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Generative model
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Desiderata for generative models

• Probability	evaluation:	given	a	sample,	it	is	computationally	efficient	to	evaluate	
the	probability	of	this	sample.	

• Flexible	model	family:	it	is	easy	to	incorporate	any	neural	network	models.	

• Easy	sampling:	it	is	computationally	efficient	to	sample	a	data	from	the	
probabilistic	model.
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Taxonomy of generative models
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Key challenge for building generative models
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Training generative models

• Likelihood-based:	maximize	the	likelihood	of	the	data	under	the	model	(possibly	
using	advanced	techniques	such	as	variational	method	or	MCMC):	

	

• Pros:	
• Easy	training:	can	just	maximize	via	SGD.	
• Evaluation:	evaluating	the	fit	of	the	model	can	be	done	by	evaluating	the	
likelihood	(on	test	data).	

• Cons:	
• Large	models	needed:	likelihood	objectve	is	hard,	to	fit	well	need	very	big	
model.	

• Likelihood	entourages	averaging:	produced	samples	tend	to	be	blurrier,	as	
likelihood	encourages	“coverage”	of	training	data.
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Training generative models

• Likelihood-free:	use	a	surrogate	loss	(e.g.,	GAN)	to	train	a	discriminator	to	
differentiate	real	and	generated	samples.	

• Pros:	
• Better	objective,	smaller	models	needed:	objective	itself	is	learned	-	can	
result	in	visually	better	images	with	smaller	models.	

• Cons:	
• Unstable	training:	typically	min-max	(saddle	point)	problems.	
• Evaluation:	no	way	to	evaluate	the	quality	of	fit.
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Implicit Generative Model

• Goal:	a	sampler	 	to	generate	images	

• A	simple	generator	 :	

• 	

• 	deterministic	transformation	

• Likelihood-free	training:	

• Given	a	dataset	from	some	distribution	 	

• Goal:	 	defines	a	distribution,	we	want	this	distribution	 	 	

• Training:	minimize	 	

• 	is	some	distance	metric	(not	likelihood)	

• Key	idea:	Learn	a	differentiable	

g( ⋅ )
g(z; θ)

z ∼ N(0,I )
x = g(z; θ)

pdata
g(z; θ) ≈ pdata

D(g(z; θ), pdata)
D

D
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GAN (Goodfellow et al., ‘14)
• Parameterize	the	discriminator	 	with	parameter	 	

• Goal:	learn	 	such	that	 	measures	how	likely	 	is	from	 	

• 	if	 	

• 	if	 	

• a.k.a.,	a	binary	classifier	

• GAN:	use	a	neural	network	for	 	

• Training:	need	both	negative	and	positive	samples	
• Positive	samples:	just	the	training	data	

• Negative	samples:	use	our	sampler	 	(can	provide	infinite	samples).	

• Overall	objectives:	
• Generator:	 	

• Discriminator	uses	MLE	Training:	

	

D( ⋅ ; ϕ) ϕ

ϕ D(x; ϕ) x pdata
D(x, ϕ) = 1 x ∼ pdata
D(x, ϕ) = 0 x! ∼ pdata

D( ⋅ ; ϕ)

g( ⋅ ; z)

θ* = max
θ

D(g(z; θ); ϕ)

ϕ* = max
ϕ

$x∼pdata
[log D(x; ϕ)] + $ ̂x∼g(⋅)[log(1 − D( ̂x; ϕ))]
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GAN (Goodfellow et al., ‘14)

• Generator	 	where	 	

• Generate	realistic	data	

• Discriminator	 	

• Classify	whether	the	data	is	real	(from	 )	or	fake	(from	 )	

• Objective	function:	

	

• Training	procedure:	

• Collect	dataset	 	

• Train	discriminator

	

• Train	generator	 	

• Repeat

G(z; θ) z ∼ N(0,I )

D(x; ϕ)
pdata G

L(θ, ϕ) = min
θ

max
ϕ

$x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D( ̂x; ϕ))]

{(x,1) |x ∼ pdata} ∪ {( ̂x,0) ∼ g(z; θ)}

D : L(ϕ) = $x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D( ̂x; ϕ))]
G : L(θ) = $z∼N(0,I) [log D(G(z; θ), ϕ)]
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GAN (Goodfellow et al., ‘14)

• Objective	function:	

L(θ, ϕ) = min
θ

max
ϕ

$x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D( ̂x; ϕ))]

discriminator
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Math Behind GAN
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Math Behind GAN
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KL-Divergence and JS-Divergence
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Math Behind GAN

Given optimal D
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Evaluation of GAN

• No	 	in	GAN.	

• Idea:	use	a	trained	classifier	 :	

• If	 ,	 	should	have	low	entropy	

• Otherwise,	 	close	to	uniform.	

• Samples	from	 	should	be	diverse:	

• 	close	to	uniform.

p(x)
f(y ∣ x)

x ∼ pdata f(y |x)
f(y ∣ x)

G
pf (y) = $x∼G[ f(y |x)]
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Evaluation of GAN

• Inception	Score	(IS,	Salimans	et	al.	’16)	

• Use	Inception	V3	trained	on	ImageNet	as	 	

• 		

• Higher	the	better

f(y |x)
IS = exp ($x∼G [KL( f(y |x) | |pf (y)))])
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Comments on GAN

• Other	evaluation	metrics:	
• Fréchet	Inception	Distance	(FID):	Wasserstein	distance	between	Gaussians	

• Mode	collapse:		
• The	generator	only	generate	a	few	type	of	samples.	
• Or	keep	oscillating	over	a	few	modes.	

• Training	instability:	
• Discriminator	and	generator	may	keep	oscillating	

• Example:	 ,	generator	 ,	discriminator .	NE:	 	but	GD	oscillates.	

• No	stopping	criteria.	
• Use	Wsserstein	GAN	(Arjovsky	et	al.	’17):

	

• And	need	many	other	tricks…

−xy x y x = y = 0

min
G

max
f:Lip( f )≤1

$x∼pdata [f(x)] − $ ̂x∼pG
[ f( ̂x)]
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