Representation
Learning Methods

Representation learning

e A function that maps the raw input to a co ct representation ture vector).

Learn an embedding / feature / representation from labeled/unlabeled data.
e Supervised:
e Multi-task learning
e Meta-learning
e Multi-modal learning
L eee
e Unsupervised:
e PCA
e |CA
e Dictionary learning
e Sparse coding
e Boltzmann machine
e Autoencoder
e Contrastive learning
e Self-supervised learning

Desiderata for representations

Many possible answers here.
e Downstream usability: the learned features are “useful” for downstream tasks:

e Example: a linear (or simple) classifier applied on the learned features only
requires a small number of labeled samples. A classifier on raw inputs

requires a large mount of data.

¢ Interpretability: the learned features are semantically meaningful, interpretable

by a human, can be easily evaluated.
¢ Not well-defined mathematically.
e Sparsity is an important subcase.

Desiderata for representations

From Bengio, Courville, Vincent "14:
¢ Hierarchy / compositionality: video/image/text are expected to have hierarchial

structure: need deep learning.

e Semantic clusterability: features of the same “semantic class” (e.g. images in the
same class) are clustered together.

e Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex). Also called manifold flattening.

e Disentanglement: features capture “independent factors of variation” of data. A
popular principle in modern unsupervised learning.

Word embeddings, word2vec

Oercic dac{

Can we embed words
into a latent space?

This embedding came from
directly querying for
relationships.

word2vec is a popular
unsupervised learning
approach that just uses a text

corpus (e.g. nytimes.com)

ecaring
*joviality .
*envy
*zest
*sentimentality .
®adoration eliking
* distress
. *hope .
remorse I .hlorb;tgjmg ’ 'Wbﬂ%\y oompassen
melancl
«apprehension pride *cheerfulness
I *desire
*revulsion N : *enj ight
uneasiness . ; *thrlba emeﬁﬂiﬂ{g;?em
canxiety astonishment 9 s Telie
* excitement)
*surprise
unﬁ%wce *tendegy :
depression egladness ¢ jon
defeat
. o
eworry , *hysteria -Bmgnsiasm
*ferocity ®lust iy lexhiration e biiss
*wrath *exasperation g
*SCOM enervousness *dread
. ; cinfaRgymREIeNt
agorRgviRttion °athing
guilt efru "
- stration
ief * dislike misel
% despair v *zeal
rurpgiest egrouchiness *passion *euphoria

sm#ﬁﬁn

*bitterness

*enthrallment® attraction

*happiness
eaggravation PP

isolation %?iemio%lie ion
eveng e'mw&ﬂfenng f Ry *horror

etriumph

It i rmen
*spite -rgls r!fv%selr’\i;p .ieajo% er *contempt
shostilty “WO® * dismay ¢
*fear ofug
X Ss. *rade
< o paniy ﬁﬁgpﬁ ity *outrage
hopelessness *mortification
glumness *shock

embarrassment

shame

Love
Joy
Surprise
Anger
Sadness
Fear

http://nytimes.com

Word embeddings, word2vec [) wad 2 | wovgl V
e UewSs books

forch bualc/
Training

Samples h(?
X
-quick brown [fox jumps over the lazy dog. == ((the,rql?cJ 0(46- .
¢

(the, brown)

Source Text

h\)ﬁ /)/ /C
The brown |fox|jumps over the lazy dog. == (quick, the) — ()
(quick, brown) (
(quick, fox) O_
The quick-fox jumps|over the lazy dog. == (brown, the)
(brown, quick) 0
(brown, fox) v
(brown, jumps) /
The|quick brown-jumps over|the lazy dog. = (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Word embeddings, word2vec O wed? ’ Lvd |

M/LWHZ” [0‘7’@ FQ
ttonf TV me

Output Layer
Softmax Classifier

Hidden Layer Probability tha tth d ata « (
(4
Input Vector v Linear NeurOnS/ / @ — dm|yyh e wor P MQ&WM/.,’L,’ M&)

0 / /

T \ > .. “ability” r/’

o /< X <7 O A

/ X N ¢ _

. Z)i w7 L05) (T5%)
A ‘1’ in the position 0 \,,) \\ : ——> ..“able” ==_
corresﬂpondjng tothe —» \ . 7 /
word “ants i \\ Y ‘

0 \ |

o

e =Bl -
PP NG

Training neural network to predict co-occuring words. Use first layer weights as
embedding, throw out output layer

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Word embeddings, word2vec

Output weights for “car”

softmax

Word vector for “ants”

X

300 features

e{Tants,Year) Probability that if you

: Z o(@ants,ys) [= randomly picka word
i

300 features

nearby “ants”, that it is “car”

Training neural network to predict co-occuring words. Use first layer weights as
embedding, throw out output layer

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Self-supervised learning

» Predict any part of the input from any | Time -
other part. f]
» Predict the from the past.

» Predict the from the recent past.

)\

» Predict the from the present. , y

» Predict the from the bottom. y. o
) g ¢ V —
» Predict the occluded from the visible A
» Pretend there is a part of the input you « Past Present Future —

don’t know and predict that. Slide: LeCun

Transformer Pretraining

e Collect a large amount of corpus (wiki) and pretrain a large transformer
) L Vo) e

e For down-stream tasks, fine-tune the pretrained model

e Or use the pretrained model to extract features /ruff e tlady
Ao/ W'Fm//o?n/
e How to pretrain a transformer on texts? Ure Llecomed
e Pretrain an encoder VM
e bi-directional OC ~Snk g otvnd
=St Encoders /it
e Pretrain a decoder AMew deyey
e auto-regressive
7({_ Jaly cﬂf()ﬁ/’/f Decoders

o Ky

Pre-training Transformer Encoder
GtV veffip
e Pre-training a bi-directional encoder [
e Cannot directly adopt language modeling
¢ |dea: word prediction given contexts (similar to word2vec)
we (ere of e farey
e Masked language model
e Randomly “masked out” some words
e Run full transformer encoder
e Predict the words at masked positions

e Designed for feature extraction
e Suitable for down-stream tasks

Pre-training Transformer Encoder

e BERT: Pre-training of Deep Bidirectional Transformers

e Devlin et al., Google, 2018
e BERT-base: 12 layers, 110M params
’ BEI?T?Iarge: 24 layers,' 340M params [Predict these!] went to store
* Training on 64 TPUs in 4 days $ 4 4
* Fine-tuning can be down in a single GPU

Transformer
e Masked language model Encoder
e Masked out input words 80% of the time | | | | |
* Replace 10% words with random tokens | pizza to the [M]
e 10% words remain unchanged
e Predict 15% of word tokens I

[Replaced] [Not replaced] [Masked]

Pre-training Transformer Encoder

e BERT: Pre-training of Deep Bidirectional Transformers

e Devlin et al., Google, 2018
e BERT-base: 12 layers, 110M params
’ BEI?T'-Iarge: 24 layers,' 340M params [Predict these!] went to store
* Training on 64 TPUs in 4 days $ 4 4
* Fine-tuning can be down in a single GPU

Transformer

e Masked language model Encoder

e Masked out input words 80% of the time | | | | |

* Replace 10% words with random tokens | pizza to the [M]

e 10% words remain unchanged 7 t t
System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

392k 363k 108k 67k 8.5k 5.7k 35k 2.5k -

Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 81.0 860 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 648 798 904 360 73.3 849 568 71.0
OpenAl GPT 82.1/81.4 703 874 913 454 80.0 823 560 75.1
BERTgAsE 84.6/83.4 712 905 935 521 85.8 889 664 79.6

BERT | arGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Pre-training Transformer Encoder

e BERT: Pre-training of Deep Bidirectional Transformers

e RoBERTa: A robustly optimized BERT Pretraining approach
e Facebook Al and UW, '19
e More compute, data, and improved objective

SQuAD

(v1.1/2.0) MNLI-m SST-2

Model data bsz steps

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 953
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT arce

with BOOKS + WIKI I13GB 256 1M 90.9/81.8 86.6 93.7

Pre-training Decoder

A ey P(}Q[Ks\cﬁ)
e Decoder Pretraining

e Just train a language model over corpus.
e Good for generative task (e.g., text generation)

e Generative Pretrained Transformer (GPT, Open Al ’18)
e 120 layers transformer, 7680d hidden, 3072-d MLP
e Data: BooksCropus (>7k books)

e GPT-2 (Radford et al., OpenAl '19)
e 1.5B parameters, 40GB internet texts

Wy W3 Wyq Wg Wg

e GPT-3 (OpenAl '20)
e Language models are few-shot learners
—_— —t
e 1/75B parameters

e Also Image GPT (OpenAl "20) Wi W, W3 W We

Pre-training Decoder

e GPT-3 (OpenAl '20)

e You may not need to fine-tune the model parameters for downstrea mtasks.

e New paradigm: prompt learning

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer examples
peppermint => menthe poivrée
plush girafe => girafe peluche

cheese => prompt

(odde QWﬂW«'J

Code: px.line(df.query("continent == 'Europe' and country == 'France'"), x='year',
y="'gdpPercap', color='country', log_y=False, log_x=False)

Description: Actually, replace GDP with population

Code: px.line(df.query("continent == 'Europe' and country == 'France'"), x='year',

y="pop', color="country', log_y=False, log_x=False)

Description: Put y-axis on log scale

Code: px.line(df.query("continent == 'Europe' and country == 'France'"), x='year',

y="pop', color="country', log_y=True, log_x=False)

Pre-training Decoder

e A big ongoing race on training large language models
e Megatron-Turing NLG (530B, Microsoft, '22)
e Pathways Language Model (540B, Google, '22

1000 s

GPT-3(1758)

Megatron-Turing NLG (5308B)

=
o
3

Megatron-LM (8.38)
Turing-NLG (17.28)

-
5]

-

GPT-2 (1.58)

BERT-Large (340M)

Model Size (in billions of parameters)

o
=

“ELMo (94M)

0.01
2018 2019 2020 2021 2022

LOGICAL INFERENCE CHAINS

SEMANTIC PARSING COMMON-SENSE REASONING

PROVERBS PATTERN RECOGNITIOI
ARITHMETIC TRANSLATION
'DE COMPLETION DIALOGUE

. JOKE EXPLANATIO|
READING COMPREHENSION PHYSICS QA

SUMMARIZATION LANGUAGE UNDERSTANDING

540 billion parameters

Autoencoders
g=47

Find a low dimensional representation for your data by predicting your data

: — V- an(Code: —
Input: Jw Output:
T C Rd Encoder |:| Decoder T = g(f(a:)) c Rd

minimize Z?:l |z; — g(f(x:))]|3

1,9
79

Autoencoders X ¢ 0%

minimize Z?:l |z: — g(f(x:))]|3
f19 yrd
VAR

AR What if f(X) = Az and g(y) = By?

ol £
(/”;‘/“; (g Aac-Xilg , B4

Autoencoders

min}rgnize 2?21 |z — g(f(%))”%

What if f(X) = Az and g(y) = By?

Self-supervised learning in computer vision

Context Prediction (Pathak et al., ‘15)

¥]
7o (8 [~
fc8 (4096 1
o e
| fc7 (4096)
= =
) .) . 6 (4096) F------——] Tc6 (4096)
Question 1: Question 2: pool5 (3x3.256,2) 5ool5 (3x3,256,
conv5 (3x3,256,1) f======—- conv5 (3x3,256,1
conv4 (3x3,384,1) f----—-——1 conv4 (3x3,384,1
conv3(3x3,384,1) f----—-———1 conv3 (3x3,384,1
LRN2 LRN2

Figure 1. Our task for learning patch representations involves ran-
domly sampling a patch (blue) and then one of eight possible
neighbors (red). Can you guess the spatial configuration for the
two pairs of patches? Note that the task is much easier once you
have recognized the object!

121000 dog, 7O WS wonog :10) £y Jomsuy

pool2 (3x3,384,2)

LRN1

pooll (3x3,96,2)

convl (11_x11,96,4)

e

conv2 (5x5,384,2) f----—--——1

pool2 (3x3,384,2)

conv2 (5x5,384,2)
LRN1

pooll (3x3,96,2)

convl (11_x11,96,4)
>

Self-supervised learning in computer vision

e Feature learning by Inpainting (Pathak et al., ’16)
e The most obvious analogue to word embeddings: predict parts of image

from the remainder of image

Channel-wise
Fully
Connected

Encoder Features
Decoder Features

== B

Figure 2: Context Encoder. The context image is passed
through the encoder to obtain features which are connected
to the decoder using channel-wise fully-connected layer as
described in Section 3.1. The decoder then produces the
missing regions in the image.

Trickier than NLP:

Architectures:
An encoder takes a part of an image,
constructs a representation.

A decoder takes the representation,
tries to reconstruct the missing part.

1. Meaningful losses for vision are more difficult to design.

2. Choice of region to mask out is important

Self-supervised learning in computer vision

e Feature learning by Inpainting (Pathak et al., '16) /7[5((/ /J .)j

maor B (12050
gemv T

t dn((-)(F ((/w)()})

(d) Context Encoder
(L2 + Adversarial loss)

L, vs. Adversarial loss

Self-supervised learning in computer vision

e Feature learning by Inpainting (Pathak et al., '16)

(a) Central region (b) Random block (c) Random region

Figure 3: An example of image with our different region
masks M applied, as described in Section 3.3.

Fixed region vs. random square block vs. random region

Self-supervised learning in computer vision
[/ep VOfatea T

¢ Image Colorization (Zhang et al. ’16)

-

Input Image X

Self-supervised learning in computer vision

e Rotation Prediction (Gidaris et al., "18)

e/
LR

Objectives: 1
] y ConvNet » Maxmuze prob |
—> g(X,y=0) —» —> model F() _ 9 x°) |
90° rotation 2707 rotation 180° rotation 0° rotation 270° rotation Rotate 0 degrees ' ‘ Predict 0 degrees rotation (‘_0)

es (e.g., 0. 90, 180, or 270 degrees). The Rotated i image: X°

Figure 1: Images rotated by random multiples of 90 deg

core intuition of our self-sup C approach is llml if someone is not aware of the ‘
concepts of the objects depicted in the images, he cannot recognize the rotation that was applied to |
them. . .
g(x,y=1) e ConvNet ‘ Maximize prob.
> 2 \ model F() | > F(x) |

Rotate 90 degrees Predict 90 degrees rotation (y=1) |

Rotated image: X" ‘

ConvNet Maximize prob. |

J —» glX,y=2] —» % — _'_’ 2(2

4 g < 9 model F(.) F}(Xx?)
Image X Rotate 180 degrees . - ‘ Predict 180 degrees rotation (y=2) |
Rotated image: X~ . |
L — 3 X ConvNet » Maximize prob. |
glx,y=3) > % model F() F(x?) |

Rotate 270 degrees ‘ Predict 270 degrees rotation ()=3)J

Rotated image: X°

Convl 27 x 27 Conv3 13 x 13 Conv56 x 6 Convl 27 x 27 Conv313 x 13 Conv5 6 x 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model

Contrastive learning

Idea: if features are “semantically” relevant, a “distortion” of an image should

produce similar features. @ [\
Framework: %/_ :

e For every training sample, produce multiple augmented samples by applying
various transformations. |4 TAtH,

® Train an encoder E to predict whether two samples are augmentations of the
same base sample.

e A common way is train (E(x), E(x")) big if x, x" are two augmentations of the

same sample:

¢ = log exp(t{E(x), E(x)))
X,X ngngf{(E(X), E(;C)))

min Z Crx

x,x’ augments of each other

Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e CPC: Original proposed on audio data
e Use context to predict futures
e Random negative samples required

cempmmem =TI I I T ——e

Jr(@iyk,ct) = exp (Zt:’;.kaCt>

A\ . : 3
241 * Zt42 % 2t43 EA f
E\Tt+4+k,Ct
* LN _ (+k>)

% llog X3, G
/g\ /g\ /g\ /g\ /g\ /g\ /g\ /g\ e ex fu(zjscr)

| Tt-3 | T2 | Tg—1 | Ty | Ti4 Tt42 Tt43 Tti4q

It~ osffomne— e

Figure from Alex Graves

Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e CPC: Original proposed on audio data
e Use context to predict futures
e Random negative samples required

Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

0.8 feveres\ b
06
04

02

0.0 . - :
0 5 10 15 20

Figure 3: Average accuracy of predicting the
positive sample in the contrastive loss for 1 to 20

latent steps in the future of a speech waveform.

The model predicts up to 200ms in the future as
every step consists of 10ms of audio.

Method | ACC

Phone classification
Random initialization 27.6

MFCC features 39.7
el 64.6
Supervised 74.6
Speaker classification
Random initialization 1.87
MECC features 17.6
TPE— 97.4
Supervised 98.5

Table 1: LibriSpeech phone and speaker
classification results. For phone classifi-
cation there are 41 possible classes and
for speaker classification 251. All mod-
els used the same architecture and the
same audio input sizes.

Method ACC
#steps predicted

2 steps 28.5
4 steps 57.6
8 steps 63.6
12 steps 64.6
16 steps 63.8
Negative samples from

Mixed speaker 64.6
Same speaker 65.5
Mixed speaker (excl.) 57.3
Same speaker (excl.) 64.6
Current sequence only 65.2

Table 2: LibriSpeech phone classifica-
tion ablation experiments. More details
can be found in Section 3.1.

Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e CPCv2: improved version of CPC on images with large scale training
e PixelCNN, more prediction directions, path augmentation, layer normalization

input image

I

144

——— T

_-~ Predictions

Self-supervised — psmzses Awnader prsos Cewie W
pre-training -__ r’ foNGE
100% images; 0% labels 2 :

Pre-trained Fixed
256.3] Patched ReaNet-161 [7.7, 4006] Linear 11000, 1]

56, 2 /7 N\
Linear classification Cross)
100% images and labels x —-III—’ z —- y J—';‘ Ent)

4.4006] RseNet-33 (1000. 1

R24, ReaNet- / \\
Efficient classification)
1% 1o 100% images and labels —-[I'—- —>-—. _‘—’ E’“ /

Pre-trained
led/Ted
H.W.3 leoNet-161 [H/16, W/16,4006] Faster-RCNN

Transfer learning \:
100% images and labels x —b-—b —>-—» _‘—. T""‘ ‘)

. . £24,224.9) ResNet-152 11000, 1)
Supervised training
1% to 100% images and labels

o &)

uonenjeAs Bujuien-eid

auljeseg

Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)

e CPCv2: improved version of CPC on images with large scale training
e PixelCNN, more prediction directions, path augmentation, layer normalization

- o
g
5 07
3 °
© o
5065 PY
g []
G 06
8 o °
[3]
8 055
C
= [J
CPCv1 CPCv2
AL e e PR

+MC +BU +LN +RC +HP +LP +PA

Figure 3. Linear classification performance of new variants of CPC,
which incrementally add a series of modifications. MC: model ca-
pacity. BU: bottom-up spatial predictions. LN: layer normalization.
RC: random color-dropping. HP: horizontal spatial predictions.
LP: larger patches. PA: further patch-based augmentation. Note
that these accuracies are evaluated on a custom validation set and
are therefore not directly comparable to the results we report on
the official validation set.

METHOD PArRAMS (M) Top-1 Topr-5
Methods using ResNet-50:

INSTANCE DIscRr. [1] 24 54.0 -
LocAL AGGR. [2] 24 58.8 -
MoCo [3] 24 60.6 -
PIRL [4] 24 63.6 -
CPC v2 - RESNET-50 24 63.8 85.3
Methods using different architectures:

MULTI-TASK [5] 28 - 69.3
ROTATION [6] 86 55.4 -
CPC VI [7] 28 48.7 73.6
BIGBIGAN [8] 86 61.3 81.9
AMDIM [9] 626 68.1 -
CMC [10] 188 68.4 88.2
MoCo [2] 375 68.6 -
CPC v2 - RESNET-161 305 71.5 90.1

o
©
L

o
Y
7

5x fewer @
labels

Top-5 classification accuracy
=} =]
[} ~
))
0,

2x fewer
labels

0.5
-e- ResNet trained on CPC features
[] -e- ResNet trained on raw pixels
0.4 T T T T T T T
1 2 5 10 20 50 100

Percentage of labeled data

Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)

e MoCo: Momentum Contrastive Learning (He et al., '20)
. — — —

contrastive loss
A

—> similarity 47‘
q S
q ko ky kg ... o
A queue } / \
[o
ok momentum q k
encoder encoder 1 l

pauery Igey .Tll(ey Igey Encoder Momintur-n Encoder B 1 exp(q,k+/7-)
_ =fofon) Lq=—log
q —fnv(U.,) K k
Figure 1. Momentum Contrast (MoCo) trains a visual represen- O = m8y + (1 = m)8, Zi:O exp(q- z/T)
tation encoder by matching an encoded query ¢ to a dictionary
of encoded keys using a contrastive loss. The dictionary keys q
{ko, k1, ko, ...} are defined on-the-fly by a set of data samples. . 7 k Q% B C-(sz‘/)/ ()&,&Q
<

The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing

encoder, driven by a momentum update with the query encoder. (_J W, | [Cey P Cl(/(‘/t

This method enables a large and consistent dictionary for learning
visual representations.

Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e MoCo: Momentum Contrastive Learning (He et al., '20)
e Why momentum encoder?
e Enable large and consistent buffer-ef-negative samples
e Ensure the encoding in buffer moves slowly via momentum
e Which further ensures the feature extractor updates smoothly

contrastive loss contrastive loss contrastive loss
gradient T gradient gradient T gradient T
q k q k q k
A A A ? A $
encoder q encoder k encoder sampling encoder ACAICELT
$ encoder
A A A memory A A
k bank k
z? T i 7 T
(a) end-to-end (b) memory bank (c) MoCo

Figure 2. Conceptual comparison of three contrastive loss mechanisms (empirical comparisons are in Figure 3 and Table 3). Here we
illustrate one pair of query and key. The three mechanisms differ in how the keys are maintained and how the key encoder is updated.
(a): The encoders for computing the query and key representations are updated end-to-end by back-propagation (the two encoders can
be different). (b): The key representations are sampled from a memory bank [61]. (c): MoCo encodes the new keys on-the-fly by a
momentum-updated encoder, and maintains a queue (not illustrated in this figure) of keys.

Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e MoCo: Momentum Contrastive Learning (He et al., '20)

A
60)
A
58.0
s8 | 578 5%
3 585 .~
356 - =7
s |
3
§ 54
—*—end-to-end
52 X —#--memory bank
e —*4 MoCo
s0l307
256 512 1024 4096 16384 65536
K (log-scale)

Figure 3. Comparison of three contrastive loss mechanisms un-
der the ImageNet linear classification protocol. We adopt the same
pretext task (Sec. 3.3) and only vary the contrastive loss mecha-
nism (Figure 2). The number of negatives is K in memory bank
and MoCo, and is K —1 in end-to-end (offset by one because the
positive key is in the same mini-batch). The network is ResNet-50.

70 SMC-Rsowx RS0wax AMDIM-large
R50w2x - CF;CvQ
A
- R)g’ﬂ o SVDIM-small
R50 BigBiGAN-Rv50w4x
60| X e
@-ocalAgg
o BigBiGAN-R50
o\o L] d Rotation
~ » []
5‘ ’ns’(Dlsc . »
© RelativePosition
g °
350 crevi
© b‘eepCluster
© Exemplar
| Jigsaw o
[
L Colorization
40 o ® previous
#parameters (M) 4-MoCo
1 I 1 1
0 200 400 600

Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e SimCLR (Chen et al. "20)
e A simple framework for contrastive learning of visual representations
e Predefi t of transformations VU futey, jP
e For a data, sample two transformations
e Maximum agreement on representations
e No negative pairs explicitly

e Non-paired data in the batch are negative , , Maximizeagreement
0] 1)
h; <— Representation —» h;

Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e SimCLR (Chen et al. ’20)

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size IV, constant 7, structure of f, g, 7.
for sampled minibatch {x;}_, do
forall k € {1,...,N} do

draw two augmentation functions ¢t ~7, ' ~T

the first augmentation

Tor—1 = t(xy)

hop—1 = f(®ar—1) # representation

zok—1 = g(har—1) # projection

the second augmentation

ZToi, = t' (1)

hor = f(@ar) # representation

2ok = g(hor) # projection
end for
forallic {1,....2N}andj € {1,...,2N} do

sij =z zj/(lzllllz1) # pairwise similarity
end for

. 5 — oo _exp(si,;/7)
define ¢(i, j) as ((i,) log ST Ty oxp(sin/7)
L= S0 [6(2k—1,2k) + €(2k, 2k —1)]
update networks f and g to minimize £
(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering end for

return encoder network f(-), and throw away g(-)

Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e SImCLR (Chen et al. ’20)

Label fraction

Method Architecture 1% 10%
%Supervised-%SIimCLR (4x) Top 5
< r *s.mCLR (2x) Supervised baseline ResNet-50 484 804
- oCPCV2-L Methods using other label-propagation:
8 70F 4 iin MoCo (4 Pseudo-label ResNet-50 516 824
5 [*SimCLR ocMe §MOC0 () VAT+Entropy Min. ~ ResNet-50 470 834
S oPIRL-c2x AMDIM/’ UDA (w. RandAug) ResNet-50 - 885
~ o5k Q eMoCo (2x) FixMatch (w. RandAug) ResNet-50 - 89.1
g_ *CPCVZ PIRL-ens. S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2
— PIRL i Methods using representation learning only:
o gok *MOCO °BigBIGAN InstDisc ResNet-50 392 774
= LA BigBiGAN RevNet-50 (4x) 552 788
S PIRL ResNet-50 572 83.8
g 55k eRotation CPC v2 ResNet-161(x) 77.9 91.2
elnstDisc SimCLR (ours) ResNet-50 75.5 87.8
2 2 2 F L 1 SimCLR (ours) ResNet-50 (2x) 83.0 91.2
25 50 100 200 400 626 SimCLR (ours) ResNet-50 (4x) 85.8 92.6

Number of Parameters (Millions)]] R
Table 7. ImageNet accuracy of models trained with few labels.

Summary

¢ A function that maps the raw input to a compact representation (feature vector).
Learn an embedding / feature / representation from labeled/unlabeled data.

e Supervised:

e Multi-task learning

e Meta-learning

e Multi-modal learning

L eee
e Unsupervised:

e PCA

e |CA

e Dictionary learning

e Sparse coding

e Boltzmann machine

e Autoencoder

e Contrastive learning

e Self-supervised learning

