go Sox g bid b

Scoot So 11 76 glads

Step 1: Infinite Neural Nets

The function can be written as

.f(x) = f(0) + ∫ℝd
| ̂f(w) | (cos(bw + ⟨w, x⟩) − cos(bw))dw

dry

ifimaging
IN paypal.edu

f

x real

Step 1: Infinite Neural Nets Proof

The function can be written as

.f(x) = f(0) + ∫ℝd
| ̂f(w) | (cos(bw + ⟨w, x⟩) − cos(bw))dw

to Sad few era'd
w

Sad Fant Sad for
t D d w

to Sad I fall eilbw
tax guy

fo t Sad Ita cos but cu x l costal

Step 2: Subsampling

Writing the function as the expectation of a random variable:

.f(x) = f(0) + ∫ℝd

| ̂f(w) |∥w∥2
C (C

∥w∥2
(cos(bw + ⟨w, x⟩) − cos(bw))) dw

gaffdistriantr

oveuw Du

Wn Dw 1
cos but Cox 7

costD

Step 2: Subsampling

Writing the function as the expectation of a random variable:

.

Sample one with probability for times.

f(x) = f(0) + ∫ℝd

| ̂f(w) |∥w∥
C (C

∥w∥ (cos(bw + ⟨w, x⟩) − cos(bw))) dw

w ∈ ℝd | ̂f(w) |∥w∥2
C

r

wi Wv

cost IE glosthuitcwixs
costa

I fix by concentrationmotel

Step 3: Approximating the Cosines

Lemma: Given ,

there exists a 2-layer neural network of size with
sigmoid activations, such that .

gw(x) = C
∥w∥2

(cos(bw + ⟨w, x⟩) − cos(bw))
f0 O(1/ϵ)

sup
x∈[−1,1]

| f0(y) − hw(y) | ≤ ϵ

Ild
function

Ywca full cosecant
YuYCEgx7

costal

hug

use f d approximation
with threshold

use sigmoid to approximate
threshold

Depth Separation

So far we only talk about 2-layer or 3-layer neural networks.

Why we need Deep learning?

Can we show deep neural networks are strictly better than
shallow neural networks?

approximation
FF

generalization

A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.

A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.

Depth separation: the difference of the computation power:
shallow vs deep Boolean circuits.

Håstad (’86): parity function cannot be approximated by a small
constant-depth circuit with OR and AND gates.

Modern depth-separation in neural networks

• Related architectures / models of computation
• Sum-product networks [Benjio, Delalleau ’11]

• Heuristic measures of complexity
• Bound of number of linear regions for ReLU networks

[Montufar, Pascanu, Cho, Bengio ‘14]

• Approximation error
• A small deep network cannot be approximated by a small

shallow network [Telgarsky ’15]

Shallow Nets Cannot Approximate Deep Nets

Theorem (Telgarsky ’15): For every , there exists
a function representable as a network
of depth , with nodes, and ReLU activation
such that, for every network of depth
and nodes, and ReLU activation, we have

.

L ∈ ℕ
f : [0,1] → [0,1]

O(L2) O(L2)
g : [0,1] → ℝ L

≤ 2L

∫[0,1]
| f(x) − g(x) |dx ≥ 1

32

Intuition

A ReLU network is piecewise linear, we can subdivide domain
into a finite number of polyhedral pieces such
that in each piece, is linear: .

f
(P1, P2, . . . , PN)

f ∀x ∈ Pi, f(x) = Aix + bi

Deeper neural networks can make exponentially more regions
than shallow neural networks.
Make each region has different values, so shallow neural
networks cannot approximate.

has
Sam

Benefits of depth for smooth functions

Theorem (Yarotsky ’15): Suppose has
all partial derivatives of order with coordinate-wise
bound in , and let be given. Then there

exists a - depth and -size network so

that .

f : [0,1]d → ℝ
r

[−1,1] ϵ > 0

O(ln 1
ϵ

) (1
ϵ)

O(d
r)

sup
x∈[0,1]d

| f(x) − g(x) | ≤ ϵ der

Remarks

• All results discussed are existential: they prove that a good
approximator exists. Finding one efficiently (e.g., using gradient
descent) is the next topic (optimization).

• The choices of non-linearity are usually very flexible: most
results we saw can be re-proven using different non-linearities.

• There are other approximation error results: e.g., deep and
narrow networks are universal approximators.

• Depth separation for optimization and generalization is widely
open.

