Recurrent Neural
Networks

Recurrent Neural Network

e /1, hidden state Y(t)

e X,:input h,

e Y. output

o Y, h=f(h_y, X;;0) X Xl
=0 .

e h_,:initial state

Time

Fully-connect NN vs. RNN
e RNN can be viewed as repeated applying fully-connected NNs

o hy= o (WX, + WDh,_, + b D)
o Y, = o,(WPh, + b?))

e 01, 0, are activation functions (sigmoid, ReLU, tanh, etc)

v 7 << I,
O o (V/m)\é/
Linear RNN derivation {/2/ = Z—% —:7 (\,\/(”))hleﬁ()fw
 hem W Ke T W”Mﬁ e forgelt" X

. (-
Np = \v ()'7<VL { W Ab’f 0
~ \//C({ X-(/Q _(W(l{) . (W(I)’ X-}Q.,’ _fU/ 'ézq)

Al i Oy
((()- —_ Crr) W / X :
?(\i/_/_\ hh’ f 'T?ofg/\/\,—/\—\,\\
~—_ T \ £
(TULAM(WC(“) /)/e_;pw(;”\{;iix (<W(r<)>n) = g

7 :) Cont Cp()ml{’
4 / ’_> eﬂ) SM? f/u'{ ,jﬂ/\g tam V‘(‘Wov;/

Practical issues of RNN

Practical issues of RNN: training
65(2) y o inaon,

Gradient explosion and gradient vanishing

Ze =W ey £ WERC o
he > 60 2¢) 0y o fotrel
L kG = L(\(/p/ D‘Q)

\2
M <) o 61 (8@)
D MO 04 (\A/(> h _U:D

/ < |
e dov”
oL Cin Dt{/{ fo‘ﬁ dﬁ} [)‘/‘W"?

y6C) £

Techniques for avoiding gradient explosion

COer hald oy \"f‘ (oL 7 (e f

e Gradient clipping

Gy &— el o
* Identity initialization “ OL- ”
e Truncated backprop through time
e Only backprop for a few steps
/1IN
VAR R R U W N

\J

AVI
\

Preserve Long-Term Memory

e Difficult for RNN to preserve long-term memory
e The hidden state /4, is constantly being written (short-term memory)
e Use a separate cell to maintain long-term memory

® ® ®
t i t
A P ﬂ A
I I
&) Y ® Te &)
®
Memory ¢, oo [ce f
R =

Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, '97)
e RNN architecture for learning long-term dependencies

e o: layer with sigmoid activation
C/_,_\/__’__

& ®

A
T\ 4 N\ a
—>— T
A Lol A
—> >
| ’ T
@ @ ay @
u®b= {;J
] O Ve > —<J
Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, '97)

e Core idea: maintain separate state /1, and cell ¢, (memory)
—_— - N~—
e h1,: full update every step

e ¢, only partially update through gates
/—’_/_\’_/—/_’-—

e o layer outputs importance ([0,1]) for each entry and only modify those
entries of ¢,

A

® ®
T

?
© ® ©
1 O — > <]

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Long Short-Term Memory Network

Forget gate f,
e f, outputs whether we want to “forget” things in c,
e Compute M-wise)
e f,(i) = 0: want to forget c,(i)
e f(i) = 1: we want to keep the information in ¢,(7)

fi = U(Wffé—\laxt]J_F bf)
F U

Long Short-Term Memory Network

Input gate i,
e [, extracts useful information from X, to update memory
e ¢, information from X, to update memory
e I,: which dimension in the memory should be updated by X,
e i(j) = 1: we want to use the information in ¢,(j) to update memory
e i(t) = 0:¢,(j) should not contribute to memory

~

" ’it =0 (Wi'[ht—l,xt] + bz)
) C:t :tanliVVi-[ht_l,xt] + be)

Long Short-Term Memory Network

Memory update

o f, forget gate; i, input date

e f, © c,_;: drop useless information in old memory)
t

e i, O C,: add selected new information from current inpu

Long Short-Term Memory Network

Output gate o,
o Next hidden state h, = 0, © tanh(c,)
e tanh(c,): non-linea ﬂ/gaon over all past information
e 0,: choose important dimensions for the next state
e 0(j) = 1 : tanh(c,(j)) is important for the next state
e 0(j) = 0 : tanh(c,(j)) is not important

he A

CGanh> Ot:U(o [ht_l,xt] —F@
hy = o4 x tanh (C})

hi—1

Long Short-Term Memory Network
& ®

e 1, = 0, ® tanh(c,) $
@@nh>
YV, =g(h) A EL A\
J - 7

| I
&) ® ©

Remarks:

1. No more matrix multiplications for c,
L S P N

2. LSTM does not have guarantees for gradient explosion/vanishing

3. LSTM is the dominant architecture for sequence modeling from ’13 - ’16.
45 10

4. Why tanh

LSTM Variant

Peephold Connections (Gers & Schmidhuber '00)
 Allow gates to take in ¢, information

& ®)
t |

A

a [T A
®

|
3 % &

ft =0 (Wg-[Ceo1yhi—1,2¢] + by)
ir = 0 (W;-[Cy=1,ht—1,2¢] + b;)

Ot = J(Wo°[0t7ht—laxt] + bo)
I

LSTM Variant

Simplified LSTM

e Assumei, =1 —f,
* Only two gates are needed: fewer parameters
N

A IEAD A L

| |
3 © &

P—@-’ gt/i@ct—l +(1 - f)®C

LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. ’14)
e Merge h, and c¢,;: much fewer parameters

& ®)
| |

T
© ® ©

L 2t — O (Wz . [ht_l,ZCt]) ’]tOL?vTﬁD’W
ry =0 (W, - [hi—1, 7))

Bt = tanh (W - [ry * he_1, 2¢])

ht:(l—zt)*ht—1+zt*ilt

LSTM application: language model

o Autoregressive language model: P(X;0) = HthlP(XZ | X;.; 0)

e X: asentence
e Sequential generation
e LSTM language model

e X,: word at position 7.
e Y,: softmax over all words

e Data: a collection of texts:
o Wiki

P(WI1"The") P(WI"...quick") P(W/I"..brown") PW]I"...fox")

Softmax Softmax Softmax Softmax
_“ “_J _V_J _“_J
EE— [s w . \
—hg—{ RBNN |—h;—{ RNN |—ho—» RNN —hg— RNN | —h,~>

lIThell Ilquickll llbrownll Ilfoxll

LSTM application: text classification

Bi-directional LSTM and them run softmax on the final hidden state.

INBOX
il S
E g
CLASSIFIER

SPAM FOLDER

o S5

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

_iEE
Tt T T

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hy (inf)

t

Attention Mechanism

W

Machine Translation
TU&V\S/{/ATNW
e Before 2014: Statistical Machine kearning (SMT)
e Extremely complex systems that require massive human efforts
e Separately designed components

e A lot of feature engineering
e Lots of linguistic domain knowledge and expertise

e Before 2016:
e Google Translate is based on statistical machine learning

e \What happened in 2014?
e Neural machine translation (NMT)
— —~

Sequence to Sequence Model

e Neural Machine Translation (NMT)
e Learning to translate via a single end-to-end neural network.

e Source language sentence X, target language sentence Y = f(X; 0)
=AY

——

e Sequence to Sequence Model (Seq2Seq, Sutskever et al., ‘14)
e Two RNNs: f,..and f,,.

+ Encoder X > b

/ e Takes X as input, and output the initial hidden state for decoder
e Can use bidirectional RNN

e Decoder f,,.:

e It takes in the hidden state from f,,,. to generate Y

e Can use autoregressive language model

h—

Sequence to Sequence Model

Encoder RNN

The sequence-to-sequence model

Encoding of the source sentence.

Target sentence (output)
A

4
Provides initial hidden state

for Decoder RNN.

N\

il m’ entarté

\ J

Y

he

<START> he

hit me with a pie <END>

NNY J2podag

hit me with a

pie

Source sentence (input)

Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.

Training Sequence to Sequence Model

e Collect a huge paired dataset and train it end-to-end via BPTT
e Loss induced by MLE P(Y | X) = P(Y | f,,,.(X))

= negative log = negative log = negative log
1 T prob of “he” prob of “with” prob of <END>
J= szt = | 1 |+ J2 + I3 +| Ja |+ Js + Je +| J7 |
=1 A A 7 A A N
1 V2 V3 Va Vs Vs V7
A A A A A A A

Encoder RNN
f_H

il a m’ entarté <START> he hit me with a pie
N J N J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

NNY J9p02aq

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.

Deep Sequence to Sequence Model

e Stacked seq2seq model

Translation
generated
Encoder:
Builds up Decoder
sentence
meaning
Source Feeding in
last word

sentence

Machine Translation

e 2016: Google switched Google Translate from SMT to NMT

45 W Phrase-based SMT
40

W Syntax-based SMT
35

30 W Neural MT

25

20

15

10

2013 2014 2015 2016 2017 2018 2019

Alighment

e Alignment: the word-level correspondence between X and Y
e Can have complex long-term dependencies

Morgen| | fliege | |ich nach Kanada| |zur Konferenz

/ P

Tomorrow will fly to the conference||in Canada

3883
The Les The
———— pauvres

poo,r P poor
don't sont L
have démunis don't
any have
money any
money

Issue in Seg2Seq

e Alignment: the word-level correspondence between X and Y
e The information bottleneck due to the hidden state &

e We want each Y, to also focus on some X, that it is aligned with
A N—— —_—

Encoding of the
source sentence.

This needs to capture all Target sentence (output)
information about the e A \
source sentence. he hit me with a pie <END>
Information bottleneck!

Encoder RNN
&
(0000]
g

’ entarté <START> he hit me with a pie

N J
Y

Source sentence (input)

NNY 12p023a(d

Seq2Seq with Attention

e NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, '15)
e Core idea:

e When decoding Y,, consider both hidden states and alighment:
e Hidden state: h = fioc(Xicr)

e Alignment: connect to a portion of X 4("‘
e When portion of X to focus on?

e Learn a softmax weight over X: attention distribution P,

e P (X:|h,): how much attention to put on word X;

, Attention output £, Zfenc(X | Xici) = Pod(Xi |) <

g/_/_’_x—_
e Use hi,_; and &, to compute Y, W?h{d Juon

Seq2Seq with Attention

dot product

Attention
scores
O

Encoder
RNN
— —
&xx
(0000
(0000
e000]
(0000

D
—
L_) il a m’ entarté <START>
- - — —
1\ J
P‘MW&JB v

Source sentence (input)

NNY J9p0o2a(

Seq2Seq with Attention

dot product

scores

Encoder Attention

il a m’ entarté <START>

\ J
Y

Source sentence (input)

NNY J9p0da(

Seq2Seq with Attention

dot product

Attention
scores

Encoder
RNN

il a m’ entarté <START>

\ J
Y

Source sentence (input)

NNY Japodaq

Seq2Seq with Attention

dot product

Attention

Encoder

il a m’ entarté <START>

\ J

Source sentence (input)

NNY 42p0da(

Seq2Seq with Attention

Attention
distributio

Attention

Encoder

= 0 (<)
2 QFC(. On this decoder timestep, we’re
c

scores

RNN

e’ ((4’\)

mostly focusing on the first
{ / encoder hidden state (”he”)

Take softmax to turn the scores
into a probability distribution

il a m’ entarté <START>
1\ J

Source sentence (input)

NNY 412p02a(

Seq2Seq with Attention

Attention

Attention

Encoder

distribution

scores

RNN

Attention
output

il a m’ entarté

<
«

J

Y
Source sentence (input)

Use the attention distribution to take a

weighted sum of the encoder hidden
states. I

—

The attention output mostly contains
information from the hidden states that
received high attention.

<START>

NNY J9p02aq

Seq2Seq with Attention

Attention

Attention

Encoder

distribution

scores

— .

I_M\

Attention

il a m’ entarté

J

v
Source sentence (input)

<START>

SUCEDE,

Concatenate attention output
with decoder hidden state, then
use to compute ¥y, as before

NNY 49p02a(

Seq2Seq with Attention

Attention hit
output T

Attention
distribution

Attention
scores

Encoder
RNN

il a m’ entarté <START> he
N\ J

Source sentence (input)

NNY 19p023Q

Seq2Seq with Attention

Attention me
output

Attention
distribution

Attention
scores

Encoder
RNN

il a m’ entarté <START> he hit
1\ J

Y
Source sentence (input)

NNY 49p023Q

Seq2Seq with Attention

Attention
output

Attention
distribution

Attention
scores

Encoder
RNN

il a m’ entarté <START> he
L J

Source sentence (input)

hit

NNY Jap02aq

Seq2Seq with Attention

pie

Attention

Decoder RNN
—

N

uoninNqsIp
uoIuUNY

S2J02S
uonUAY

NNY
Japoougz

a

me with

hit

<START> he

entarté

ml

il

Y

Source sentence (input)

Seq2Seq with Attention
Summary O 9 MOJ (7

» Input sequence X, encoder ., and decader /g
e fouo(X) produces hidden states ", h3", ..., hy'

e On time step 7, we have decoder hidden state £,

o Compute attention score ¢; = h,' h"
e Compute attention distribution a; = P _,(X;) = softmax(e;)
, Attention output: /1,,," = Z a;h"
i
o Y, ~ g(h, hy; 0)
e Sample an output using both &, and A5/ ¢

Attention

e |t significantly improves NMT.

e |t solves the bottleneck problem and the long-term dependency issue.

e Also helps gradient vanishing problem.

e Provides some interpretability i
e Understanding which word the RNN encoder focuses on a

.
e Attention is a general technique entarté :E-

e Given a set of vector values V; and vector query g

with

hit
me
a
pie

-

e Attention computes a weighted sum of values depending on ¢g

Other use cases:

e Attention can be viewed as a module.

* In encoder and decoder (more on this later)

e A representation of a set of points
e Pointer network (Vinyals, Forunato, Jaitly '15)
e Deep Sets (Zaheer et al., ’17)

e Convolutional neural networks
e To include non-local information in CNN (Non-local network, '18)

Attention

e Representation learning:
e A method to obtain a fixed representation corresponding to a query g from

an arbitrary set of representations { V;}
e Attention distribution: a; = softmax(f(v;, q))

, Attention output: v, = Z a,v;
i

e Attent variant: f(v;, q)
e Multiplicative attention: f(v., q) = g' W/, W is a weight mattrix
 —
o Additive attention: f(v;, ¢) = u "tanh(W,v; + W,q)

Key-query-value attention

e Obtain g,, v,, k, from X,
e q,= WiX;v, = WX; k, = W*X, (position encoding omitted)
e W4, WY, WX are learnable weight matrices

— T : ==
, @ ; = softmax(q; k); out; = Z Qi Vi
k

e Intuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

XQ = XQKTXT
KT XT € RTXT

P

softmax| xQkTXxT | xy =
output € RT*¢

Attention is all you need (Vsawani ’17)

e A pure attention-based architecture for sequence modeling

e No RNN at all!

e Basic component: self-attention, ¥ = f¢,(X; 0)
X, uses attention on entire X sequence
e Y, computed from X, and the attention output

e Computing Y,

e Key k,, value v, query g, from X,
o (k[’ V[a Qt) — gl(Xta 9)
« Attention distribution a, ; = softmax(thkj)

, Attention output out;, = Z Q ;V;

o ¥, = gy(out; 0)

The

didn't
cross
the
street
because
it

was

too

tired

(. S

self-attention

ki a1 vi ky, qx v, kg q3 s

¥

k1\i}f71 ky g2 v, k3 g3 v3
W]_ WZ

The chef who

self-attention

w3

The
animal
didn’t
cross
the
street
because

was

too
tired

kr qr vr

kr qr vr

wr

food

Issues of Vanilla Self-Attention

e Attention is order-invariant

e Lack of non-linearities
e All the weights are simple weighted average

e Capability of autoregressive modeling
* In generation tasks, the model cannot “look at the future’
e e.g. Text generation:
e Y, can only depend on X,

e But vanilla self-attention requires the entire sequence

)

Position Encoding

¢ Vanilla self-attention
¢ (kp vt’ qt) — gl(Xt’ 9)
¢ Q= softmax(thkj)

, Attention output out, = Z Vi

J
e |dea: position encoding:

e p;: an embedding vector (feature) of position i
i (kp vt, ql‘) — g]([Xtapt]; 6)

e In practice: Additive is sufficient: k, « l}t +pnq, <~ 4, +p,Vv, <V, +ps
(k. 9, G,) = 81(X;: 0)

e p,isonly included in the first layer

Position Encoding

p, design 1: Sinusoidal position representation

® Pros:
e simple
e naturally models “relative position”
e Easily applied to long sequences .
e Cons: B ,
e Not learnable Heatmap of p; p;

e Generalization poorly to sequences longer than training data

@ £

sin(i/100002°1/4))
cos(i/10000%*1/%)

bi

Dimension

* d
sin(i/lOOOOZ*Z/d)
Kcos(l'/lOOOOz*f/d)/

Index in the sequence

Position Encoding

p, design 2: Learned representation

e Assume maximum length L, learn a matrix p € RT, p,is a column of p

® Pros:

e Flexible

e Learnable and more powerful
e Cons:

* Need to assume a fixed maximum length L
e Does not work at all for length above L

e p, design 3: Relative position representation (Shaw, Uszkoreit, Vaswani '18)

Combine Self-Attention with Nonlinearity

e Vanilla self-attention
e No element-wise activation (e.g., ReLU, tanh)
e Only weighted average and softmax operator

e Fix:
e Add an MLP to process out;
o m; = MLP(out)) = W,ReLU(W,out; + b,) + b,
e Usually do not put activation layer before softmaax

i

FF FF FF FF
! f ! f

self-attention

ro

FF FF FF FF
! 1 ' f
self-attention
| [| [| cee il
W]_ W2 W3 WT

The chef who food

Masked Attention

e In language model decoder: P(Y,| X;_,)

e out, cannot look at future Xi>t

e Masked attention

o« Compute ¢; ; = Tk as usuall

e Mask out e;_ : by setting e. — 0

> i>j = raw attention weights mask

ceO(l-M)«< —-o0 Ui Y2 Ys Ui Us Ug

e M is a fixed 0/1 mask matrix ® 000060
e Then compute a; = softmax(e;) WAV 74
e Remarks:

e M = 1 for full self-attention

e Set M for arbitrary dependency ordering ‘ ‘

X1 X2 Xy X1 X5 Xo

Transformer

Transformer-based sequence-to-sequence modeling

[predictions!]
t

Decoder
t [decoder attends t
[°
° to encoder states] °
° °
) ¢
Decoder
(Erbstangs | * kommentatons L emiaiinen] * Repioniaton

[input sequence] [output sequence]

Key-query-value attention

e Obtain g,, v,, k, from X,
e q,= WiX;v, = WX; k, = W*X, (position encoding omitted)
e W4, WY, WX are learnable weight matrices

— T : ==
, @ ; = softmax(q; k); out; = Z Qi Vi
k

e Intuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

XQ = XQKTXT
KT XT € RTXT

P

softmax| xQkTXxT | xy =
output € RT*¢

Multi-headed attention

e Standard attention: single-headed attention
e X. € RY Q,K, Ve R™
e We only look at a single position j with
high o; ;
e What if we want to look at different j for
different reasons?
e |dea: define & separate attention heads

 J1 different attention distributions, keys,
values, and queries

« QF, K, VE e R for1 < £ < h

, ONTLEN. mriil — 114
al.,. = softmax((ql-) kJ), 01”,' - 2 ai,jvj
J

° J

#Params Unchanged!

Single-head attention
(just the query matrix)

X XQ
Q:

Multi-head attention

(just two heads here)

X XQ, XQ,
102 =

Multi-headed attention

e Standard attention: single-headed attention
e X. € RY Q,K, Ve R™
e We only look at a single position j with
high o; ;
e What if we want to look at different j for
different reasons?

e |dea: define & separate attention heads

 J1 different attention distributions, keys,
values, and queries

« QF, K, VE e R for1 < £ < h

¢ AT ol — Cyl
ai,j = softmax((ql-) kJ) out; = Z O‘i,jvj
J

Utterance Level Representation

c=[E % | < |
A
D, ' ‘ y Attention 3
Wiz Wiaz W3z Wuz Wsz Wea Wns

. Attention 2
Wiz Wiy Wiy Wiy Wsy Wey W2
5B D’ D ~-._ Attention 1
m -l “mm-
Wi1 Wa1 Wzyp Wy Wi Weyq Wn1
hys Head 3
h12 b Head 2
hyy Head 1

hy h, hs h, hs he hy

! Sequence of Encoded Representations or Hidden States |

Transformer

Output
Transformer-based sequence-to-sequence model Probabilties

e Basic building blocks: self-attention

e Position encoding
e Post-processing MLP F°’W|a"’
e Attention mask —(Add & Norm) A;:&::;:
Feed Attention
Forward t) Nx
e Enhancements: w | —1 m%
. * F’MM Mas.ked
e Key-query-value attention M Had Mut-Head
Nl ention
° i- i At t
|V|U|t-l headed attetn.tlorl \ J)
e Architecture modifications: Positional A @_® Positional
. . Encoding Encoding
e Residual connection o Sutpt
. . Embedding Embedding
e Layer normalization f f
Inputs Qutputs

(shifted right)

Transformer

Machine translation with transformer

BLEU Training Cost (FLOPs)

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-10" 14.10%
ConvS2S [9] 25.16 40.46 9.6-10"% 1.5.10%
MOoE [32] 26.03 40.56 2.0-101° 1.2.1020
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 2630 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-1019 1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 2.3.10%

Transformer

e Limitations of transformer: Quadratic computation cost
e Linear for RNNs

e Large cost for large sequence length, e.g., L > 10*

e Follow-ups:
e Large-scale training: transformer-XL; XL-net (20)
e Projection tricks to O(L): Linformer ('20)
e Math tricks to O(L): Performer (‘20)
e Sparse interactions: Big Bird (‘20)
e Deeper transformers: DeepNet ('22)

Transformer for Images

e Vision Transformer ('21)
e Decompose an image to 16x16 patches and then apply transformer encoder

Transformer Encoder

A

L x o

Vision Transformer (ViT)

MLP
Head

Norm
Transformer Encoder

| |
s~ 60 00)g)) 08 o)

* Extra learnable

GIE

Multi-Head
Attention

[class] embedding Lmear PI'O_]CC(IOI‘I of Flattened Patches
NEE I I "J [Nom
Mﬂl—*ﬁ..mﬁwWﬁE .

Embedded
Patches

Transformer for Images

e Swin Transformer ('21)
e Build hierachical feature maps at different resolution
e Self-attention only within each block
e Shifted block partitions to encode information between blocks

segmentation ' '
classification detection ... classification
t t Layer | Layer I+1
e 4 o =7 7/ B s B
72 g7 16 16x ki
// = // // 7/ /f L /J 7/ // o A local window to
- perform self-attention
D //[7 5 8x & Z / / % - 3
y——— > a2 P T e 16 - ; D
L/ o7z L= e 1 ' 118 o - : - A patch
L i s i 4 16x
oz, f i Figure 2. An illustration of the shifted window approach for com-
LT T

(a) Swin Transformer (ours) (b) ViT

CNN vs. RNN vs. Attention

Convolution Recurrence Self-Attention

T = % =& & F LR B B e T B o
cat

l

The cat sat on the mat The sat on the mat The cat sat on the mat

Summary

e Language model & sequence to sequence model:
e Fundamental ideas and methods for sequence modeling

e Attention mechanism
e So far the most successful idea for sequence data in deep learning
e A scale/order-invariant representation
e Transformer: a fully attention-based architecture for sequence data
e Transformer + Pretraining: the core idea in today’s NLP tasks

e LSTM is still useful in lightweight scenarios

