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Recurrent Neural Network

• : hidden state 
• : input 
• : output 
•  
• : initial state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

Fully-connect NN vs. RNN 
• RNN can be viewed as repeated applying fully-connected NNs 
•  

•  
•  are activation functions (sigmoid, ReLU, tanh, etc)

ht = σ1(W (1)Xt + W (11)ht−1 + b(1))
Yt = σ2(W (2)ht + b(2))
σ1, σ2
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Practical issues of RNN

Linear RNN derivation 
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Practical issues of RNN: training

Gradient explosion and gradient vanishing 
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Techniques for avoiding gradient explosion

• Gradient clipping 

• Identity initialization 

• Truncated backprop through time 
• Only backprop for a few steps 
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Preserve Long-Term Memory

• Difficult for RNN to preserve long-term memory 
• The hidden state  is constantly being written (short-term memory) 
• Use a separate cell to maintain long-term memory 
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Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, ’97) 
• RNN architecture for learning long-term dependencies 
• : layer with sigmoid activation σ
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Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, ’97) 
• Core idea: maintain separate state  and cell  (memory) 
• : full update every step 
• : only partially update through gates 

•  layer outputs importance ( ) for each entry and only modify those 
entries of  

ht ct
ht
ct

σ [0,1]
ct

top



Long Short-Term Memory Network

Forget gate  
•  outputs whether we want to “forget” things in  

• Compute  (element-wise) 
• : want to forget  
• : we want to keep the information in  

ft
ft ct

ct−1 ⊙ ft
ft(i) → 0 ct(i)
ft(i) → 1 ct(i)

I



Long Short-Term Memory Network

Input gate  
•  extracts useful information from  to update memory 

• : information from  to update memory 
• : which dimension in the memory should be updated by  

• : we want to use the information in  to update memory 
• :  should not contribute to memory 

it
it Xt

c̃t Xt
it Xt

it( j) → 1 c̃t( j)
it(t) → 0 c̃t( j)

E



Long Short-Term Memory Network

Memory update 
•  
•  forget gate;  input date 
• : drop useless information in old memory 
• : add selected new information from current input 

ct = ft ⊙ ct−1 + it ⊙ c̃t
ft it
ft ⊙ ct−1
it ⊙ c̃t



Long Short-Term Memory Network

Output gate  
• Next hidden state  

• : non-linear transformation over all past information 
• : choose important dimensions for the next state 

•  is important for the next state 
•  is not important 

ot
ht = ot ⊙ tanh(ct)

tanh(ct)
ot

ot( j) → 1 : tanh(ct( j))
ot( j) → 0 : tanh(ct( j))

In
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Long Short-Term Memory Network

•  
•  
•  

ht = ot ⊙ tanh(ct)
ct = ft ⊙ ct−1 + it ⊙ c̃t
Yt = g(ht)

Remarks: 
1. No more matrix multiplications for  
2. LSTM does not have guarantees for gradient explosion/vanishing 
3. LSTM is the dominant architecture for sequence modeling from ’13 - ’16. 
4. Why tanh 
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LSTM Variant

Peephold Connections (Gers & Schmidhuber ’00) 
• Allow gates to take in  information ct
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LSTM Variant

Simplified LSTM 
• Assume  
• Only two gates are needed: fewer parameters 

it = 1 − ft



LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. ’14) 
• Merge  and : much fewer parameters ht ct

forgetgate



LSTM application: language model

• Autoregressive language model:  
• : a sentence 
• Sequential generation 

• LSTM language model 
• : word at position . 
• : softmax over all words 

• Data: a collection of texts: 
• Wiki 

P(X; θ) = ΠL
t=1P(Xt ∣ Xi<t; θ)

X

Xt t
Yt



LSTM application: text classification

Bi-directional LSTM and them run softmax on the final hidden state. 



Attention Mechanism



Machine Translation

• Before 2014: Statistical Machine Learning (SMT) 
• Extremely complex systems that require massive human efforts 
• Separately designed components 
• A lot of feature engineering 
• Lots of linguistic domain knowledge and expertise 

• Before 2016: 
• Google Translate is based on statistical machine learning 

• What happened in 2014? 
• Neural machine translation (NMT)

tally



Sequence to Sequence Model

• Neural Machine Translation (NMT) 
• Learning to translate via a single end-to-end neural network. 
• Source language sentence , target language sentence  

• Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14) 
• Two RNNs:  and  
• Encoder : 

• Takes  as input, and output the initial hidden state for decoder 
• Can use bidirectional RNN 

• Decoder : 
• It takes in the hidden state from  to generate  
• Can use autoregressive language model

X Y = f(X; θ)

fenc fdec
fenc
X

fdec
fenc Y

F
X h h

h Y



Sequence to Sequence Model



Training Sequence to Sequence Model 

• Collect a huge paired dataset and train it end-to-end via BPTT 
• Loss induced by MLE P(Y |X ) = P(Y | fenc(X ))



Deep Sequence to Sequence Model 

• Stacked seq2seq model



Machine Translation

• 2016: Google switched Google Translate from SMT to NMT



Alignment

• Alignment: the word-level correspondence between X and Y 
• Can have complex long-term dependencies



Issue in Seq2Seq

• Alignment: the word-level correspondence between X and Y 
• The information bottleneck due to the hidden state  
• We want each  to also focus on some  that it is aligned with

h
Yt Xi



Seq2Seq with Attention

• NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15) 
• Core idea: 

• When decoding , consider both hidden states and alignment: 
• Hidden state:  
• Alignment: connect to a portion of  

• When portion of  to focus on? 
• Learn a softmax weight over : attention distribution  
• : how much attention to put on word  

• Attention output  

• Use  and  to compute 

Yt
ht = fdec(Yi<t)

X
X

X Patt
Patt(Xi |ht) Xi

hatt = ∑
i

fenc(Xi |Xj<i) ⋅ Patt(Xi |ht−1)

ht−1 hatt Yt and



Seq2Seq with Attention

I
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embedding



Seq2Seq with Attention



Seq2Seq with Attention



Seq2Seq with Attention



Seq2Seq with Attention
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Seq2Seq with Attention



Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention



Seq2Seq with Attention



Seq2Seq with Attention



Seq2Seq with Attention

Summary 
• Input sequence , encoder , and decoder  
•  produces hidden states  
• On time step , we have decoder hidden state  

• Compute attention score  
• Compute attention distribution  

• Attention output:  

•  
• Sample an output using both  and 

X fenc fdec
fenc(X ) henc

1 , henc
2 , …, henc

N
t ht

ei = h⊤
t henc

i
αi = Patt(Xi) = soimax(ei)

henc
att = ∑

i
αihenc

i

Yt ∼ g(ht, henc
att ; θ)

ht henc
att



Attention

• It significantly improves NMT. 
• It solves the bottleneck problem and the long-term dependency issue. 
• Also helps gradient vanishing problem. 
• Provides some interpretability 

• Understanding which word the RNN encoder focuses on  

• Attention is a general technique 
• Given a set of vector values  and vector query  
• Attention computes a weighted sum of values depending on  

Other use cases: 
• Attention can be viewed as a module. 
• In encoder and decoder (more on this later) 
• A representation of a set of points 

• Pointer network (Vinyals, Forunato, Jaitly ’15)  
• Deep Sets (Zaheer et al., ’17) 

• Convolutional neural networks 
• To include non-local information in CNN (Non-local network, ’18)

Vi q
q
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Attention

• Representation learning: 
• A method to obtain a fixed representation corresponding to a query  from 

an arbitrary set of representations  
• Attention distribution:  

• Attention output:  

• Attent variant:  

• Multiplicative attention: ,  is a weight matrix 

• Additive attention: 

q
{Vi}

αi = soimax( f(vi, q))
vatt = ∑

i
αivi

f(vi, q)
f(vi, q) = q⊤Whi W

f(vi, q) = u⊤tanh(W1vi + W2q)
r



Key-query-value attention

• Obtain  from  

• ; ;  (position encoding omitted) 

•  are learnable weight matrices 

•  

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = soimax(q⊤
i kj); outi = ∑

k
αi, jvj



Attention is all you need (Vsawani ’17)

• A pure attention-based architecture for sequence modeling 
• No RNN at all! 

• Basic component: self-attention,  
•  uses attention on entire  sequence 
•  computed from  and the attention output 

• Computing  
• Key , value , query  from  

•  

• Attention distribution  

•
Attention output  

•  

Y = fSA(X; θ)
Xt X
Yt Xt

Yt
kt vt qt Xt
(kt, vt, qt) = g1(Xt; θ)

αt, j = soimax(q⊤
t kj)

outt = ∑
j

αt, jvj

Yt = g2(outt; θ)



Issues of Vanilla Self-Attention

• Attention is order-invariant 

• Lack of non-linearities 
• All the weights are simple weighted average 

• Capability of autoregressive modeling 
• In generation tasks, the model cannot “look at the future” 
• e.g. Text generation: 

•  can only depend on  
• But vanilla self-attention requires the entire sequence

Yt Xi<t



Position Encoding

• Vanilla self-attention 
•  

•  

•
Attention output  

• Idea: position encoding: 
• : an embedding vector (feature) of position  
•  

• In practice: Additive is sufficient: ; 

 

•  is only included in the first layer

(kt, vt, qt) = g1(Xt; θ)
αt, j = soimax(q⊤

t kj)
outt = ∑

j
αt, jvj

pi i
(kt, vt, qt) = g1([Xt, pt]; θ)

kt ← k̃t + pt, qt ← q̃t + pt, vt ← ṽt + pt

(k̃t, ṽt, q̃t) = g1(Xt; θ)

pt



Position Encoding

 design 1: Sinusoidal position representation 
• Pros:  

• simple 
• naturally models “relative position” 
• Easily applied to long sequences 

• Cons: 
• Not learnable 
• Generalization poorly to sequences longer than training data

pt



Position Encoding

 design 2: Learned representation 

• Assume maximum length , learn a matrix ,  is a column of  
• Pros:  

• Flexible 
• Learnable and more powerful 

• Cons: 
• Need to assume a fixed maximum length  
• Does not work at all for length above  

•  design 3: Relative position representation (Shaw, Uszkoreit, Vaswani ’18) 

pt

L p ∈ ℝd×T pt p

L
L

pt



Combine Self-Attention with Nonlinearity

• Vanilla self-attention 
• No element-wise activation (e.g., ReLU, tanh) 
• Only weighted average and softmax operator 

• Fix: 
• Add an MLP to process  
•  
• Usually do not put activation layer before softmaax 

outi
mi = MLP(outi) = W2ReLU(W1outi + b1) + b2



Masked Attention

• In language model decoder:  
•   cannot look at future  

• Masked attention 
• Compute  as usuall 

• Mask out  by setting  
•  
•  is a fixed 0/1 mask matrix 

• Then compute  
• Remarks: 

•  for full self-attention 
• Set  for arbitrary dependency ordering 

P(Yt |Xi<t)
outt Xi>t

ei, j = q⊤
i kj

ei>j ei>j = − ∞
e ⊙ (1 − M ) ← − ∞
M

αi = soimax(ei)

M = 1
M



Transformer

Transformer-based sequence-to-sequence modeling 



Key-query-value attention

• Obtain  from  

• ; ;  (position encoding omitted) 

•  are learnable weight matrices 

•  

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = soimax(q⊤
i kj); outi = ∑

k
αi, jvj



Multi-headed attention

• Standard attention: single-headed attention 
• ,  
• We only look at a single position  with 

high  
• What if we want to  look at different  for 

different reasons? 
• Idea: define  separate attention heads 

•  different attention distributions, keys, 
values, and queries 

•  for  

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = soimax((qℓ

i )⊤kℓ
j ); outℓ

i = ∑
j

αℓ
i, jvℓ

j



Multi-headed attention
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Transformer

Transformer-based sequence-to-sequence modeling 

• Basic building blocks: self-attention 
• Position encoding 
• Post-processing MLP 
• Attention mask 

• Enhancements: 
• Key-query-value attention 
• Multi-headed attention 
• Architecture modifications: 

• Residual connection 
• Layer normalization 



Transformer

Machine translation with transformer 



Transformer

• Limitations of transformer: Quadratic computation cost 
• Linear for RNNs 
• Large cost for large sequence length, e.g.,  

• Follow-ups: 
• Large-scale training: transformer-XL; XL-net (‘20) 
• Projection tricks to : Linformer ('20) 
• Math tricks to : Performer (‘20) 
• Sparse interactions: Big Bird (‘20) 
• Deeper transformers: DeepNet (’22) 

L > 104

O(L)
O(L)



Transformer for Images

• Vision Transformer (’21) 
• Decompose an image to 16x16 patches and then apply transformer encoder 



Transformer for Images

• Swin Transformer (’21) 
• Build hierachical feature maps at different resolution 

• Self-attention only within each block 
• Shifted block partitions to encode information between blocks 



CNN vs. RNN vs. Attention



Summary

• Language model & sequence to sequence model: 
• Fundamental ideas and methods for sequence modeling 

• Attention mechanism 
• So far the most successful idea for sequence data in deep learning 
• A scale/order-invariant representation 
• Transformer: a fully attention-based architecture for sequence data 
• Transformer + Pretraining: the core idea in today’s NLP tasks 

• LSTM is still useful in lightweight scenarios 


