
Recurrent Neural
Networks

Recurrent Neural Network

• : hidden state
• : input
• : output
•
• : initial state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

Fully-connect NN vs. RNN
• RNN can be viewed as repeated applying fully-connected NNs
•

•
• are activation functions (sigmoid, ReLU, tanh, etc)

ht = σ1(W (1)Xt + W (11)ht−1 + b(1))
Yt = σ2(W (2)ht + b(2))
σ1, σ2

XT

Practical issues of RNN

Linear RNN derivation

if i cc k

Amoy fully Ll

6121 2 Wall exsman

he W yet W hey ha forgets Xi

ha well th f w ha
W Xu t w w M Xp two had

mi k
yall W XiW that Ear3 exponential

tamale I am w ext lase

I exp shay
cannot capture
long termmemory

Practical issues of RNN: training

Gradient explosion and gradient vanishing
6121 non linear

a Ze W he it w Xt ya output
ht 6 Zt Drilabel
LRO L YR DK

FI Liwa Ti G'Re
The EY

or small
forgetting problem

if 64 74

Techniques for avoiding gradient explosion

• Gradient clipping

• Identity initialization

• Truncated backprop through time
• Only backprop for a few steps

ThresholdET it 110 Lil a threshold
of thud Oh

11041

Preserve Long-Term Memory

• Difficult for RNN to preserve long-term memory
• The hidden state is constantly being written (short-term memory)
• Use a separate cell to maintain long-term memory

ht

ft
a

htt

Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, ’97)
• RNN architecture for learning long-term dependencies
• : layer with sigmoid activation σ

uob fi

Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, ’97)
• Core idea: maintain separate state and cell (memory)
• : full update every step
• : only partially update through gates

• layer outputs importance () for each entry and only modify those
entries of

ht ct
ht
ct

σ [0,1]
ct

top

Long Short-Term Memory Network

Forget gate
• outputs whether we want to “forget” things in

• Compute (element-wise)
• : want to forget
• : we want to keep the information in

ft
ft ct

ct−1 ⊙ ft
ft(i) → 0 ct(i)
ft(i) → 1 ct(i)

I

Long Short-Term Memory Network

Input gate
• extracts useful information from to update memory

• : information from to update memory
• : which dimension in the memory should be updated by

• : we want to use the information in to update memory
• : should not contribute to memory

it
it Xt

c̃t Xt
it Xt

it(j) → 1 c̃t(j)
it(t) → 0 c̃t(j)

E

Long Short-Term Memory Network

Memory update
•
• forget gate; input date
• : drop useless information in old memory
• : add selected new information from current input

ct = ft ⊙ ct−1 + it ⊙ c̃t
ft it
ft ⊙ ct−1
it ⊙ c̃t

Long Short-Term Memory Network

Output gate
• Next hidden state

• : non-linear transformation over all past information
• : choose important dimensions for the next state

• is important for the next state
• is not important

ot
ht = ot ⊙ tanh(ct)

tanh(ct)
ot

ot(j) → 1 : tanh(ct(j))
ot(j) → 0 : tanh(ct(j))

In

0

Long Short-Term Memory Network

•
•
•

ht = ot ⊙ tanh(ct)
ct = ft ⊙ ct−1 + it ⊙ c̃t
Yt = g(ht)

Remarks:
1. No more matrix multiplications for
2. LSTM does not have guarantees for gradient explosion/vanishing
3. LSTM is the dominant architecture for sequence modeling from ’13 - ’16.
4. Why tanh

ct
in

LSTM Variant

Peephold Connections (Gers & Schmidhuber ’00)
• Allow gates to take in information ct

8

LSTM Variant

Simplified LSTM
• Assume
• Only two gates are needed: fewer parameters

it = 1 − ft

LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. ’14)
• Merge and : much fewer parameters ht ct

forgetgate

LSTM application: language model

• Autoregressive language model:
• : a sentence
• Sequential generation

• LSTM language model
• : word at position .
• : softmax over all words

• Data: a collection of texts:
• Wiki

P(X; θ) = ΠL
t=1P(Xt ∣ Xi<t; θ)

X

Xt t
Yt

LSTM application: text classification

Bi-directional LSTM and them run softmax on the final hidden state.

Attention Mechanism

Machine Translation

• Before 2014: Statistical Machine Learning (SMT)
• Extremely complex systems that require massive human efforts
• Separately designed components
• A lot of feature engineering
• Lots of linguistic domain knowledge and expertise

• Before 2016:
• Google Translate is based on statistical machine learning

• What happened in 2014?
• Neural machine translation (NMT)

tally

Sequence to Sequence Model

• Neural Machine Translation (NMT)
• Learning to translate via a single end-to-end neural network.
• Source language sentence , target language sentence

• Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)
• Two RNNs: and
• Encoder :

• Takes as input, and output the initial hidden state for decoder
• Can use bidirectional RNN

• Decoder :
• It takes in the hidden state from to generate
• Can use autoregressive language model

X Y = f(X; θ)

fenc fdec
fenc
X

fdec
fenc Y

F
X h h

h Y

Sequence to Sequence Model

Training Sequence to Sequence Model

• Collect a huge paired dataset and train it end-to-end via BPTT
• Loss induced by MLE P(Y |X) = P(Y | fenc(X))

Deep Sequence to Sequence Model

• Stacked seq2seq model

Machine Translation

• 2016: Google switched Google Translate from SMT to NMT

Alignment

• Alignment: the word-level correspondence between X and Y
• Can have complex long-term dependencies

Issue in Seq2Seq

• Alignment: the word-level correspondence between X and Y
• The information bottleneck due to the hidden state
• We want each to also focus on some that it is aligned with

h
Yt Xi

Seq2Seq with Attention

• NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15)
• Core idea:

• When decoding , consider both hidden states and alignment:
• Hidden state:
• Alignment: connect to a portion of

• When portion of to focus on?
• Learn a softmax weight over : attention distribution
• : how much attention to put on word

• Attention output

• Use and to compute

Yt
ht = fdec(Yi<t)

X
X

X Patt
Patt(Xi |ht) Xi

hatt = ∑
i

fenc(Xi |Xj<i) ⋅ Patt(Xi |ht−1)

ht−1 hatt Yt and

Seq2Seq with Attention

I
I

embedding

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Éiiii

in 9 it 94

Seq2Seq with Attention

Seq2Seq with Attention
I 6Want a b

yet
Tho

Seq2Seq with Attention

y

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Summary
• Input sequence , encoder , and decoder
• produces hidden states
• On time step , we have decoder hidden state

• Compute attention score
• Compute attention distribution

• Attention output:

•
• Sample an output using both and

X fenc fdec
fenc(X) henc

1 , henc
2 , …, henc

N
t ht

ei = h⊤
t henc

i
αi = Patt(Xi) = soimax(ei)

henc
att = ∑

i
αihenc

i

Yt ∼ g(ht, henc
att ; θ)

ht henc
att

Attention

• It significantly improves NMT.
• It solves the bottleneck problem and the long-term dependency issue.
• Also helps gradient vanishing problem.
• Provides some interpretability

• Understanding which word the RNN encoder focuses on

• Attention is a general technique
• Given a set of vector values and vector query
• Attention computes a weighted sum of values depending on

Other use cases:
• Attention can be viewed as a module.
• In encoder and decoder (more on this later)
• A representation of a set of points

• Pointer network (Vinyals, Forunato, Jaitly ’15)
• Deep Sets (Zaheer et al., ’17)

• Convolutional neural networks
• To include non-local information in CNN (Non-local network, ’18)

Vi q
q

III AI

Attention

• Representation learning:
• A method to obtain a fixed representation corresponding to a query from

an arbitrary set of representations
• Attention distribution:

• Attention output:

• Attent variant:

• Multiplicative attention: , is a weight matrix

• Additive attention:

q
{Vi}

αi = soimax(f(vi, q))
vatt = ∑

i
αivi

f(vi, q)
f(vi, q) = q⊤Whi W

f(vi, q) = u⊤tanh(W1vi + W2q)
r

Key-query-value attention

• Obtain from

• ; ; (position encoding omitted)

• are learnable weight matrices

•

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = soimax(q⊤
i kj); outi = ∑

k
αi, jvj

Attention is all you need (Vsawani ’17)

• A pure attention-based architecture for sequence modeling
• No RNN at all!

• Basic component: self-attention,
• uses attention on entire sequence
• computed from and the attention output

• Computing
• Key , value , query from

•

• Attention distribution

•
Attention output

•

Y = fSA(X; θ)
Xt X
Yt Xt

Yt
kt vt qt Xt
(kt, vt, qt) = g1(Xt; θ)

αt, j = soimax(q⊤
t kj)

outt = ∑
j

αt, jvj

Yt = g2(outt; θ)

Issues of Vanilla Self-Attention

• Attention is order-invariant

• Lack of non-linearities
• All the weights are simple weighted average

• Capability of autoregressive modeling
• In generation tasks, the model cannot “look at the future”
• e.g. Text generation:

• can only depend on
• But vanilla self-attention requires the entire sequence

Yt Xi<t

Position Encoding

• Vanilla self-attention
•

•

•
Attention output

• Idea: position encoding:
• : an embedding vector (feature) of position
•

• In practice: Additive is sufficient: ;

• is only included in the first layer

(kt, vt, qt) = g1(Xt; θ)
αt, j = soimax(q⊤

t kj)
outt = ∑

j
αt, jvj

pi i
(kt, vt, qt) = g1([Xt, pt]; θ)

kt ← k̃t + pt, qt ← q̃t + pt, vt ← ṽt + pt

(k̃t, ṽt, q̃t) = g1(Xt; θ)

pt

Position Encoding

 design 1: Sinusoidal position representation
• Pros:

• simple
• naturally models “relative position”
• Easily applied to long sequences

• Cons:
• Not learnable
• Generalization poorly to sequences longer than training data

pt

Position Encoding

 design 2: Learned representation

• Assume maximum length , learn a matrix , is a column of
• Pros:

• Flexible
• Learnable and more powerful

• Cons:
• Need to assume a fixed maximum length
• Does not work at all for length above

• design 3: Relative position representation (Shaw, Uszkoreit, Vaswani ’18)

pt

L p ∈ ℝd×T pt p

L
L

pt

Combine Self-Attention with Nonlinearity

• Vanilla self-attention
• No element-wise activation (e.g., ReLU, tanh)
• Only weighted average and softmax operator

• Fix:
• Add an MLP to process
•
• Usually do not put activation layer before softmaax

outi
mi = MLP(outi) = W2ReLU(W1outi + b1) + b2

Masked Attention

• In language model decoder:
• cannot look at future

• Masked attention
• Compute as usuall

• Mask out by setting
•
• is a fixed 0/1 mask matrix

• Then compute
• Remarks:

• for full self-attention
• Set for arbitrary dependency ordering

P(Yt |Xi<t)
outt Xi>t

ei, j = q⊤
i kj

ei>j ei>j = − ∞
e ⊙ (1 − M) ← − ∞
M

αi = soimax(ei)

M = 1
M

Transformer

Transformer-based sequence-to-sequence modeling

Key-query-value attention

• Obtain from

• ; ; (position encoding omitted)

• are learnable weight matrices

•

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = soimax(q⊤
i kj); outi = ∑

k
αi, jvj

Multi-headed attention

• Standard attention: single-headed attention
• ,
• We only look at a single position with

high
• What if we want to look at different for

different reasons?
• Idea: define separate attention heads

• different attention distributions, keys,
values, and queries

• for

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = soimax((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jvℓ

j

Multi-headed attention

• Standard attention: single-headed attention
• ,
• We only look at a single position with

high
• What if we want to look at different for

different reasons?
• Idea: define separate attention heads

• different attention distributions, keys,
values, and queries

• for

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = soimax((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jvℓ

j

Transformer

Transformer-based sequence-to-sequence modeling

• Basic building blocks: self-attention
• Position encoding
• Post-processing MLP
• Attention mask

• Enhancements:
• Key-query-value attention
• Multi-headed attention
• Architecture modifications:

• Residual connection
• Layer normalization

Transformer

Machine translation with transformer

Transformer

• Limitations of transformer: Quadratic computation cost
• Linear for RNNs
• Large cost for large sequence length, e.g.,

• Follow-ups:
• Large-scale training: transformer-XL; XL-net (‘20)
• Projection tricks to : Linformer ('20)
• Math tricks to : Performer (‘20)
• Sparse interactions: Big Bird (‘20)
• Deeper transformers: DeepNet (’22)

L > 104

O(L)
O(L)

Transformer for Images

• Vision Transformer (’21)
• Decompose an image to 16x16 patches and then apply transformer encoder

Transformer for Images

• Swin Transformer (’21)
• Build hierachical feature maps at different resolution

• Self-attention only within each block
• Shifted block partitions to encode information between blocks

CNN vs. RNN vs. Attention

Summary

• Language model & sequence to sequence model:
• Fundamental ideas and methods for sequence modeling

• Attention mechanism
• So far the most successful idea for sequence data in deep learning
• A scale/order-invariant representation
• Transformer: a fully attention-based architecture for sequence data
• Transformer + Pretraining: the core idea in today’s NLP tasks

• LSTM is still useful in lightweight scenarios

