
Attention Mechanism

Seq2Seq with Attention

Seq2Seq with Attention

Summary

• Input sequence , encoder , and decoder

• produces hidden states

• On time step , we have decoder hidden state

• Compute attention score

• Compute attention distribution

• Attention output:

•

• Sample an output using both and

X fenc fdec
fenc(X) henc

1 , henc
2 , …, henc

N
t ht

ei = h⊤
t henc

i
αi = Patt(Xi) = softmax(ei)

henc
att = ∑

i

αihenc
i

Yt ∼ g(ht, henc
att ; θ)

ht henc
att

Key-query-value attention

• Obtain from

• ; ;

• are learnable weight matrices

•

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = softmax(q⊤
i kj); outi = ∑

k

αi, jvj

Attention is all you need (Vsawani ’17)

• A pure attention-based architecture for sequence modeling

• No RNN at all!

• Basic component: self-attention,

• uses attention on entire sequence

• computed from and the attention output

• Computing

• Key , value , query from

•

• Attention distribution

•
Attention output

•

Y = fSA(X; θ)
Xt X
Yt Xt

Yt
kt vt qt Xt
(kt, vt, qt) = g1(Xt; θ)

αt, j = softmax(q⊤
t kj)

outt = ∑
j

αt, jvj

Yt = g2(outt; θ)

Issues of Vanilla Self-Attention

• Attention is order-invariant

• Lack of non-linearities

• All the weights are simple weighted average

• Capability of autoregressive modeling

• In generation tasks, the model cannot “look at the future”

• e.g. Text generation:

• can only depend on

• But vanilla self-attention requires the entire sequence

Yt Xi<t

Position Encoding

• Vanilla self-attention

•

•

•
Attention output

• Idea: position encoding:

• : an embedding vector (feature) of position

•

• In practice: Additive is sufficient: ;

• is only included in the first layer

(kt, vt, qt) = g1(Xt; θ)
αt, j = softmax(q⊤

t kj)

outt = ∑
j

αt, jvj

pi i
(kt, vt, qt) = g1([Xt, pt]; θ)

kt ← k̃t + pt, qt ← q̃t + pt, vt ← ṽt + pt

(k̃t, ṽt, q̃t) = g1(Xt; θ)

pt

Position Encoding

 design 1: Sinusoidal position representation

• Pros:

• simple

• naturally models “relative position”

• Easily applied to long sequences

• Cons:

• Not learnable

• Generalization poorly to sequences longer than training data

pt

Position Encoding

 design 2: Learned representation

• Assume maximum length , learn a matrix , is a column of

• Pros:

• Flexible

• Learnable and more powerful

• Cons:

• Need to assume a fixed maximum length

• Does not work at all for length above

• design 3: Relative position representation (Shaw, Uszkoreit, Vaswani ’18)

pt

L p ∈ ℝd×T pt p

L
L

pt

Combine Self-Attention with Nonlinearity

• Vanilla self-attention

• No element-wise activation (e.g., ReLU, tanh)

• Only weighted average and softmax operator

• Fix:

• Add an MLP to process

•

• Usually do not put activation layer before softmaax

outi
mi = MLP(outi) = W2ReLU(W1outi + b1) + b2

Masked Attention

• In language model decoder:

• cannot look at future

• Masked attention

• Compute as usuall

• Mask out by setting

•

• is a fixed 0/1 mask matrix

• Then compute

• Remarks:

• for full self-attention

• Set for arbitrary dependency ordering

P(Yt |Xi<t)
outt Xi>t

ei, j = q⊤
i kj

ei>j ei>j = − ∞
e ⊙ (1 − M) ← − ∞
M

αi = softmax(ei)

M = 1
M

Transformer

Transformer-based sequence-to-sequence modeling

Key-query-value attention

• Obtain from

• ; ; (position encoding omitted)

• are learnable weight matrices

•

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = softmax(q⊤
i kj); outi = ∑

k

αi, jvj

Multi-headed attention

• Standard attention: single-headed attention

• ,

• We only look at a single position with

high

• What if we want to look at different for
different reasons?

• Idea: define separate attention heads

• different attention distributions, keys,

values, and queries

• for

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = softmax((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jv

ℓ
j

Multi-headed attention

• Standard attention: single-headed attention

• ,

• We only look at a single position with

high

• What if we want to look at different for
different reasons?

• Idea: define separate attention heads

• different attention distributions, keys,

values, and queries

• for

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = softmax((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jv

ℓ
j

Transformer

Transformer-based sequence-to-sequence modeling

• Basic building blocks: self-attention

• Position encoding

• Post-processing MLP

• Attention mask

• Enhancements:

• Key-query-value attention

• Multi-headed attention

• Architecture modifications:

• Residual connection

• Layer normalization

Transformer

Machine translation with transformer

Transformer

• Limitations of transformer: Quadratic computation cost

• Linear for RNNs

• Large cost for large sequence length, e.g.,

• Follow-ups:

• Large-scale training: transformer-XL; XL-net (‘20)

• Projection tricks to : Linformer ('20)

• Math tricks to : Performer (‘20)

• Sparse interactions: Big Bird (‘20)

• Deeper transformers: DeepNet (’22)

L > 104

O(L)
O(L)

Transformer for Images

• Vision Transformer (’21)

• Decompose an image to 16x16 patches and then apply transformer encoder

Transformer for Images

• Swin Transformer (’21)

• Build hierachical feature maps at different resolution

• Self-attention only within each block

• Shifted block partitions to encode information between blocks

CNN vs. RNN vs. Attention

Summary

• Language model & sequence to sequence model:

• Fundamental ideas and methods for sequence modeling

• Attention mechanism

• So far the most successful idea for sequence data in deep learning

• A scale/order-invariant representation

• Transformer: a fully attention-based architecture for sequence data

• Transformer + Pretraining: the core idea in today’s NLP tasks

• LSTM is still useful in lightweight scenarios

Other architectures

Graph Neural Networks

Graph Neural Networks

Geometric Deep Learning

