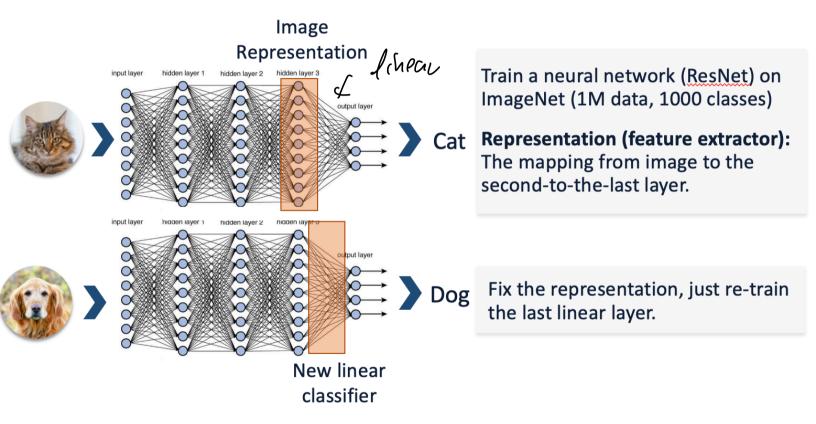
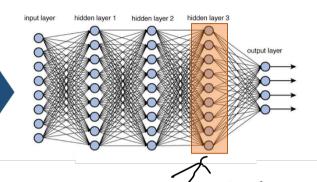
Representation Learning

Example in image representation



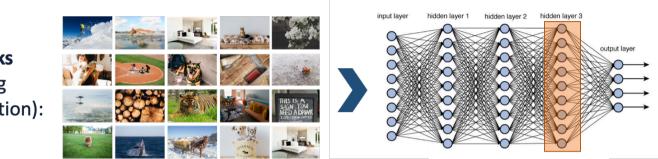
Example in image representation



Target task: Few-shot Learning on VOC07 dataset (20 classes, 1-8 examples per class)

- Without representation learning:
 5% 10% (random guess = 5%)
- With representation learning:
 50% 80%

Example in image representation



Source tasks (for training representation): ImageNet

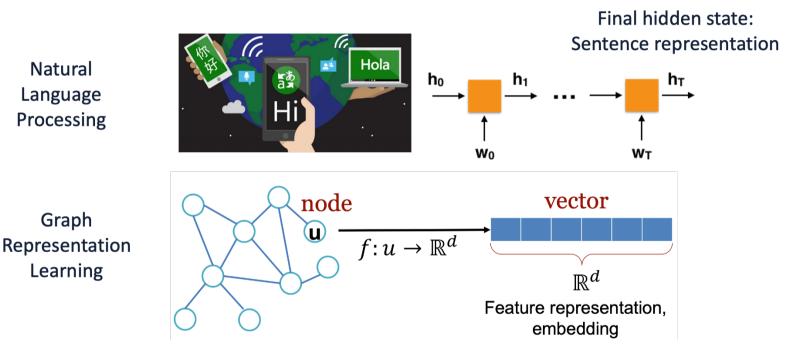
Target task: Few-shot Learning on VOC07 dataset (20 classes, 1-8 examples per class)

- Without representation learning:
 5% 10% (random guess = 5%)
- With representation learning: 50% - 80%

Natural Language Processing

Graph

Learning



Representation learning

- A function that maps the raw input to a compact representation (feature vector). Learn an **embedding / feature / representation** from **labeled/unlabeled data**.
- Supervised:
 - Multi-task learning
 - Meta-learning
 - Multi-modal learning

Video = tunge f Gudio

- Unsupervised:
 - PCA

•

• ICA

• ...

- Sparse coding
- Boltzmann machine
- Autoencoder
- Contrastive learning
- Self-supervised learning

• Dictionary learning $M = D \cdot A$

Desiderata for representations

Many possible answers here.

- **Downstream usability:** the learned features are "useful" for downstream tasks:
 - Example: a linear (or simple) classifier applied on the learned features only requires a small number of labeled samples. A classifier on raw inputs requires a large mount of data.
- Interpretability: the learned features are semantically meaningful, interpretable by a human, can be easily evaluated.
 - Not well-defined mathematically.
 - **Sparsity** is an important subcase.

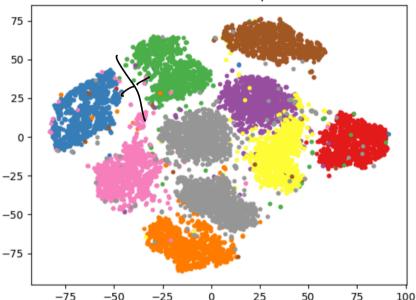
Desiderata for representations

From Bengio, Courville, Vincent '14:

- Semantic clusterability: features of the same "semantic class" (e.g. images in the same class) are clustered together.
- Linear interpolation: in the representation space, linear interpolations produce meaningful data points (latent space is convex). Also called *manifold flattening*.
- **Disentanglement**: features capture "independent factors of variation" of data. A popular principle in modern unsupervised learning.

Semantic clustering

Semantic clusterability: features of the same "semantic class" (e.g. images in the same class) are clustered together.



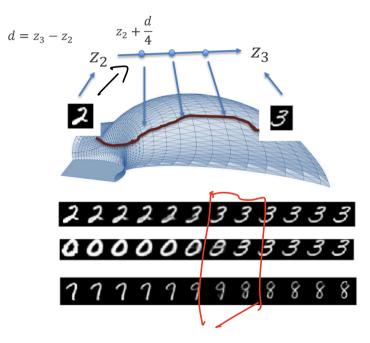
Latent Variable T-SNE per Class

Intuition: If semantic classes are linearly separable, and labels on downstreams tasks depend linearly on semantic classes: we only need to learn a simple classifer.

t-SNE projection (a data visualization method) of VAE-learned features of 10 MNIST classes.

Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce meaningful data points (latent space is convex).



Intuition: the data lies on a manifold which is complicated/ curved.

The latent variable manifold is a convex set: moving in straight lies is still on it.

Interpolations for a VAE trained feature on MNISt

Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce meaningful data points (latent space is convex).

Interpolations for a BigGAN image.

Disentanglement

Disentanglement: features capture "independent factors of variation" of data (Bengio, Courville, Vincent '14).

- Very popular in modern unsupervised learning.
- Strong connections with generative models: $p_{\theta}(z) = \prod_i p_{\theta}(z_i)$.

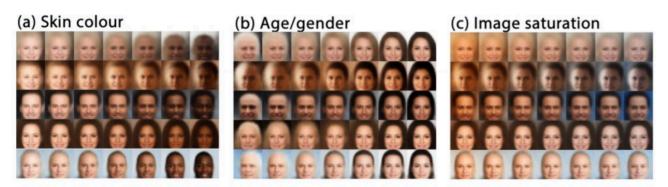
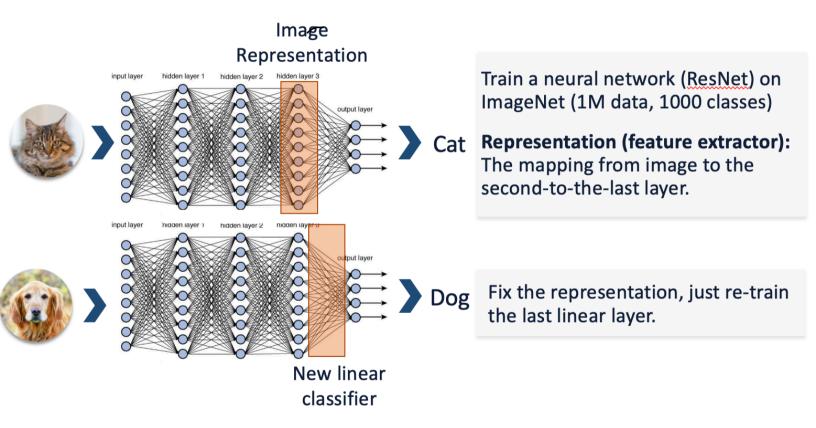


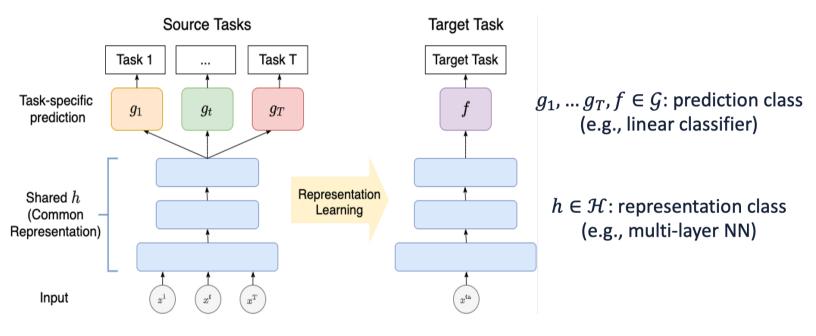
Figure 4: Latent factors learnt by β -VAE on celebA: traversal of individual latents demonstrates that β -VAE discovered in an unsupervised manner factors that encode skin colour, transition from an elderly male to younger female, and image saturation.

Representation Learning Methods

Multi-task representation learning



Theory for multi-task representation learning



Theory for multi-task representation learning

Representation Learning

- *T* source tasks, each with n_1 data: $\left\{ (x_1^t, y_1^t) \dots (x_{n_1}^t, y_{n_1}^t) \right\}_{t=1}^T$
- Learning representation:

 $\min_{h \in \mathcal{H}} \sum_{t=1}^{T} \min_{g_t \in \mathcal{G}} \sum_{i=1}^{n_1} \ell(g_t\left(h(x_i^t)\right), y_i^t)$ $\ell: \text{ quadratic loss}$

Predictor Learning

- 1 target task, with $n_2 \ll n_1$ data: $(x_1^{ta}, y_1^{ta}) \dots (x_{n_2}^{ta}, y_{n_2}^{ta}) \sim \mu$
- Training for the target task: $\min_{f \in \mathcal{G}} \sum_{i=1}^{n_2} \ell(f\left(h(x_i^t)\right), y_i^t)$ Representation $h(\cdot)$ is fixed

Review of Supervised Learning Theory

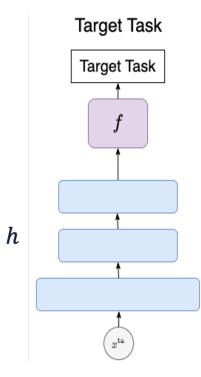
Training with data only from the target domain:

$$\min_{f \in \mathcal{G}, h \in \mathcal{H}} \sum_{i=1}^{n_2} \ell(f(h(x_i^{ta})), y_i^{ta})$$

Theorem (Example)

$$\mathbb{E}_{(x^{ta}, y^{ta}) \sim \mu} \left[\ell \left(f(h(x^{ta})), y^{ta} \right) \right] = O(\frac{\mathcal{C}(\mathcal{H}) + \mathcal{C}(\mathcal{G})}{n_2})$$

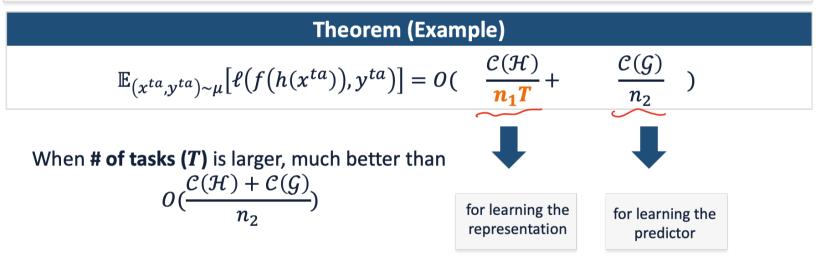
 $C(\mathcal{H})$: complexity measure of the representation class. $C(\mathcal{G})$: complexity measure of the prediction class. E.g., # of variables (linear function class), VC-dimension, Rademacher complexity, Gaussian width, etc



Theory for multi-task representation learning

Identify a set of (natural) assumptions:

- 1. If the data satisfies these assumptions, representation learning provably helps.
- 2. Without assumptions, representation learning does not help.



Existence of a good representation

Assumption 1: Existence of a Good Representation

There exist a representation $h^* \in \mathcal{H}$ and predictors $g_1^*, g_2^*, \dots, g_T^*, f^* \in \mathcal{G}$ such that $\mathcal{Y}_{\mathcal{Y}_{t}, y_t} = \mathbb{E}_{(x_t, y_t) \sim \mu_t} \left[\ell(g_t^*(h^*(x_t)), y_t) \right] = 0 \quad \forall t = 1, \dots, T \quad \forall t \in \mathcal{G}$ $\mathcal{Y}_{\mathcal{Y}_{t}, y_t} = \mathbb{E}_{(x_{ta}, y_{ta}) \sim \mu} \left[\ell(f^*(h^*(x_{ta})), y_{ta}) \right] = 0$

A **shared** good representation for all source tasks and the target task: This is why we use representation learning. (Without this assumption, we should not use representation learning)

Existence of a good representation is not enough

Source tasks: Classify types of cats.

Target task: Cat or dog?

Source tasks can learn a good representation for cats, but not a good representation for **both cats and dogs**.

Existence of a good representation is not enough

Input: 1000 dimensional 0/1 vector, $\{0,1\}^{1000}$

Good representation: first 100 dimension

- All tasks (source and target) only need first 100 digits for accurate prediction.
- Predicting whether the 10th-digit is 1, predicting the sum of first 100 digits, etc.

Bad scenario:

- Source tasks only need to use first 50 digits: e.g., whether the 10th-digit is 1
- Target tasks need to use **all** first 100 digits: e.g., predicts the sum of first 100 digits

Source tasks cannot give the **full information** about the good representation!

Theory for multi-task representation learning $(k \in \mathcal{M}) \xrightarrow{f} \mathcal{M}_{(1)}$

G: linear prediction class (last layer of neural networks)

Assumption 1: Existence of a Good Representation

There exist a representation
$$h^* \in \mathcal{H}, h^*(x) \in \mathbb{R}^k$$
 and $w_1^*, w_2^*, \dots, w_T^*, w_{ta}^* \in \mathbb{R}^k$:

$$\mathbb{E}_{(x_t, y_t) \sim \mu_t} [\ell(\langle w_t^*, h^*(x_t) \rangle, y_t)] = 0 \forall t = 1, \dots, T$$

$$\mathbb{E}_{(x_{ta}, y_{ta}) \sim \mu} [\ell(\langle w_{ta}^*, h^*(x_{ta}) \rangle, y_{ta})] = 0$$
Assumption 2: Diversity of Source Tasks for Linear Predictor
 $W^* = [w_1^*, w_2^*, \dots, w_T^*] \in \mathbb{R}^{k \times T}$ is full rank (=k).

Need $T \ge k$: cover the span of the good representation.

Theory for multi-task representation learning

Assumption 1: Existence of a Good Representation

There exist a representation $h^* \in \mathcal{H}, h^*(x) \in \mathbb{R}^k$ and $w_1^*, w_2^*, \dots, w_T^*, w_{ta}^* \in \mathbb{R}^k$: $\mathbb{E}_{(x_t, y_t) \sim \mu_t} [\ell(\langle w_t^*, h^*(x_t) \rangle, y_t)] = 0 \ \forall t = 1, \dots, T$ $\mathbb{E}_{(x_{ta}, y_{ta}) \sim \mu} [\ell(\langle w_{ta}^*, h^*(x_{ta}) \rangle, y_{ta})] = 0$

Theorem [D. Hu Kakade Lee Lei, 2020]

Under Assumption 1 &2, we have $\mathbb{E}_{(x^{ta}, y^{ta}) \sim \mu} \left[\ell \left(f \left(h(x^{ta}) \right), y^{ta} \right) \right] = O(\frac{\mathcal{C}(\mathcal{H})}{n_1 T} + \frac{\kappa}{n_2}).$

 $\mathcal{C}(\mathcal{H})$: Gaussian width of the representation class \mathcal{H} .

Measures how well the function in the class can fit the noise.