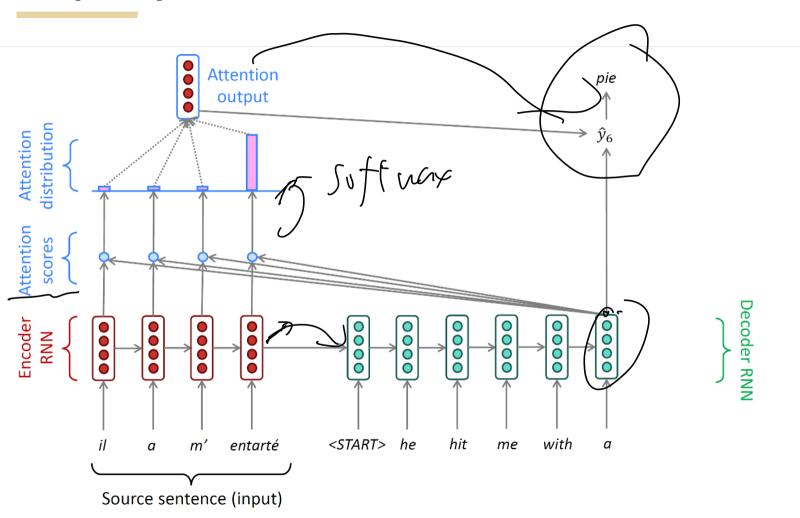
Attention Mechanism

Seq2Seq with Attention



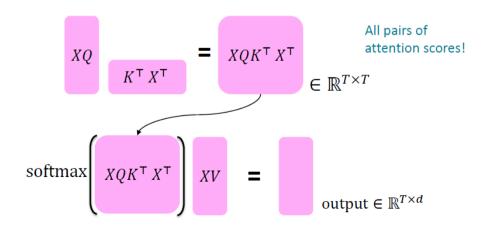
Seq2Seq with Attention

Summary

- ullet Input sequence X, encoder f_{enc} , and decoder f_{dec}
- $f_{enc}(X)$ produces hidden states $h_1^{enc}, h_2^{enc}, ..., h_N^{enc}$
- ullet On time step t, we have decoder hidden state h_t
- Compute attention score $e_i = h_t^{\mathsf{T}} h_i^{enc}$
- Compute attention distribution $\alpha_i = P_{att}(X_i) = \operatorname{softmax}(e_i)$
- Attention output: $h_{att}^{enc} = \sum_{i} \alpha_{i} h_{i}^{enc}$
- $Y_t \sim g(h_t, h_{att}^{enc}; \theta)$
 - ullet Sample an output using both h_t and h_{att}^{enc}

Key-query-value attention

- Obtain q_t, v_t, k_t from X_t
- $q_t = W^q X_t$; $v_t = W^v X_t$; $k_t = W^k X_t$ W^q , W^v , W^k are learnable weight matrices
- $\alpha_{i,j} = \operatorname{softmax}(q_i^{\mathsf{T}} k_j); out_i = \sum \alpha_{i,j} v_j$
- Intuition: key, guery, and value can focus on different parts of input



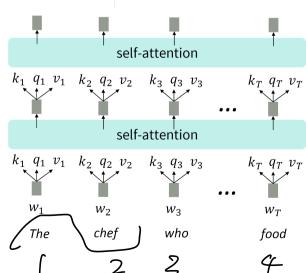
Attention is all you need (Vsawani '17)

- A pure attention-based architecture for sequence modeling
 - No RNN at all!
- Basic component: self-attention, $Y = f_{SA}(X; \theta)$
 - X_t uses attention on entire X sequence
 - Y_t computed from X_t and the attention output
- Computing Y_t
 - \bigcap Key k_{t} , value v_{t} , query q_{t} from X_{t}

•
$$(k_t, v_t, q_t) = g_1(X_t; \theta)$$

- $\bullet \ \, \text{Attention distribution} \ \, \alpha_{t,j} = \operatorname{softmax}(q_t^\top k_j)$
 - Attention output $out_t = \sum_i \alpha_{t,j} v_j$
 - $Y_t = g_2(out_t; \theta)$





Issues of Vanilla Self-Attention

Attention is order-invariant

- Lack of non-linearities
 - All the weights are simple weighted average

- Capability of autoregressive modeling
 - In generation tasks, the model cannot "look at the future"

Y, 12, -- TN

- e.g. Text generation:
 - Y_t can only depend on $X_{i < t}$
 - But vanilla self-attention requires the entire sequence

Position Encoding

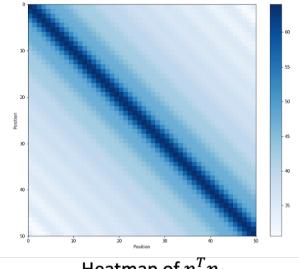
- Vanilla self-attention
 - $(k_t, v_t, q_t) = g_1(X_t; \theta)$
 - $\alpha_{t,i} = \operatorname{softmax}(q_t^{\mathsf{T}} k_i)$
 - Attention output $out_t = \sum \alpha_{t,j} v_j$
- Idea: position encoding:
 - p_i : an embedding vector (feature) of position i

 - PE, KIV, 9 ED • $(k_t, v_t, q_t) = g_1([X_t, p_t]; \theta)$
- In practice: Additive is sufficient: $k_t \leftarrow \tilde{k}_t + p_t, q_t \leftarrow \tilde{q}_t + p_t, v_t \leftarrow \tilde{v}_t + p_t$; $(\tilde{k}_t, \tilde{v}_t, \tilde{q}_t) = g_1(X_t; \theta)$
- p_t is only included in the first layer

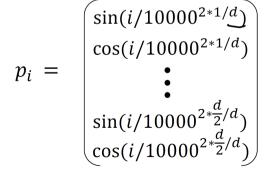
Position Encoding

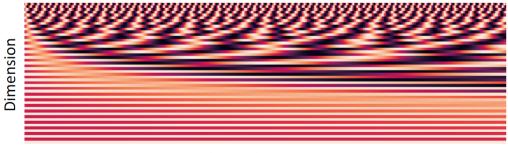
p_t design 1: Sinusoidal position representation

- Pros:
 - simple
 - naturally models "relative position"
 - Easily applied to long sequences
- Cons:
 - Not learnable
 - Generalization poorly to sequences longer than training data



Heatmap of $p_i^T p_i$





Index in the sequence

Position Encoding

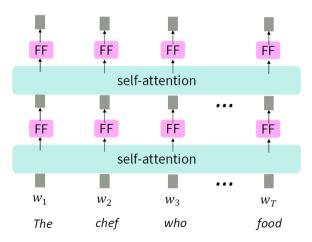
p_t design 2: Learned representation

- Assume maximum length L, learn a matrix $p \in \mathbb{R}^{d \times T}$, p_t is a column of p
- Pros:
 - Flexible
 - Learnable and more powerful
- Cons:
 - Need to assume a fixed maximum length L
 - ullet Does not work at all for length above L

• p_t design 3: Relative position representation (Shaw, Uszkoreit, Vaswani '18)

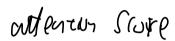
Combine Self-Attention with Nonlinearity

- Vanilla self-attention
 - No element-wise activation (e.g., ReLU, tanh)
 - Only weighted average and softmax operator
- Fix:
 - Add an MLP to process out_i
 - $m_i = MLP(out_i) = W_2 ReLU(W_1 out_i + b_1) + b_2$
 - Usually do not put activation layer before softmaax

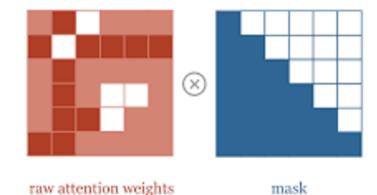


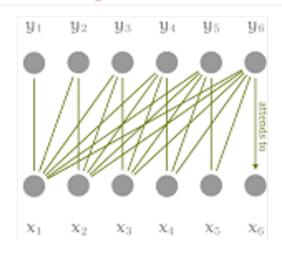
Masked Attention

- In language model decoder: $P(Y_t | X_{i < t})$
 - ullet out_t cannot look at future $X_{i>t}$
- Masked attention

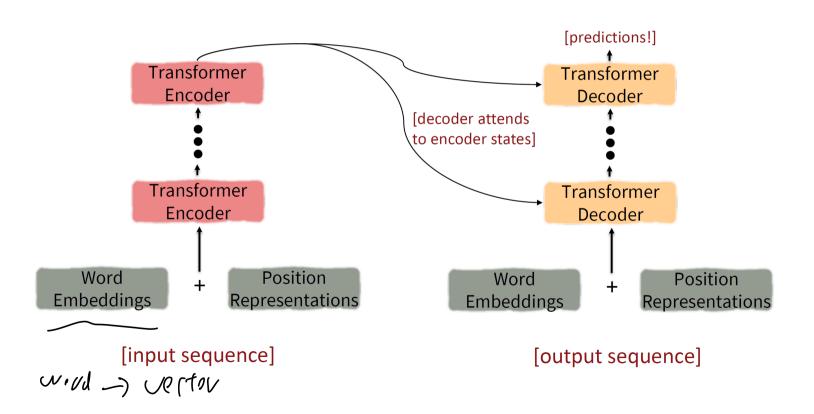


- Compute $e_{i,j} = q_i^{\mathsf{T}} k_j$ as usuall
- Mask out $e_{i>i}$ by setting $e_{i>i}=-\infty$
 - $e \odot (1 M) \leftarrow -\infty$
 - *M* is a fixed 0/1 mask matrix
- Then compute $\alpha_i = \operatorname{softmax}(e_i)$
- Remarks:
 - M=1 for full self-attention
 - Set M for arbitrary dependency ordering





Transformer-based sequence-to-sequence modeling

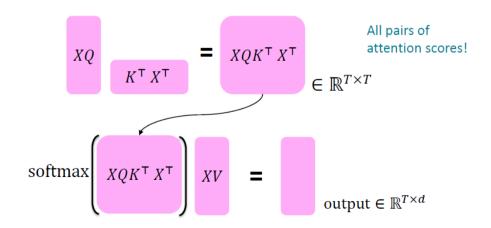


Key-query-value attention

- Obtain q_t, v_t, k_t from X_t
- $q_t = W^q X_t$; $v_t = W^v X_t$; $k_t = W^k X_t$ (position encoding omitted)
 - W^q , W^v , W^k are learnable weight matrices

$$\boldsymbol{\alpha}_{i,j} = \operatorname{softmax}(q_i^{\mathsf{T}} k_j); out_i = \sum_{k} \alpha_{i,j} v_j$$

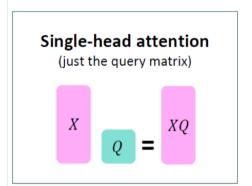
• Intuition: key, query, and value can focus on different parts of input

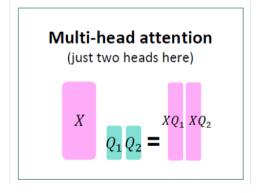


Multi-headed attention

- Standard attention: single-headed attention
 - $X_t \in \mathbb{R}^d$, $Q, K, V \in \mathbb{R}^{d \times d}$
 - We only look at a single position j with high $lpha_{i,j}$
 - What if we want to look at different j for different reasons?
- Idea: define h separate attention heads
 - h different attention distributions, keys, values, and queries
 - $\underbrace{\mathcal{Q}^{\ell}, K^{\ell}, V^{\ell}}_{\alpha_{i,j}^{\ell} = \operatorname{softmax}((q_{i}^{\ell})^{\mathsf{T}} k_{j}^{\ell}); out_{i}^{\ell} = \sum_{i} \alpha_{i,j}^{\ell} v_{j}^{\ell}$

#Params Unchanged!

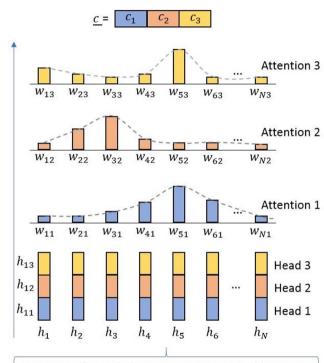




Multi-headed attention

- Standard attention: single-headed attention
 - $X_t \in \mathbb{R}^d$, $Q, K, V \in \mathbb{R}^{d \times d}$
 - We only look at a single position j with high $\alpha_{i,j}$
 - What if we want to look at different j for different reasons?
- Idea: define *h* separate attention heads
 - h different attention distributions, keys, values, and queries
 - $\begin{aligned} \bullet \ & Q^{\ell}, K^{\ell}, V^{\ell} \in \mathbb{R}^{d \times \frac{d}{h}} \text{ for } 1 \leq \ell \leq h \\ & \alpha_{i,j}^{\ell} = \operatorname{softmax}((q_i^{\ell})^{\top} k_j^{\ell}); out_i^{\ell} = \sum_{i} \alpha_{i,j}^{\ell} v_j^{\ell} \end{aligned}$

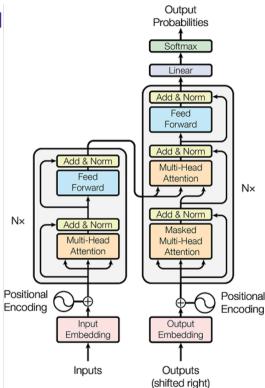
Utterance Level Representation



Sequence of Encoded Representations or Hidden States

Transformer-based sequence-to-sequence model

- Basic building blocks: self-attention
 - Position encoding
 - Post-processing MLP
 - Attention mask
- Enhancements:
 - Key-query-value attention
 - Multi-headed attention
 - Architecture modifications:
 - Residual connection
 - Layer normalization



Machine translation with transformer

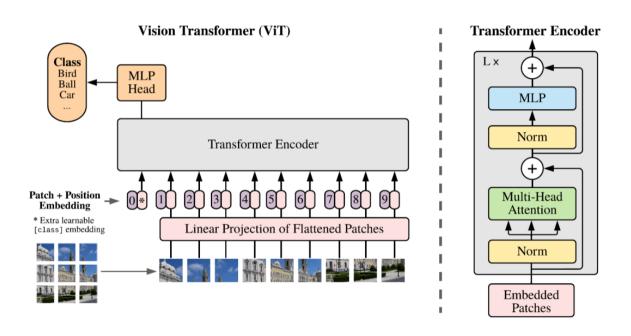
Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

- Limitations of transformer: Quadratic computation cost
 - Linear for RNNs
 - Large cost for large sequence length, e.g., $L > 10^4$

- Follow-ups:
 - Large-scale training: transformer-XL; XL-net ('20)
 - Projection tricks to O(L): Linformer ('20)
 - Math tricks to O(L): Performer ('20)
 - Sparse interactions: Big Bird ('20)
 - Deeper transformers: DeepNet ('22)

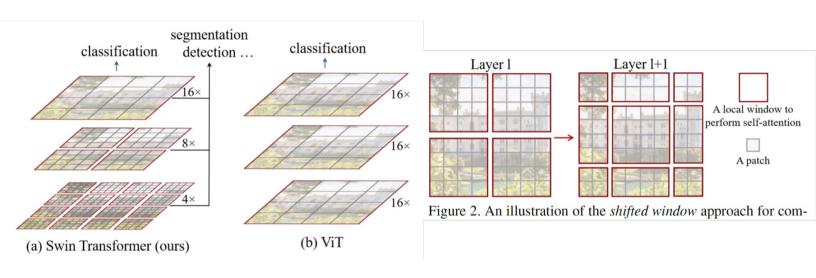
Transformer for Images

- Vision Transformer ('21)
 - Decompose an image to 16x16 patches and then apply transformer encoder

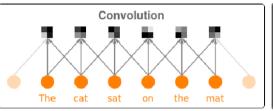


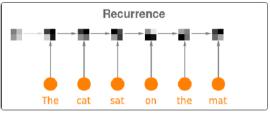
Transformer for Images

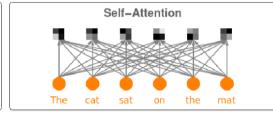
- Swin Transformer ('21)
 - Build hierachical feature maps at different resolution
 - Self-attention only within each block
 - Shifted block partitions to encode information between blocks



CNN vs. RNN vs. Attention



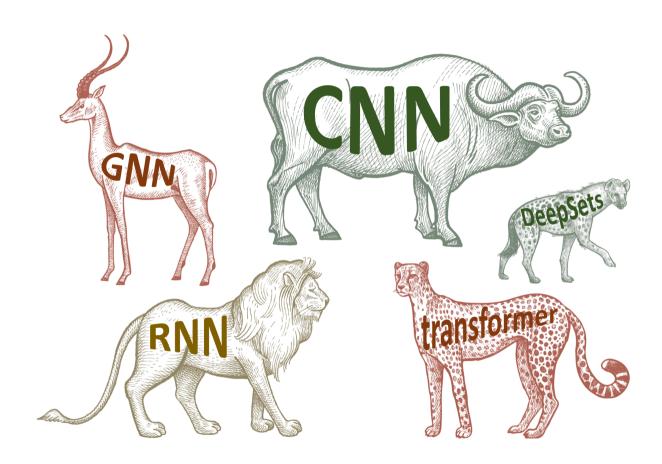




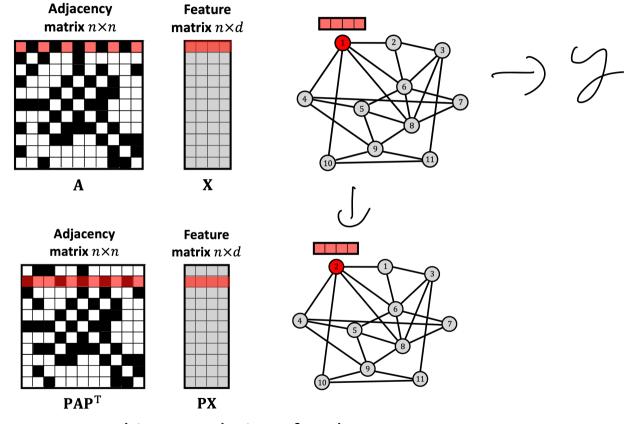
Summary

- Language model & sequence to sequence model:
 - Fundamental ideas and methods for sequence modeling
- Attention mechanism
 - So far the most successful idea for sequence data in deep learning
 - A scale/order-invariant representation
 - Transformer: a fully attention-based architecture for sequence data
 - Transformer + Pretraining: the core idea in today's NLP tasks
- LSTM is still useful in lightweight scenarios

Other architectures



Graph Neural Networks

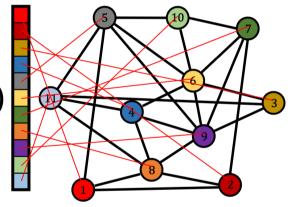


arbitrary ordering of nodes

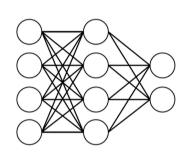
Graph Neural Networks

permutation-equivariant

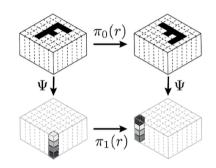
$$F(PX, PAP^{\top}) = PF(X, A)$$



Geometric Deep Learning



32

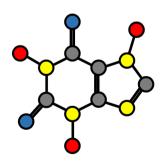


PerceptronsFunction regularity

CNNsTranslation

Group-CNNsTranslation+Rotation

DeepSets / Transformers
Permutation



GNNs Permutation

Intrinsic CNNsLocal frame choice