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Seq2Seq with Attention

Summary

• Input sequence , encoder , and decoder 

•  produces hidden states 


• On time step , we have decoder hidden state 


• Compute attention score 


• Compute attention distribution 


• Attention output: 


• 

• Sample an output using both  and 
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Key-query-value attention

• Obtain  from 


• ; ; 


•  are learnable weight matrices


• 


• Intuition: key, query, and value can focus on different parts of input
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Attention is all you need (Vsawani ’17)

• A pure attention-based architecture for sequence modeling

• No RNN at all!


• Basic component: self-attention, 

•  uses attention on entire  sequence

•  computed from  and the attention output


• Computing 

• Key , value , query  from 


• 


• Attention distribution 


•
Attention output 


•  
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Issues of Vanilla Self-Attention

• Attention is order-invariant


• Lack of non-linearities

• All the weights are simple weighted average


• Capability of autoregressive modeling

• In generation tasks, the model cannot “look at the future”

• e.g. Text generation:


•  can only depend on 

• But vanilla self-attention requires the entire sequence

Yt Xi<t



Position Encoding

• Vanilla self-attention

• 


• 


•
Attention output 


• Idea: position encoding:

• : an embedding vector (feature) of position 

• 


• In practice: Additive is sufficient: ; 




•  is only included in the first layer

(kt, vt, qt) = g1(Xt; θ)
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pi i
(kt, vt, qt) = g1([Xt, pt]; θ)

kt ← k̃t + pt, qt ← q̃t + pt, vt ← ṽt + pt

(k̃t, ṽt, q̃t) = g1(Xt; θ)

pt



Position Encoding

 design 1: Sinusoidal position representation

• Pros: 


• simple

• naturally models “relative position”

• Easily applied to long sequences


• Cons:

• Not learnable

• Generalization poorly to sequences longer than training data

pt



Position Encoding

 design 2: Learned representation


• Assume maximum length , learn a matrix ,  is a column of 

• Pros: 


• Flexible

• Learnable and more powerful


• Cons:

• Need to assume a fixed maximum length 

• Does not work at all for length above 


•  design 3: Relative position representation (Shaw, Uszkoreit, Vaswani ’18)


pt
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Combine Self-Attention with Nonlinearity

• Vanilla self-attention

• No element-wise activation (e.g., ReLU, tanh)

• Only weighted average and softmax operator


• Fix:

• Add an MLP to process 

• 

• Usually do not put activation layer before softmaax


outi
mi = MLP(outi) = W2ReLU(W1outi + b1) + b2



Masked Attention

• In language model decoder: 

•   cannot look at future 


• Masked attention


• Compute  as usuall


• Mask out  by setting 


• 

•  is a fixed 0/1 mask matrix


• Then compute 

• Remarks:


•  for full self-attention

• Set  for arbitrary dependency ordering
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Transformer

Transformer-based sequence-to-sequence modeling




Key-query-value attention

• Obtain  from 


• ; ;  (position encoding omitted)


•  are learnable weight matrices


• 


• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk
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Multi-headed attention

• Standard attention: single-headed attention


• , 

• We only look at a single position  with 

high 


• What if we want to  look at different  for 
different reasons?


• Idea: define  separate attention heads

•  different attention distributions, keys, 

values, and queries


•  for 


•
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Transformer

Transformer-based sequence-to-sequence modeling


• Basic building blocks: self-attention

• Position encoding

• Post-processing MLP

• Attention mask


• Enhancements:

• Key-query-value attention

• Multi-headed attention

• Architecture modifications:


• Residual connection

• Layer normalization




Transformer

Machine translation with transformer




Transformer

• Limitations of transformer: Quadratic computation cost

• Linear for RNNs

• Large cost for large sequence length, e.g., 


• Follow-ups:

• Large-scale training: transformer-XL; XL-net (‘20)

• Projection tricks to : Linformer ('20)

• Math tricks to : Performer (‘20)

• Sparse interactions: Big Bird (‘20)

• Deeper transformers: DeepNet (’22)


L > 104

O(L)
O(L)



Transformer for Images

• Vision Transformer (’21)

• Decompose an image to 16x16 patches and then apply transformer encoder




Transformer for Images

• Swin Transformer (’21)

• Build hierachical feature maps at different resolution


• Self-attention only within each block

• Shifted block partitions to encode information between blocks




CNN vs. RNN vs. Attention



Summary

• Language model & sequence to sequence model:

• Fundamental ideas and methods for sequence modeling


• Attention mechanism

• So far the most successful idea for sequence data in deep learning

• A scale/order-invariant representation

• Transformer: a fully attention-based architecture for sequence data

• Transformer + Pretraining: the core idea in today’s NLP tasks


• LSTM is still useful in lightweight scenarios




Other architectures



Graph Neural Networks



Graph Neural Networks



Geometric Deep Learning


