Generative Models
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Distribution learning
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Distribution learning

Conditional generative model P(zebra images| horse images)

Input Image Monet Van Gogh
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Generative model
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Stroke paintings to realistic images
[Meng, He, Song, et al., ICLR 2022]
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Generative model
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Generative model
of traffic signs

Outlier detection
[Song et al., ICLR 2018]
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Desiderata for generative models

e Probability evaluation: given a sample, it is computationally efficient to evaluate
the probability of this sample.

¢ Flexible model family: it is easy to incorporate any neural network models.

e Easy sampling: it is computationally efficient to sample a data from the
probabilistic model.



Desiderata for generative models
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Taxonomy of generative models

Direct

Generative models

/\

Explicit density

Implicit density

T

Tractable density

GAN

\

Fully Visible Belief Nets

NADE
MADE
PixelRNN/CNN

Change of variables
models:

(Nonlinear) ICA

- Normalizing flows

Approximate density

Markov Chain

L

Variational

Variational Autoencoder
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Key challenge for building generative models
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Key challenge for building generative models

Approximating the normalizing constant

* Variational auto-encoders [kingma & Welling 2014, Inaccurate probability
Rezende et al. 2014] evaluation
* Energy-based models [ackiey et al. 1985, LeCun et

al. 2006]

Using restricted neural network models

° Autoregressive models [Bengio & Bengio 2000, van Restricted model
den Oord et al. 2016] fam”y
* Normalizing flow models [pinh et al. 2014,

Rezende & Mohamed 2015]

- Model the generation process, not the Cannot evaluate

Generative adversarial networks (GANs) 6
probability distribution (coodteliow et al. 2014]

probabilities

Slide credit to Yang Song



Training generative models

e Likelihood-based: maximize the likelihood of the data under the model (possibly
using advanced techniques such as variational method or MCMC):

max } log py(x)
i=1

® Pros:
e Easy training: can just maximize via SGD.
¢ Evaluation: evaluating the fit of the model can be done by evaluating the
likelihood (on test data).

e Cons:
e Large models needed: likelihood objectve is hard, to fit well need very big
model.
e Likelihood entourages averaging: produced samples tend to be blurrier, as
likelihood encourages “coverage” of training data.



Training generative models

e Likelihood-free: use a surrogate loss (e.g., GAN) to train a discriminator to
differentiate real and generated samples.

® Pros:
e Better objective, smaller models needed: objective itself is learned - can
result in visually better images with smaller models.

e Cons:
e Unstable training: typically min-max (saddle point) problems.
¢ Evaluation: no way to evaluate the quality of fit.
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Implicit Generative Model

e Goal: a sampler g( - ) to generate images
e A simple generator g(z; 0):
ez~ N(0,I)

e x = g(z;0) deterministic transformation

e Likelihood-free training:
* Given a dataset from some distribution p,,,.,
e Goal: g(z; 0) defines a distribution, we want this distribution ~ p .,
e Training: minimize D(g(z; @), Py.10)
e D is some distance metric (not likelihood)
e Key idea: Learn a differentiable D



GAN (Goodfellow et al., ‘14)

e Parameterize the discriminator D( - ; ¢) with parameter ¢

e Goal: learn ¢ such that D(x; ¢) measures how likely x is from p,_...

e D(x,)=1ifx~py,.

e D(x, ¢) = 0if x! ~ Pdata
e a.k.a., a binary classifier

e GAN: use a neural network for D( - ; ¢)

e Training: need both negative and positive samples
e Positive samples: just the training data

e Negative samples: use our sampler g( - ; z) (can provide infinite samples).

e Overall objectives:
o Generator: 0% = max D(g(z;0); ¢)
0

e Discriminator uses MLE Training:
*=maxE,_, [logD(x; )]+ E; . [log(l — D(%; ¢))]
¢



GAN (Goodfellow et al., ‘14)

e Generator G(z; @) where z ~ N(0,)
e Generate realistic data

e Discriminator D(x; ¢)
e Classify whether the data is real (from p,,,) or fake (from G)

e Objective function:
L(9,¢) = minmax E,_, |logD(x; )| + E;¢ [log(1 — D(&; ¢))]
9 ¢ ata

e Training procedure:
e Collect dataset {(x,1) |x ~ p .., } U {(X,0) ~ g(z;0)}
e Train discriminator
D: L($) = E,p,, [log Dx: 9)] + E;q [log(1 = D(E: ¢0)]
e Train generator G : L(0) = E,_y 1 [log D(G(z;0), gb)]
e Repeat



GAN (Goodfellow et al., ‘14)

e Objective function:
L, ¢) = mnmaxE, , [log D(x; (/ﬁ)] + E; [log(l — D(x; (,b))]
0 ¢
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Math Behind GAN



Math Behind GAN



KL-Divergence and JS-Divergence
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Math Behind GAN



Evaluation of GAN

e No p(x) in GAN. o
e |dea: use a trained classifier f(y | x): 9z r
o If X ~ Py J(¥|x) should have low entropy D |
e Otherwise, f(y | x) close to uniform.
e Samples from G should be diverse: oo mE
o pr(y) = E, LSy | x)] close to uniform. 2 1 é;" ¥ g

Similar labels sum to give focussed distribution Different labels sum to give uniform distribution

|
=

sum

sum




Evaluation of GAN

¢ Inception Score (IS, Salimans et al. ’16)
e Use Inception V3 trained on ImageNet as f(y | x)

o IS =exp <[Ex~G [KL(f(y | X) | Ipf(y)))D
e Higher the better

High KL divergence Medium KL divergence Low KL divergence

mﬂ vl el

Ideal situation

Generated images are Generated images are
not distinctly one not distinctly one
label label

Label distribution
Marginal distribution

Low KL divergence

lI5i

Generator lacks
diversity



Comments on GAN

e Other evaluation metrics:
e Fréchet Inception Distance (FID): Wasserstein distance between Gaussians

e Mode collapse:
e The generator only generate a few type of samples.
e Or keep oscillating over a few modes.

e Training instability:
e Discriminator and generator may keep oscillating
e Example: —xYy, generator X, discriminatory. NE: x = y = 0 but GD oscillates.
e No stopping criteria.
e Use Wsserstein GAN (Arjovsky et al. "17):
min max Eyo, ] = Esp [FE)]
e And need many other tricks...



