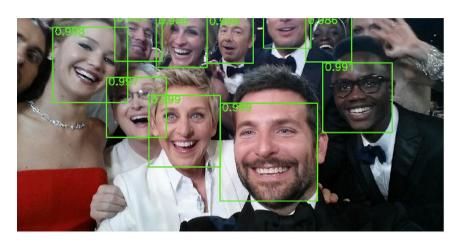
Convolutional Neural Networks

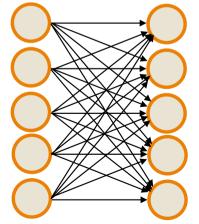
Neural Network Architecture

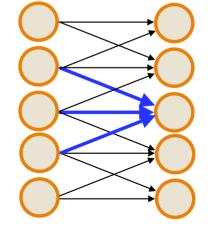
Objects are often localized in space so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.



VS.

Similarly, to identify edges or other local structure, it makes sense to only look at local information

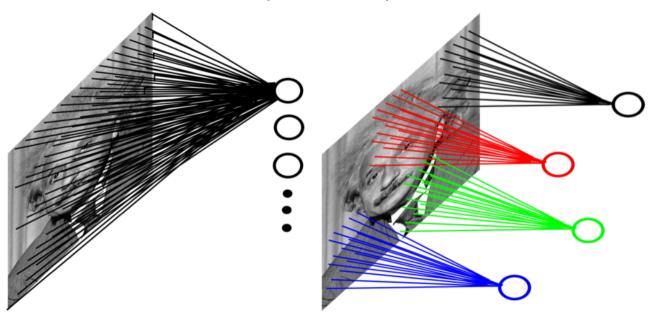




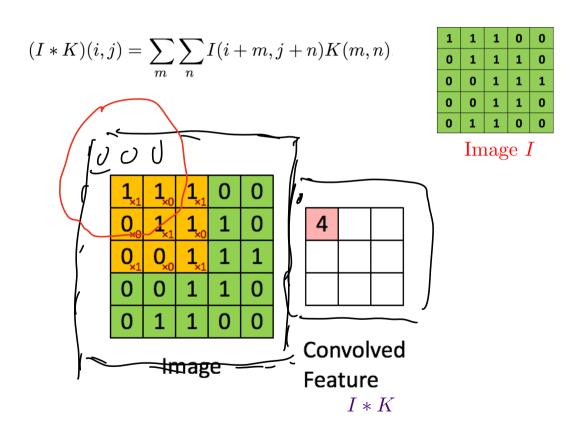
2d Convolution Layer

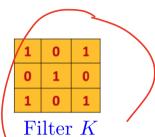
Example: 200x200 image

- Fully-connected, 400,000 hidden units = 16 billion parameters
- Locally-connected, 400,000 hidden units 10x10 fields = 40 million params
- Local connections capture local dependencies

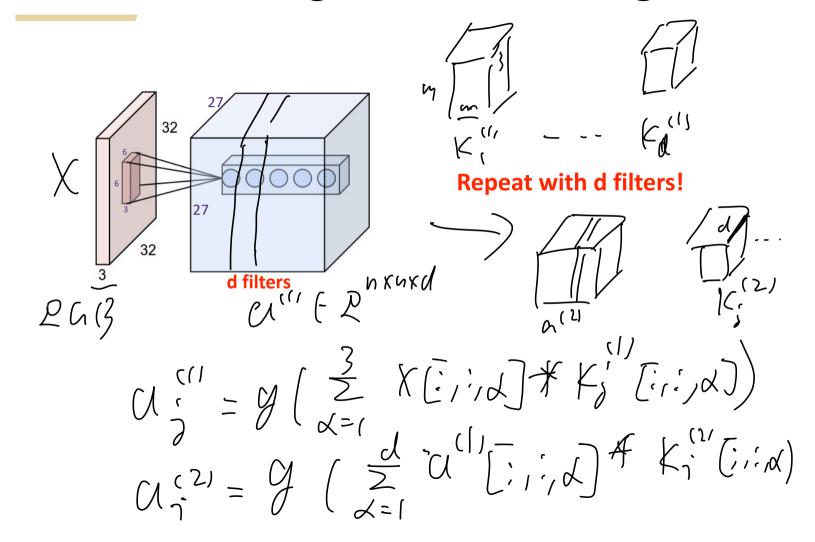


Convolution of images (2d convolution)



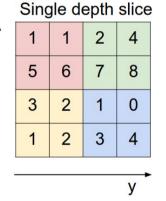


Stacking convolved images



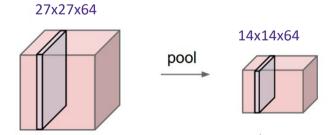
Pooling

Pooling reduces the dimension and can be interpreted as "This filter had a high response in this general region"

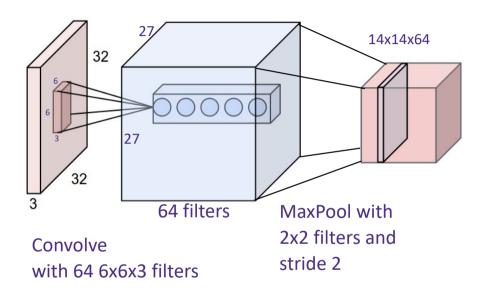


max pool with 2x2 filters and stride 2

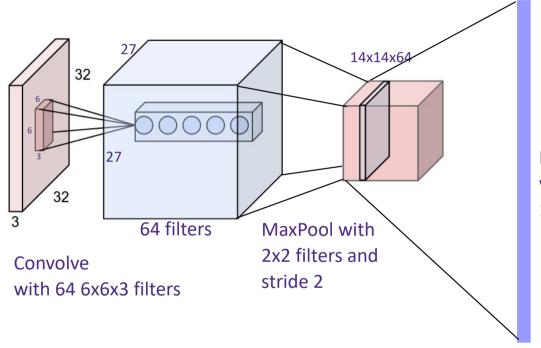
6	8
3	4



Pooling Convolution layer

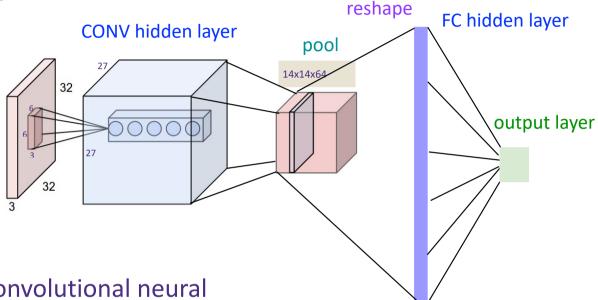


Flattening



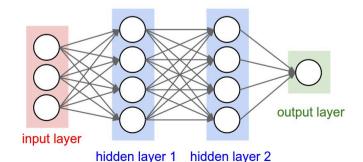
Flatten into a single vector of size 14*14*64=12544

Training Convolutional Networks

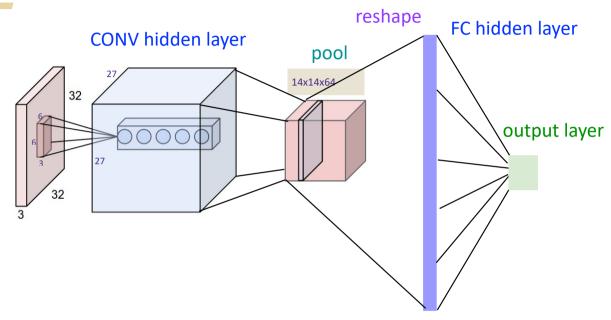


Recall: Convolutional neural networks (CNN) are just regular fully connected (FC) neural networks with some connections removed.

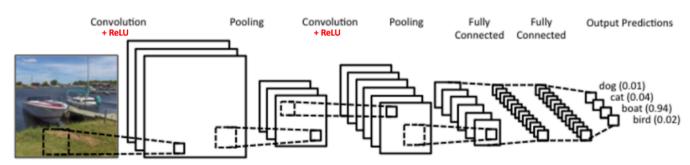
Train with SGD!



Training Convolutional Networks

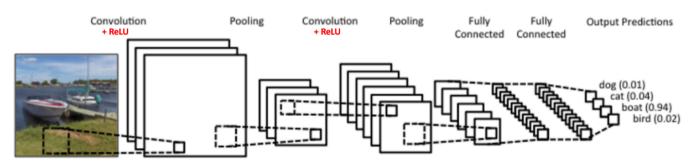


Real example network: LeNet





Real example network: LeNet



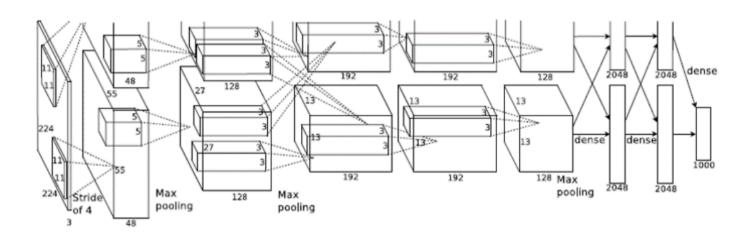
Famous CNNs

ImageNet Dataset

~14 million images, 20k classes

Deng et al. "Imagenet: a large scale hierarchical image database" '09

Breakthrough on ImageNet: ~the beginning of deep learning era



Krizhevsky, Sutskever, Hinton "ImageNet Claasification with Deep Convolutional Neural Networks", NIPS 2012.

8 layers, ~60M parameters

Top5 error: 18.2%

Techniques used:

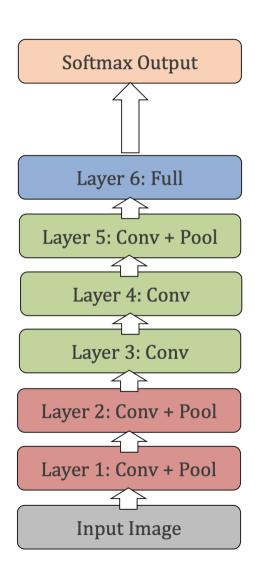
ReLU activation, overlapping pooling, dropout, ensemble (create 10 patches by cropping and average the predictions), data-augmentation (intensity of RGB channels)

Softmax Output Layer 7: Full Layer 6: Full Layer 5: Conv + Pool Layer 4: Conv Layer 3: Conv Layer 2: Conv + Pool Layer 1: Conv + Pool **Input Image**

Remove top fully-connected layer 7

Drop ~16 million parameters

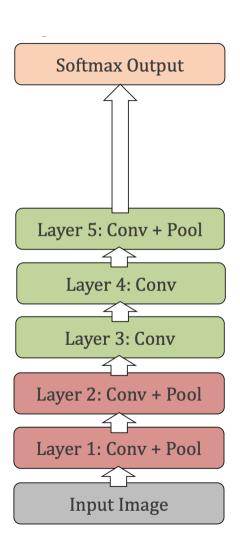
1.1% drop in performance



Remove both fully connected layers 6 and 7

Drop ~50 million parameters

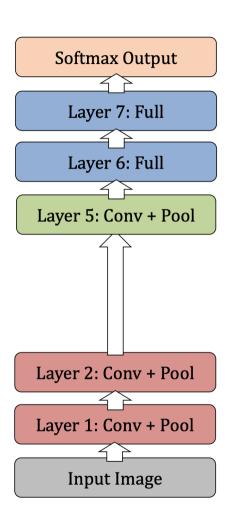
5.7% drop in performance



Remove upper convolutio / feature extractor layers (layer 3 and 4)

Drop ~1 million parameters

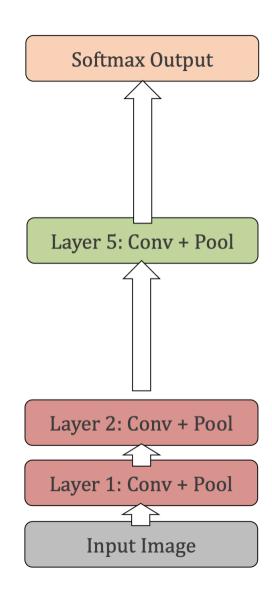
3% drop in performance



Remove top fully connected layer 6,7 and upper convolution layers 3,4.

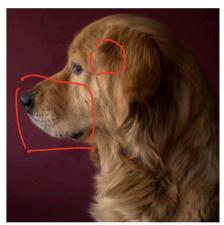
33.5% drop in performance.

Depth of the network is the key.



GoogLeNet

Motivation: multiscale nature of images

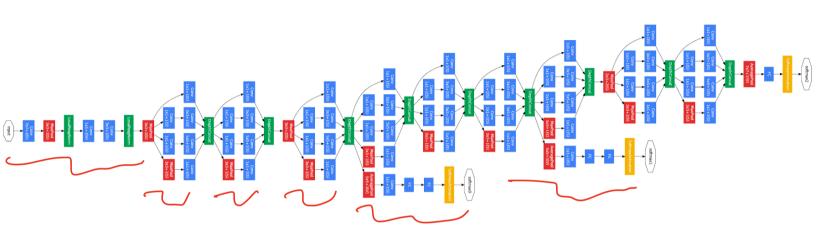


Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]

GoogLeNet

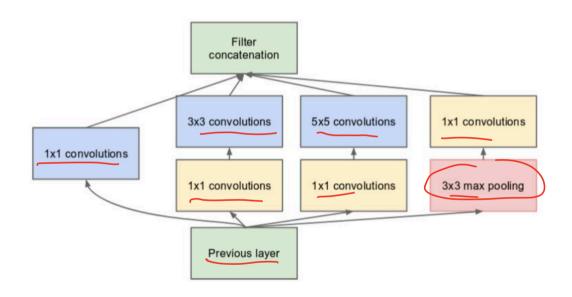


Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]

Inception Module



Multiple filter scales at each layer

Dimensionality reduction to keep computational requirements down

[Going Deep with Convolutions, Szegedy et al. '14]

Residual Networks

Motivation: extremely deep nets are hard to train (gradient explosion/vanishing)

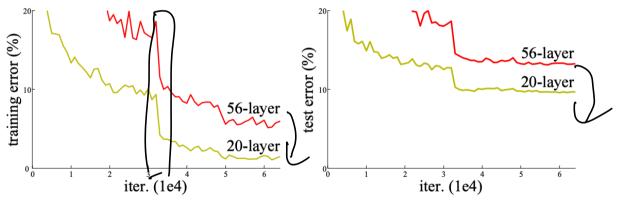
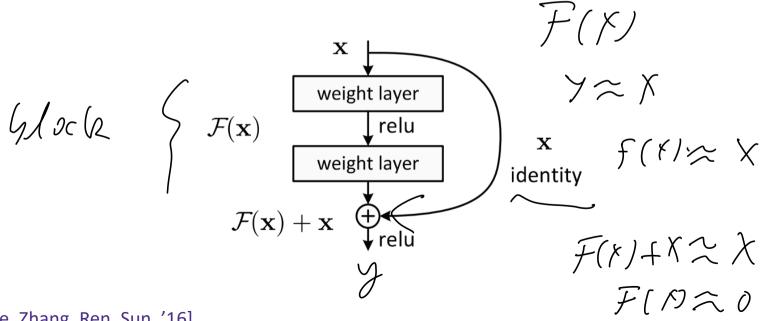


Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Residual Networks

Idea: identity shortcut, skip one or more layers.

Justification: network can easily simulate shallow network ($F \approx 0$), so performance should not degrade by going deeper.

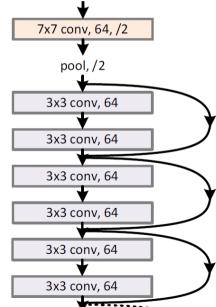


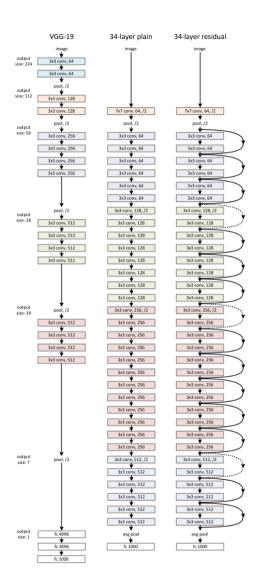
[He, Zhang, Ren, Sun, '16]

Residual Networks

- 3.57% top-5 error on ImageNet
- First deep network with > 100 layers.
- Widely used in many domains (AlphaGo)

Tuns tours



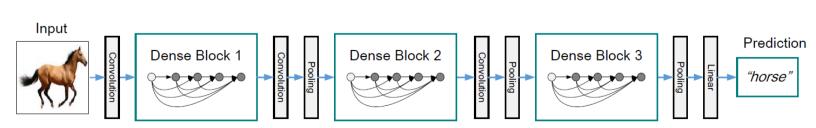


Densely Connected Network

Idea: explicit forward output of layer to all future layers (by concatenation)

Intuition: helps vanishing gradients, encourage reuse features (reduce parameter count)

Issues: network maybe too wide, need to be careful about memory consumption



[He, Zhang, Ren, Sun, '16]

Neural Architecture / Hyper-Parameter Search

Many design choices:

- Number of layers, width, kernel size, pooling, connections, etc.
- Normalization, learning rate, batch size, etc.

Strategies:

- Grid search
- Random search [Bergestra & Bengio '12]
 Bandit-based [Li et al. '16] and have parameter —) e www)
- Gradient-based (DARTS) [Liu et al. '19]
- Neural tangent kernel [Xu et al. '21]

Recurrent Neural Networks

Sequence Data

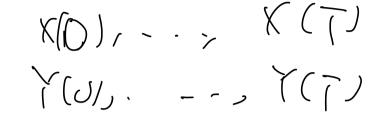
time sevics

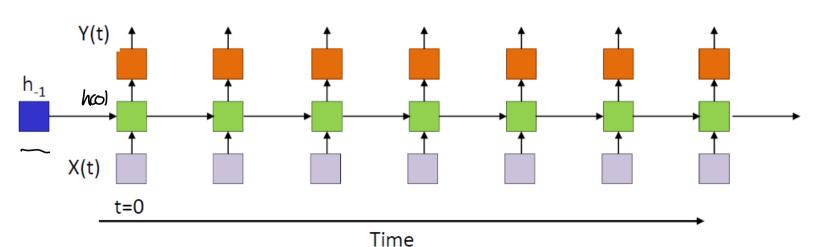
NCP

HMM / POMPP

State-Space Model

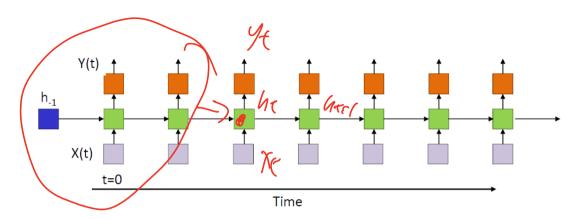
- h_t : hidden state
- X_t : input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state





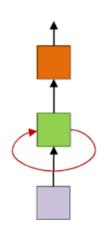
Recurrent Neural Network

- h_r : hidden state
- X_t : input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



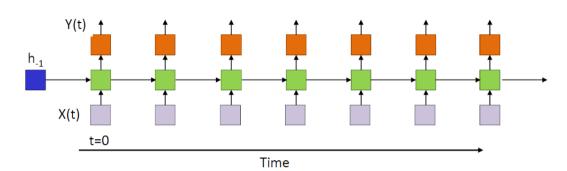
Fully-connect NN vs. RNN

- h_t : a vector summarizes all past inputs (a.k.a. "memory")
- h_{-1} affects the entire dynamics (typically set to zero)
- X_t affects all the outputs and states after t
- Y_t depends on $X_0, ..., X_t$



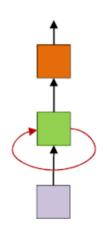
Recurrent Neural Network

- h_t : hidden state
- X_t : input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state

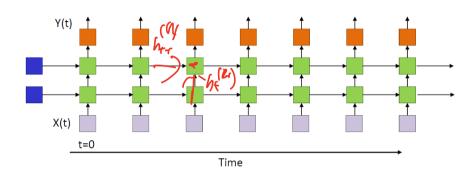


Fully-connect NN vs. RNN

- RNN can be viewed as repeated applying fully-connected NNs
- $h_t = \sigma_1(W^{(1)}X_t + W^{(11)}h_{t-1} + b^{(1)})$
- $Y_t = \sigma_2(W^{(2)}h_t + b^{(2)})$
- σ_1, σ_2 are activation functions (sigmoid, ReLU, tanh, etc)

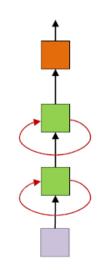


Recurrent Neural Network



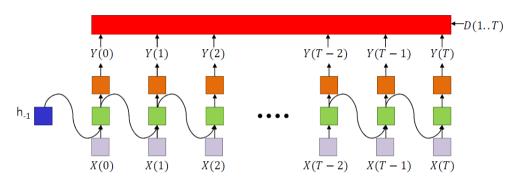
Stack K layers of fully-connected NN

- $h_t^{(k)}$: hidden state
- X_t : input
- Y_t : output
- $h_t^{(1)} = f_1^{(1)}(h_{t-1}^{(1)}, X_t; \theta)$
- $h_t^{(k)} = f_1^{(k)}(h_{t-1}^{(k)}, h_t^{(k-1)}; \theta)$
- $Y_t = f_2(h_t^{(K)}; \theta)$
- $h_{-1}^{(k)}$: initial states



Training Recurrent Neural Network

- h_t : hidden state
- X_t : input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



• Data: $\{(X_t, D_t)\}_{t=1}^T$ (RNN can handle more general data format)

Loss
$$L(\theta) = \sum_{t=1}^{I} \mathcal{E}(Y_t, D_t)$$

- ullet Goal: learn heta by gradient-based method
 - Back propagation

Back Propagation Through Time

•
$$h_t = \sigma_1(W^{(1)}X_t + W^{(11)}h_{t-1} + b^{(1)})$$

• $Y_t = \sigma_2(W^{(2)}h_t + b^{(2)})$

• $Z_t^{(1)}$: pre-activation of hidden state

$$(h_t = \sigma_1(Z_t^{(1)}))$$

 $(Y_t = \sigma_2(Z_t^{(2)}))$

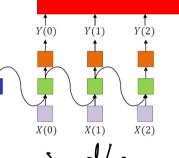
$$(Y_t = \sigma_2(Z_t^{(2)}))$$

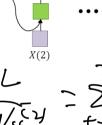
$$= \overline{\zeta}$$

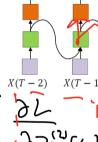
C) Start from DY(7)

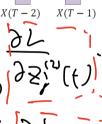
$$\frac{dL}{dz_{j}^{(v)}(T)} = \frac{dL}{dz_{j}^{(v)}(T)} \cdot \frac{dz_{j}^{(v)}(T)}{dz_{j}^{(v)}(T)}$$

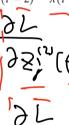
• $Z_{t}^{(2)}$: pre-activation of output

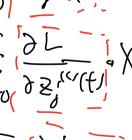












$$\frac{dL}{dw; u} + = \frac{dL}{d(i)} \cdot (i) \cdot (i)$$

Back Propagation Through Time

(4)
$$\frac{dL}{dh_{i}(T)} = \frac{2}{\lambda} \frac{dL}{dz_{i}^{(2)}(T)}, \frac{dL_{i}^{(2)}(T)}{dh_{i}(T)} = \frac{2}{\lambda} \frac{dL}{dz_{i}^{(2)}(T)}$$

 $\frac{dL}{dz_{i}^{\prime\prime}(7)} = \frac{dL}{dh_{i}(7)} \cdot \frac{dh_{i}(7)}{dz_{i}^{\prime\prime}(7)} = \frac{dL}{dh_{i}(7)} \cdot \frac{dh_{i}(7)}{dz_{i}^{\prime\prime}(7)}$

 $(2) \frac{dL}{du_{45}} (0) + \frac{dL}{dz_{5}^{(1)}(7-1)} e^{-h_{1}(7-1)}$

 $\frac{dL}{dW_{ij}^{(i)}} + \frac{dL}{dZ_{ij}^{(i)}(7)} \cdot \chi_{i}(7) \cdot \frac{dL}{dW_{ij}^{(i)}} + \frac{dL}{dZ_{ij}^{(i)}(7)} \cdot \chi_{i}(7)$

Back Propagation Through Time

3)
$$\frac{dL}{dL} = \sum_{i} W_{i} \frac{dL}{dL}$$

 $(3) \frac{dL}{dhi(7-1)} = \frac{2}{2} W_{7}^{(y)} \frac{dL}{dz_{1}^{(y)}(7-1)} + \frac{2}{2} W_{7}^{(11)} \frac{dL}{dz_{1}^{(y)}(7)}$

form hicT)

(5) dL dwij' += dl dzi'(7-1)

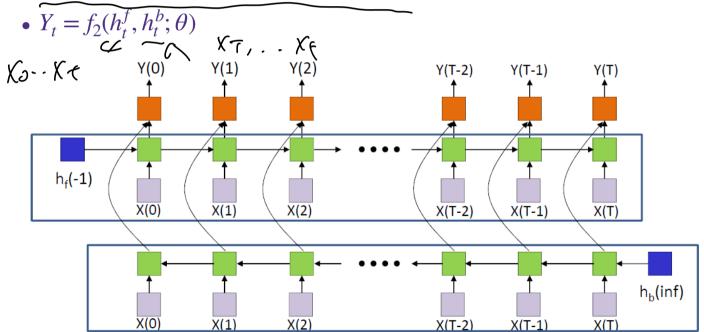
 $\frac{dL}{dw_{ii}} \leftarrow \frac{dL}{dz_{i}^{(0)}(7-i)}, h_{i}^{-}(7-2) \text{ reject}$

 $\frac{dL}{dz_{i}^{(i)}(7-1)} = \frac{dL}{dh_{i}(7-1)}, \frac{dh_{i}(7-1)}{dz_{i}^{(i)}(7-1)}$

Extensions

What if Y_t depends on the entire inputs?

- Biredictional RNN:
 - AN RNN for forward dependencies: t= 0,...,T
 - An RNN for backward dependencies: t= 1,...0



L(Yt, Dt)

Extensions

RNN for sequence classification (sentiment analysis)

- $Y = \max_{t} Y_{t}$
- Cross-entropy loss

