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Example in image representation
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Examples

Final hidden state:
Sentence representation

Natural ho h, hr
Language —>.—> .. — N,
Processing T T
Wo Wr
Graoh node vector
Ceoresontnt — NN
epresentation fru—->R* U ~ J
Learning G
Feature representation,
O

embedding



Representation learning

e A function that maps the raw input to a compact representation (feature vector).
Learn an embedding / feature / representation from labeled/unlabeled data.

e Supervised:

e Multi-task learning

e Meta-learning

e Multi-modal learning

L4 cee
e Unsupervised:

e PCA

e ICA

e Dictionary learning

e Sparse coding

e Boltzmann machine

e Autoencoder

e Contrastive learning

e Self-supervised learning



Desiderata for representations

Many possible answers here.
e Downstream usability: the learned features are “useful” for downstream tasks:

e Example: a linear (or simple) classifier applied on the learned features only
requires a small number of labeled samples. A classifier on raw inputs

requires a large mount of data.

¢ Interpretability: the learned features are semantically meaningful, interpretable

by a human, can be easily evaluated.
e Not well-defined mathematically.
e Sparsity is an important subcase.



Desiderata for representations

From Bengio, Courville, Vincent '14:
e Hierarchy / compositionality: video/image/text are expected to have hierarchial

structure: need deep learning.

e Semantic clusterability: features of the same “semantic class” (e.g. images in the
same class) are clustered together.

e Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex). Also called manifold flattening.

e Disentanglement: features capture “independent factors of variation” of data. A
popular principle in modern unsupervised learning.



Semantic clustering

Semantic clusterability: features of the same “semantic class” (e.g. images in the
same class) are clustered together.

Latent Variable T-SNE per Class

75 A

50 A ol ® .
Intuition: If semantic classes are

linearly separable, and labels on
downstreams tasks depend
linearly on semantic classes: we
only need to learn a simple
classifer.

25 A

—;5 —éO —2'5 6 2'5 5'0 7'5 100
t-SNE projection (a data visualization method) of VAE-learned
features of 10 MNIST classes.



Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex).

Intuition: the data lies on a
manifold which is complicated/
curved.

2222223233333 The latent variable manifold is a

convex set: moving in straight

LR RER] s is still on it.

Interpolations for a VAE trained feature on MNISt



Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex).

Interpolations for a BigGAN image.



Disentanglement

Disentanglement: features capture “independent factors of variation” of data
(Bengio, Courville, Vincent '14).

e Very popular in modern unsupervised learning.

e Strong connections with generative models: py(z) = I1.py(z)).

Figure 4: Latent factors learnt by 3-VAE on celebA: traversal of individual latents demonstrates
that 3-VAE discovered in an unsupervised manner factors that encode skin colour, transition from an
elderly male to younger female, and image saturation.
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Multi-task representation learning
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Theory for multi-task representation learning

Source Tasks Target Task
Task 1 Task T Target Task
f f JE JE
Task-specific 91, ---91, [ € G: prediction class
prediction gr f . g
‘ . ) - (e.g., linear classifier)
Shared h t Representation t _ )
(Common — | | Learning | | heXH: repres.entatlon class
Representation) } ¥ (e.g., multi-layer NN)
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Theory for multi-task representation learning

Representation Learning Predictor Learning
e T source tasks, each with n4 data: * 1 target task, with n, << n, data:
{(xh, 99) ... (x,tll,y,'{l)}il Gef?, 1) oo (52, 752 ) ~
. Learnir}g representation * Training for the target task:
2
’rlrelgtl gnérgl Zf(gt h(xt) r;lelél Zl’(f (h(xit)),ylt)

£: quadratlc Ioss Representat_ion h(-) is fixed



Review of Supervised Learning Theory

Training with data only from the target domain:

np
Jmin_ Z ef (h(x%)), ¥1%)
i=

C(H) +C
E(yea - [£(f (hxt)), y1)] = 0 ETEEE),

n,;

C(H): complexity measure of the representation class.
C(G): complexity measure of the prediction class.

E.g., # of variables (linear function class), VC-dimension,

Rademacher complexity, Gaussian width, etc

Target Task

Target Task

f




Theory for multi-task representation learning

Identify a set of (natural) assumptions:
1. If the data satisfies these assumptions, representation learning provably helps.
2. Without assumptions, representation learning does not help.

Theorem (Example)

C(3) C(G)
E(ytayta)o, [£(f (h(x'9)),¥**)] = O( Wk )
When # of tasks (T) is larger, much better than ‘ ‘
O(C’(ﬁ”) + C’(Q))
n, for learning the for learning the

representation predictor



Existence of a good representation

Assumption 1: Existence of a Good Representation

There exist a representation h* € H and predictors g7, 95, ..., g1, f* € G such that
]E(xt:yt)"'#t [{)(g;(h’* (xt))' yt)] =0vt=1,..,T
IE(xta»Yta)"'ﬂ[e(f*(h* (xta))' )’ta)] =0

A shared good representation for all source tasks and the target task:
This is why we use representation learning.
(Without this assumption, we should not use representation learning)



Existence of a good representation is not enough

Source tasks:
Classify types of
cats.

Target task:
Cat or dog?

Source tasks can learn a good representation for cats,
but not a good representation for both cats and dogs.



Existence of a good representation is not enough

Input: 1000 dimensional 0/1 vector, {0,1}100°

Good representation: first 100 dimension
» All tasks (source and target) only need first 100 digits for accurate prediction.
* Predicting whether the 10t'-digit is 1, predicting the sum of first 100 digits, etc.

Bad scenario:
» Source tasks only need to use first 50 digits: e.g., whether the 10t-digit is 1
* Target tasks need to use all first 100 digits: e.g., predicts the sum of first 100 digits

Source tasks cannot give the full information about the good representation!



Theory for multi-task representation learning

G: linear prediction class (last layer of neural networks)

Assumption 1: Existence of a Good Representation

There exist a representation h* € H,h*(x) € R and wy,w;, ..., wr, wi, € RF:
IE(xt'yt)“’ut [f((W;, h* (xt)), yt)] =0Vt = 1, ey T
]E(xta,yta)~u [f((wgar h* (xta»: :Vta)] =0

Assumption 2: Diversity of Source Tasks for Linear Predictor

W* = [wy,ws, ...,wr] € RF¥T is full rank (=k).

Need T = k: cover the span of the good representation.



Theory for multi-task representation learning

Assumption 1: Existence of a Good Representation

There exist a representation h* € I, h*(x) € R and wi, w3, ..., ws, w;, € R¥:
E(x,y)~p [ AW, B (X)), y)| =0Vt =1,...,T
IE(xta,yta)~u [£((Wig, B* (Xt0)), Yia)] = 0

Theorem [D. Hu Kakade Lee Lei, 2020]

Under Assumption 1 &2, we have E(yta yta).,, [2(f (h(x*?)),yt?)] = o(CZl 4 Xy

an n,

C(H): Gaussian width of the representation class H..
* Measures how well the function in the class can fit the noise.



