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CSE543/599I: Deep Learning

Instructor: Simon Du  
Teaching Assistant: Prashant Ranagarajan, Yuhao Wang 
Course Website (contains all logistic information): https://courses.cs.washington.edu/
courses/cse543/22sp/ 
Piazza: https://piazza.com/washington/spring2022/cse543/home 
Announcements: Canvas 
Homework: Canvas
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What this class is:
• Fundamentals of DL: Neural network architecture, approximation 

properties, optimization, architecture, generalization, generative 
models, representation learning 

• Preparation for further learning / research: the field is fast-
moving, you will be able to apply the fundamentals and teach 
yourself the latest

What this class is not:
• An easy course: mathematically easy 
• A survey course: laundry list of algorithms 
• An application course: implementation of different architectures on 

different datasets

CSE543/599I: Deep Learning



Prerequisites

■ Working knowledge of: 
■ Linear algebra 
■ Vector calculus 
■ Probability and statistics 
■ Algorithms 
■ Machine leanring (CSE 446/546) 

■ Mathematical maturity 
■ “Can I learn these topics concurrently?”



Lecture

■ Time: Tuesday and Thursday 9:00 - 10:20AM 
■ CSE2 G10 
■ Slides + handwritten notes (e.g., proofs) 
■ Please ask questions 
■ Some lectures will be on Zoom 
■ Recording on Canvas 
■ Tentative schedule on course website



Homework (40%)

■ 2 homework (20%+20%) 
□ Each contains both theoretical questions and will have 

programming 
□ Related to course materials 
□ Collaboration okay but must write who you collaborated 

with. You must write, submit, and understand your 
answers and code 

□ Submit on Canvas 
□ Must be typed 
□ Two late days 
□ Tentative timeline: 
□ HW 1 due: 4/22 
□ HW 2 due: 5/6



Course Project (60%)

■ Group of 1 - 2. 
■ Topic: literature review (state-of-the-art) or original 

research. 
■ Some potential topics are in listed on Canvas. OK to do a 

project on listed. 
■ You can work on a project related to your research. 
■ Proposal (due: 4/8): 5% 

■ Format: NeurIPS Latex format, ~1 - 1.5 pages 
■ Presentations on (5/31 and 6/2 on Zoom): 20% 
■ Final report (due: 6/10): 35% 

■ Format: NeurIPS Latex format, ~8 pages 
■ Submit on Canvas



Possible Topics

■ Approximation properties 
■ Advanced optimization methods 
■ Optimization theory for deep learning 
■ Generalization theory for deep learning 
■ Deep reinforcement learning 
■ Implicit regularization 
■ Meta-learning algorithm / theory 
■ Robustness 
■ Lottery ticket hypothesis 
■ Deep learning application 
■ …



Communication Chanels

■ Announcements 
■ Canvas 

■ questions about class, homework help 
□ Piazza 
□ Office hours: 
□ Simon Du: Tu 10:30 - 11:30 AM (in person Gates 

312 and Zoom) 
□ Prashant Ranagarajan 
□ Yuhao Wan 

■ Regrade requests / Personal concerns: 
□ Email to instructor or TAs



Addcodes

■ Email: Elle Brown (ellean@cs.washington.edu) 
for addcodes

mailto://(null)ellean@cs.washington.edu


Topic 1: Review (Today)

■ ML Review: training, generalization 
■ Neural network basics: fully-connected neural network, 

gradient descent



Topic 2: Approximation Theory

■ Why neural networks can express the (regression, 
classification, …) function you want? 

■ Construction of such desired neural networks 
■ Universal approximation theorem



Topic 3: Optimization

■ Review: Back-propagation 
■ Auto-differentiation 
■ Advanced optimizers: momentum (Nesterov acceleration), 

adaptive method (AdaGrad, Adam) 
■ Techniques for improving optimization 
■ Theory: global convergence of gradient of over-

parameterized neural networks 
■ Neural Tangent Kernel Tide



Topic 4: Architecture

■ Convolutional neural network 
■ Recurrent neural network 
■ Attention-based neural network 
■ General framework



Topic 5: Generalization

■ Measures of generalization 
■ Double descent 
■ Techniques for improving generalization 
■ Generalization theory beyond VC-dimension 
■ Implicit regularization

meeee



Topic 6: Unsupervised learning

■ Explicit models 
■ Generative adversarial network 
■ Sampling



Topic 7: Representation Learning

■ Transfer learning 
■ Domain adaptation 
■ Meta-learning 
■ Theory



ML uses past data to make predictions



Supervised Learning Process

Collect a dataset 

Decide on a model  

Find the function which fits the data best 
Choose a loss function 
Pick the function which minimizes loss 
on data 

Use function to make prediction on new 
examples
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Framework
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Neural Networks layersIii
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Multi-layer Neural Network - Binary Classification

a(1) = x
…

…
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Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

by = g(⇥(L)a(L))
L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

g(z) = 1
1 + e−z

Binary 
Logistic 
Regression
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a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}



Mul1ple'Output'Units:''One@vs@Rest'
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Multi-layer Neural Network - Regression

a(1) = x
…

…

5

Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}by = ⇥(L)a(L)
L(y, by) = (y � by)2



a(1) = x
z(2) = Θ(1)a(1)
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L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )
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⇥(l)  ⇥(l) � ⌘r⇥(l)L(y, by) 8l

Seems simple enough, why are packages like PyTorch, Tensorflow, 
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation 

2. Convenient libraries 

3. GPU support 

Gradient Descent:

D setup NN

training
linear algebra operation

pointwise operations



Gradient Descent:
⇥(l)  ⇥(l) � ⌘r⇥(l)L(y, by) 8l

Seems simple enough, why are packages like PyTorch, Tensorflow, 
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation 

2. Convenient libraries 

Gradient Descent:



Practice: gradient descent

Optimization Error: Theory and Practice

University of Washington 1

Zhang Bengio Hardt Recht Vinyals 2017
Understanding DL Requires Rethinking Generalization

2.0

1.5

0.5

0.0

1.0

0 5 10 15 20 25
Thousand steps

Op
tim

iza
tio

n
Er

ro
r

True labels
Random labels Optimization 

error -> 0 for 
both true 
labels and 
random labels !

!(#, %)%

Theory: Non-convex. NP-hard 
[Blum and Rivest 88]
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Over-parameterization

University of Washington 2

CIFAR - 10 n: 50K
Inception 1.6M
Alexnet 1.4M

MP 1x512 1.2M
ImageNet n: 1.2M

Inception V4 43M
Alexnet 61M

Resnet-152 60M
VGG-19 143M

AmoebaNet 600M

Why large neural NN has 0 error?

Why does gradient descent find such a
neural network?

Q:

Why there exists such an NN ?Q:
approx

opt



Over-parameterization => Overfit?

University of Washington 3

Generalization
Error Bound: 

# of parametersComplexity Measure: 

Over-parameterization: # of parameters >> n

Number of parameters (millions)
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