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Example in image representation
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Train a neural network (ResNet) on
ImageNet (1M data, 1000 classes)

) Cat Representation (feature extractor):
The mapping from image to the
second-to-the-last layer.

Fix the representation, just re-train
the last linear layer.

New linear
classifier



Example in image representation

Source tasks
(for training
representation):
ImageNet

Target task:
Few-shot Learning

on VOCO7 dataset M*

(20 classes, 1-8

examples per class) o

* Without representation learning:
5% - 10% (random guess = 5%)

* With representation learning:
50% - 80%



Example in image representation
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Representation learning

e A function that maps the raw input to a compact representation (feature vector).
Learn an embedding / feature / representation from labeled/unlabeled data.
e Supervised:
e Multi-task learning
e Meta-learning ‘
e Multi-modal learning (/1‘(/160 = ’}Wmé € Gud'p
e Unsupervised:
e PCA

e |[CA

e Dictionary learning M = D - A
e Sparse coding

e Boltzmannimachine

e Autoencoder

e Contrastive learning

e Self-supervised learning



Desiderata for representations

Many possible answers here.
e Downstream usability: the learned features are “useful” for downstream tasks:

e Example: a linear (or simple) classifier applied on the learned features only
requires a small number of labeled samples. A classifier on raw inputs

requires a large mount of data.

¢ Interpretability: the learned features are semantically meaningful, interpretable

by a human, can be easily evaluated.
¢ Not well-defined mathematically.
e Sparsity is an important subcase.



Desiderata for representations

From Bengio, Courville, Vincent "14:
¢ Hierarchy / compositionality: video/image/text are expected to have hierarchial

structure: need deep learning. 0/%, Jetectt Y loyew

e Semantic clusterability: features of the same “semantic class” (e.g. images in the
same class) are clustered together.

e Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex). Also called manifold flattening.

e Disentanglement: features capture “independent factors of variation” of data. A
popular principle in modern unsupervised learning.



Semantic clustering

Semantic clusterability: features of the same “semantic class” (e.g. images in the
same class) are clustered together.

Latent Variable T-SNE per Class

75

50 - o, .
Intuition: If semantic classes are

linearly separable, and labels on
downstreams tasks depend
linearly on semantic classes: we
only need to learn a simple
classifer.

25 A

—;5 —éO —55 6 2'5 5'0 7l5 100
t-SNE projection (a data visualization method) of VAE-learned
features of 10 MINIST classes.



Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex).

Intuition: the data lies on a
manifold which is complicated/
curved.

The latent variable manifold is a
convex set: moving in straight
lies is still on it.

Interpolations for a VAE trained feature on MINISt



Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex).

Interpolations for a BigGAN image.



Disentanglement

Disentanglement: features capture “independent factors of variation” of data
(Bengio, Courville, Vincent ’14).
e Very popular in modern unsupervised learning.

e Strong connections with generative models: py(z) = I1;py(z;).
AN

(a) Skin colour

Figure 4: Latent factors learnt by 3-VAE on celebA: traversal of individual latents demonstrates
that 3-VAE discovered in an unsupervised manner factors that encode skin colour, transition from an
elderly male to younger female, and image saturation.



Representation
Learning Methods




Multi-task representation learning

Image
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il Wiiogec]  Wiimiged T Train a neural network (ResNet) on
M\ ImageNet (1M data, 1000 classes)

) Cat Representation (feature extractor):
The mapping from image to the
second-to-the-last layer.

) Dog Fix the rgpresentation, just re-train
the last linear layer.

New linear
classifier



Theory for multi-task representation learning

Source Tasks Target Task
Task 1 Task T Target Task
! f | .
Task-specific 91, - g1, [ € G: prediction class
prediction 9 9t gr f . e
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Shared h t Representation t _ i
(Common — | | Learning | | h e H: repres:entatlon class
Representation) ¥ ¥ (e.g., multi-layer NN)
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Theory for multi-task representation learning

Representation Learning Predictor Learning
* T source tasks, each with n4 data: * 1 target task, with n, << n, data:
(G yD) - (b e} (1%, ¥ oo (52, y52) ~
. Learnir;g representation * Training for the target task:
min mln Z £(9; h(xt) mln Z£(f h(xt)
=19

£: quadratic Ioss Representatlon h() is fixed



Review of Supervised Learning Theory

Training with data only from the target domain: Target Task
ny
: ta ta Target Task
min > £ (h(xi)) ¥ e
i=1
]

Theorem ( Example )

C(H) +C(G) i
E(xtayta)., [£(f (R(x*9), y*%)| = O( n, ) h |
{
C(H): complexity measure of the representation class. |
C(G): complexity measure of the prediction class. (i\l
E.g., # of variables (linear function class), VC-dimension, ~

Rademacher complexity, Gaussian width, etc



Theory for multi-task representation learning

Identify a set of (natural) assumptions:
1. If the data satisfies these assumptions, representation learning provably helps.
2. Without assumptions, representation learning does not help.

Theorem (Example)

C(3) c(6)
E(etayta)[6(F(h™)y )] =0C ——+  —=)
N_l/_ g/i.-
When # of tasks (T) is larger, much better than ‘ ‘
0 (C’ (H) + C(g))
n, for learning the Fo[en e

representation predictor



Existence of a good representation

Assumption 1: Existence of a Good Representation

There exist a representation_h* € H and predictors M € G such that
YLl B yyop 09 (R (0, )| =0Vt =1,...,T > < {
’er’}-d— ]E(xta'Yta)~ﬂ[€(f*(h* (xta));yuz)] =0

A shared good representation for all source tasks and the target task:
This is why we use representation learning.
(Without this assumption, we should not use representation learning)



Existence of a good representation is not enough

Source tasks:
Classify types of
cats.

Target task:
Cat or dog?

Source tasks can learn a good representation for cats,
but not a good representation for both cats and dogs.



Existence of a good representation is not enough
12

Input: 1000 dimensional 0/1 vector, {0,1}100°

Good representation: ﬂ[st 100 dimension
 All tasks (source and target) only need first 100 digits for accurate prediction.
* Predicting whether the 10t'-digit is 1, predicting the sum of first 100 digits, etc.

J[— [

Bad scenario:
e Source tasks only need to use first@e.g., whether the 10t-digit is 1 —D

. farget tasks need to use all first 100 digits: e.g., predicts the sum of first 100 digits
—

Source tasks cannot give the full information about the good representation!



Theory for multi-task representation learning

((Z: At gf

G: linear prediction class (last layer of neural networks)

Assumption 1: Existence of a Good Representation

There exist a representation h* € 7, h*(x) € R* and w;, W3, e, Wr, Wig € RK:
e,y [ECWE B (2)), 0] = 0WE = Lo, T
Ex,0y.0)~u [£((Wiq, A" (Xt0)), Yea)] = 0

W* = [wy,ws, ...,wr] € RF¥T is full rank (=k).




Theory for multi-task representation learning

Assumption 1: Existence of a Good Representation

There exist a representation h* € H, h*(x) € R* and wi,w;, ..., wi, w;, € R¥:
Ee,yo~u [EEwWe, h* (x)), )| =0Vt =1,..,T
]E(xm,ym)~u [‘B«W:a' h*(xtq)), }’ta)] =0

Theorem [D. Hu Kakade Lee Lei, 2020]

Under Assumption 1 &2, we have IE(xta yta)mp [f(f(h(xta)),yt“)] = 0(% + ni ).
’ 1 2

C(H): Gaussian width of the representation class .
* Measures how well the function in the class can fit the noise.



