
Generative Models

Desiderata for generative models

• Probability	evaluation:	given	a	sample,	it	is	computationally	efficient	to	evaluate	
the	probability	of	this	sample.	

• Flexible	model	family:	it	is	easy	to	incorporate	any	neural	network	models.	

• Easy	sampling:	it	is	computationally	efficient	to	sample	a	data	from	the	
probabilistic	model.

Desiderata for generative models

Slide	credit	to	Yang	Song

Taxonomy of generative models

Image	credits	to	Andrej	Risteski

Key challenge for building generative models

Slide	credit	to	Yang	Song

Key challenge for building generative models

Slide	credit	to	Yang	Song

Variational
Autoencoder

Architecture

• Auto-encoder:	 	
• Encoder:	 	
• Decoder:	 	

• Isomorphic	Gaussian:	
	

• Gaussian	prior:	 	
• Gaussian	likelihood:	 	

• Probabilistic	model	interpretation:	latent	variable	
model.

x → z → x
q(z |x; ϕ) : x → z
p(x |z; θ) : z → x

q(z |x; ϕ) = N(μ(x; ϕ), diag(exp(σ(x; ϕ))))
p(z) = N(0,I)

p(x |z; θ) ∼ N(f(z; θ), I)

VAE Training

• Training	via	optimizing	ELBO	
• 	
• Likelihood	term	+	KL	penalty	

• KL	penalty	for	Gaussians	has	closed	form.	
• Likelihood	term	(reconstruction	loss):	

• Monte-Carlo	estimation	
• Draw	samples	from	 	
• Compute	gradient	of	 :	

• 	

•

L(ϕ, θ; x) = 𝔼z∼q(z|x;ϕ)[log p(z |x; θ)] − KL (q(z |x; ϕ) | |p(z))

q(z |x; ϕ)
θ

x ∼ N(f(z; θ); I)
p(x) =

1

2π
exp(−

1
2

∥x − f(z; θ)∥2
2)

VAE Training

• Likelihood	term	(reconstruction	loss):	
• Gradient	for	 Loss:	 	
• Reparameterization	trick:		

• 	
• 	

	
• Monte-Carlo	estimate	for	 	

• End-to-end	training	

ϕ . L(ϕ) = 𝔼z∼q(z;ϕ) [log p(x |z)]
z ∼ N(μ, Σ) ⇔ z = μ + ϵ, ϵ ∼ N(0,Σ)

L(ϕ) ∝ 𝔼z∼q(z|ϕ) [∥f(z; θ) − x∥2
2]

∝ 𝔼ϵ∼N(0,I) [∥f(μ(x; ϕ) + σ(x; ϕ) ⋅ ϵ; θ) − x∥2
2]

∇L(ϕ)

VAE vs. AE

• AE:	classical	unsupervised	representation	learning	method.	
• VAR:	a	probabilistic	model	of	AE	

• AE	+	Gaussian	noise	on	 	
• KL	penalty:	 	constraint	on	the	latent	vector	 	

z
L2 z

Conditioned VAE

• Semi-supervised	learning:	some	labels	are	also	available	

Comments on VAE

• Pros:	
• Flexible	architecture	
• Stable	training	

• Cons:	
• Inaccurate	probability	evaluation	(approximate	inference)

Energy-Based Models

Energy-based Models

• Goal	of	generative	models:	
• a	probability	distribution	of	data:	 	

• Requirements	
• 	(non-negative)	

• 	

• Energy-based	model:	
• Energy	function:	 ,	parameterized	by	 	

• 	(why	exp?)	

•

P(x)

P(x) ≥ 0

∫x
P(x)dx = 1

E(x; θ) θ

P(x) =
1
z

exp(−E(x; θ))

z = ∫z
exp(−E(x; θ))dx

Boltzmann Machine

• Generative	model		

• 	

• ,	 :	temperature	hyper-parameter	

• :	parameter	to	learn	
• When	 	is	binary,	patterns	are	affecting	each	other	through	

E(y) = −
1
2

y⊤Wy

P(y) =
1
z

exp(−
E(y)

T
) T

W
yi W

Boltzmann Machine: Training

• Objective:	maximum	likelihood	learning	(assume	T	=1):	
• Probability	of	one	sample:	

	 	

• Maximum	log-likelihood:	

P(y) =
exp(1

2 y⊤y)

∑y′ exp(y′ ⊤Wy′)

L(W) =
1
N ∑

y∈D

1
2

y⊤Wy − log∑
y′

exp(
1
2

y′ ⊤Wy′)

Boltzmann Machine: Training

Boltzmann Machine: Training

Restricted Bolzmann Machine

• A	structured	Boltzmann	Machine	
• Hidden	neurons	are	only	connected	to	visible	neurons	
• No	intra-layer	connections	
• Invented	by	Paul	Smolensky	in	’89	
• Became	more	practical	after	Hinton	invested	fast	learning	algorithms	in	mid	
2000

Restricted Bolzmann Machine

• Computation	Rules	
• Iterative	sampling	

• Hidden	neurons	 :	 ,	 	

• Visible	neurons	 :	

hi zi = ∑
j

wijvj P(hi |v) =
1

1 + exp(−zi)

vj zj = ∑
i

wijhi, P(vj |h) =
1

1 + exp(−zj)

Restricted Bolzmann Machine

• Sampling:	
• Randomly	initialize	visible	neurons	 	
• Iterative	sampling	between	hidden	neurons	and	visible	neurons	
• Get	final	sample	 	

v0

(v∞, h∞)

• Training:	
• MLE	
• Sampling	to	approximate	gradient	

Deep Bolzmann Machine

• Can	we	have	a	deep	version	of	RBM?	
• Deep	Belief	Net	(’06)	
• Deep	Boltzmann	Machine	(’09)	

• Sampling?	
• Forward	pass:	bottom-up	
• Backward	pass:	top-down	

• Deep	Bolzmann	Machine	
• The	very	first	deep	generative	model	
• Salakhudinov	&	Hinton	

deep belief net Deep Boltzmann Machine

Deep Bolzmann Machine

Summary

• Pros:	powerful	and	flexible	

• An	arbitrarily	complex	density	function	 	

• Cons:	hard	to	sample	/	train	
• Hard	to	sample:	

• MCMC	sampling	
• Partition	function	

• No	closed-form	calculation	for	likelihood	
• Cannot	optimize	MLE	loss	exactly	
• MCMC	sampling	

p(x) =
1
z

exp(−E(x))

Normalizing Flows

Intuition about easy to sample

• Goal:	design	 	such	that	
• Easy	to	sample	
• Tractable	likelihood	(density	function)	

• Easy	to	sample	
• Assume	a	continuous	variable	 	
• e.g.,	Gaussian	 ,	or	uniform	 	
• ,	 	is	also	easy	to	sample	

p(x)

z
z ∼ N(0,1) z ∼ Unif[0,1]

x = f(z) x

Intuition about tractable density

• Goal:	design	 	such	that	
• Assume	 	is	from	an	“easy”	distribution	
• 	has	tractable	likelihood	

• Uniform:	 	
• Density	 	
• ,	then	 	

f(z; θ)
z

p(x) = p(f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = ?
!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z

Intuition about tractable density

• Goal:	design	 	such	that	
• Assume	 	is	from	an	“easy”	distribution	
• 	has	tractable	likelihood	

• Uniform:	 	
• Density	 	
• ,	then	 	

• ,	then	 	(for)	

• ,	then	 	

• Assume	 	is	a	bijection	

f(z; θ)
z

p(x) = p(f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = 1/2
x = az + b p(x) = 1/ |a | a ≠ 0

x = f(z) p(x) = p(z) |
dz
dx

| = | f′ (z) |−1 p(z)

f(z)

!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z

Change of variable

• Suppose	 	for	some	general	non-linear	 	
• The	linearized	change	in	volume	is	determined	by	the	Jacobian	of	 :	

•
	

• Given	a	bijection	 	
• 	

•
	

• Since	 	(Jacobian	of	invertible	function)	

•
	

x = f(z) f(⋅)
f(⋅)

∂f(z)
∂z

=

∂f1(x)
∂z1

⋯
∂f1(z)
∂zd

⋯ ⋯ ⋯
∂fd(z)

∂z1
⋯

∂fd(z)
∂zd

f(z) : ℝd → ℝd

z = f −1(x)

p(x) = p(f −1(x)) det (∂f −1(x)
∂x) = p(z) det (∂f −1(x)

∂x)
∂f −1

∂x
= (∂f

∂x)
−1

p(x) = p(z) det (∂f −1(x)
∂x) = p(z) det (∂f(z)

∂z)
−1

Normalizing Flow

• Idea	
• Sample	 	from	an	“easy”	distribution,	e.g.,	standard	Gaussian	
• Apply	 	bijections	 	
• The	final	sample	 	has	tractable	desnity	

• Normalizing	Flow	
• 	where	 	and	 	is	invertible	
• Every	revertible	function	produces	a	normalized	density	function	

•
	

z0
K zi = fi(zi−1)

x = fK(zK)

z0 ∼ N(0,I), zi = fi(zi−1), x = ZK x, zi ∈ ℝd fi

p(zi) = p(zi−1) det (∂fi
∂zi−1)

−1

Normalizing Flow

• Generation	is	trivial	
• Sample	 	then	apply	the	transformations	

• Log-likelihood	

• 	

•
	

z0

log p(x) = log p(Zk−1) − log det (∂fK
∂zK−1)

log p(x) = log p(z0) − ∑
i

log det (∂fi
∂zi−1) ! "# ‼!

Normalizing Flow

• Naive	flow	model	requires	extremely	expensive	computation	
• Computing	determinant	of	 	matrices	

• Idea:	
• Design	a	good	bijection	 	such	that	the	determinant	is	easy	to	compute	

d × d

fi(z)

Plannar Flow

• Technical	tool:	Matrix	Determinant	Lemma:	
• 	

• Model:	
• 	
• 	chosen	to	be	 	

• 	

• Computation	in	 	time	
• Remarks:	

• 	to	ensure	invertibility	
• Require	normalization	on	u	and	w	

det(A + uv⊤) = (1 + v⊤A−1u) det A

fθ(z) = z + u ⊙ h(w⊤z + b)
h(⋅) tanh(⋅)(0 < h′ (⋅) < 1)

θ = [u, w, b], det (∂f
∂z) = det(I + h′ (w⊤z + b)uw⊤) = 1 + h′ (w⊤z + b)u⊤w

O(d)

u⊤w > − 1

Planar Flow (Rezende & Mohamed, ’16)

• 	
• 10	planar	transformations	can	transform	simple	distributions	into	a	more	complex	
one	

fθ(z) = z + uh (w⊤z + b)

Extensions

• Other	flow	models	uses	triangular	Jacobian	(NICE,	Dinh	et	al.	’14)	

• Invertible	1x1	convolutions	(Kingma	et	al.	’18)	

• Auto-regressive	flow:	
• WaveNet	(Deepmind	’16)	
• PixelCNN	(Deepmind	‘16)	

Summary

• Pros:	
• Easy	to	sample	by	transforming	from	a	simple	distribution	
• Easy	to	evaluate	the	probability	
• Easy	training	(MLE)	

• Con	
• Most	restricted	neural	network	structure	
• Trade	expressiveness	for	tractability	

