
Generative Models

Distribution learning

Image	credits	to	Andrej	Risteski

Distribution learning

Distribution learning

Image	credits	to	Andrej	Risteski

Distribution learning

Generative model

Slides	credit	to	Yang	Song

Generative model

Slide	credit	to	Yang	Song

Desiderata for generative models

• Probability	evaluation:	given	a	sample,	it	is	computationally	efficient	to	evaluate	
the	probability	of	this	sample.	

• Flexible	model	family:	it	is	easy	to	incorporate	any	neural	network	models.	

• Easy	sampling:	it	is	computationally	efficient	to	sample	a	data	from	the	
probabilistic	model.

Desiderata for generative models

Slide	credit	to	Yang	Song

Taxonomy of generative models

Image	credits	to	Andrej	Risteski

Key challenge for building generative models

Slide	credit	to	Yang	Song

Key challenge for building generative models

Slide	credit	to	Yang	Song

Training generative models

• Likelihood-based:	maximize	the	likelihood	of	the	data	under	the	model	(possibly	
using	advanced	techniques	such	as	variational	method	or	MCMC):	

	

• Pros:	
• Easy	training:	can	just	maximize	via	SGD.	
• Evaluation:	evaluating	the	fit	of	the	model	can	be	done	by	evaluating	the	
likelihood	(on	test	data).	

• Cons:	
• Large	models	needed:	likelihood	objectve	is	hard,	to	fit	well	need	very	big	
model.	

• Likelihood	entourages	averaging:	produced	samples	tend	to	be	blurrier,	as	
likelihood	encourages	“coverage”	of	training	data.

max
θ

n

∑
i=1

log pθ(xi)

Training generative models

• Likelihood-free:	use	a	surrogate	loss	(e.g.,	GAN)	to	train	a	discriminator	to	
differentiate	real	and	generated	samples.	

• Pros:	
• Better	objective,	smaller	models	needed:	objective	itself	is	learned	-	can	
result	in	visually	better	images	with	smaller	models.	

• Cons:	
• Unstable	training:	typically	min-max	(saddle	point)	problems.	
• Evaluation:	no	way	to	evaluate	the	quality	of	fit.

Generative
Adversarial Nets

Implicit Generative Model

• Goal:	a	sampler	 	to	generate	images	

• A	simple	generator	 :	

• 	

• 	deterministic	transformation	

• Likelihood-free	training:	

• Given	a	dataset	from	some	distribution	 	

• Goal:	 	defines	a	distribution,	we	want	this	distribution	 	 	

• Training:	minimize	 	

• 	is	some	distance	metric	(not	likelihood)	

• Key	idea:	Learn	a	differentiable	

g(⋅)
g(z; θ)

z ∼ N(0,I)
x = g(z; θ)

pdata
g(z; θ) ≈ pdata

D(g(z; θ), pdata)
D

D

GAN (Goodfellow et al., ‘14)
• Parameterize	the	discriminator	 	with	parameter	 	

• Goal:	learn	 	such	that	 	measures	how	likely	 	is	from	 	

• 	if	 	

• 	if	 	

• a.k.a.,	a	binary	classifier	

• GAN:	use	a	neural	network	for	 	

• Training:	need	both	negative	and	positive	samples	
• Positive	samples:	just	the	training	data	

• Negative	samples:	use	our	sampler	 	(can	provide	infinite	samples).	

• Overall	objectives:	
• Generator:	 	

• Discriminator	uses	MLE	Training:	

	

D(⋅ ; ϕ) ϕ

ϕ D(x; ϕ) x pdata
D(x, ϕ) = 1 x ∼ pdata
D(x, ϕ) = 0 x! ∼ pdata

D(⋅ ; ϕ)

g(⋅ ; z)

θ* = max
θ

D(g(z; θ); ϕ)

ϕ* = max
ϕ

$x∼pdata
[log D(x; ϕ)] + $ ̂x∼g(⋅)[log(1 − D(̂x; ϕ))]

GAN (Goodfellow et al., ‘14)

• Generator	 	where	 	

• Generate	realistic	data	

• Discriminator	 	

• Classify	whether	the	data	is	real	(from)	or	fake	(from)	

• Objective	function:	

	

• Training	procedure:	

• Collect	dataset	 	

• Train	discriminator

	

• Train	generator	 	

• Repeat

G(z; θ) z ∼ N(0,I)

D(x; ϕ)
pdata G

L(θ, ϕ) = min
θ

max
ϕ

$x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D(̂x; ϕ))]

{(x,1) |x ∼ pdata} ∪ {(̂x,0) ∼ g(z; θ)}

D : L(ϕ) = $x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D(̂x; ϕ))]
G : L(θ) = $z∼N(0,I) [log D(G(z; θ), ϕ)]

GAN (Goodfellow et al., ‘14)

• Objective	function:	

L(θ, ϕ) = min
θ

max
ϕ

$x∼pdata [log D(x; ϕ)] + $ ̂x∼G [log(1 − D(̂x; ϕ))]

Math Behind GAN

Math Behind GAN

KL-Divergence and JS-Divergence

Math Behind GAN

Evaluation of GAN

• No	 	in	GAN.	

• Idea:	use	a	trained	classifier	 :	

• If	 ,	 	should	have	low	entropy	

• Otherwise,	 	close	to	uniform.	

• Samples	from	 	should	be	diverse:	

• 	close	to	uniform.

p(x)
f(y ∣ x)

x ∼ pdata f(y |x)
f(y ∣ x)

G
pf (y) = $x∼G[f(y |x)]

Evaluation of GAN

• Inception	Score	(IS,	Salimans	et	al.	’16)	

• Use	Inception	V3	trained	on	ImageNet	as	 	

• 		

• Higher	the	better

f(y |x)
IS = exp ($x∼G [KL(f(y |x) | |pf (y)))])

Comments on GAN

• Other	evaluation	metrics:	
• Fréchet	Inception	Distance	(FID):	Wasserstein	distance	between	Gaussians	

• Mode	collapse:		
• The	generator	only	generate	a	few	type	of	samples.	
• Or	keep	oscillating	over	a	few	modes.	

• Training	instability:	
• Discriminator	and	generator	may	keep	oscillating	

• Example:	 ,	generator	 ,	discriminator .	NE:	 	but	GD	oscillates.	

• No	stopping	criteria.	
• Use	Wsserstein	GAN	(Arjovsky	et	al.	’17):

	

• And	need	many	other	tricks…

−xy x y x = y = 0

min
G

max
f:Lip(f)≤1

$x∼pdata [f(x)] − $ ̂x∼pG
[f(̂x)]

