For approximation and optimization, neural network has no advantage over kernel. Why NN gives better performance: generalization.

- [Allen-Zhu and Li '20] Construct a class of functions  $\mathcal{F}$  such that y = f(x) for some  $f \in \mathcal{F}$ : • no kernel is sample-efficient; for all Keller

  - Exists a neural network that is sample-efficient.

Defin Kernel method is a linear method  
with an embedding 
$$\phi: \mathcal{R}^{d} \rightarrow \mathcal{H}$$
 Hibert space  
=) It turns an element  $f \in \mathcal{H}$  into a  
prediction  $\mathcal{Y} = \langle f, \phi(\kappa) \rangle$   
The method uses a samples,  $\{\chi_{i}\}_{i=1}^{n}$ ,  $\chi_{i} \in \mathcal{Y}_{i=1}^{n}$ ,  $\chi_{i} \in$ 

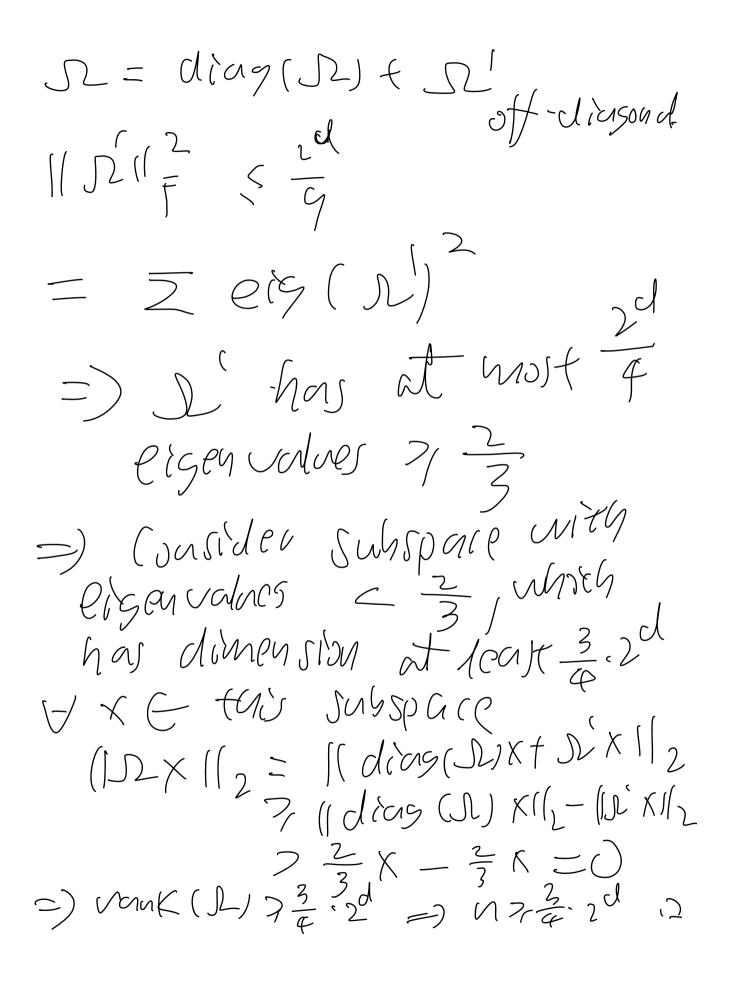
Thus: = I a class of functions CE(: 2)2? and a distribution in over Rd s.t. i) & Karnel method, & CEC given yi = C(Xi) if  $\mathbb{E}_{K-M}\left[\left((K) - \zeta f, \varphi(K) \right)^2\right] \leq \frac{1}{9}$ then 1172 d-1 I simple procedure s.t. it can adjut  $\gamma \gamma$ the three C as long as und this procedure can be simulated/approximated

Pf: M: unit on 
$$\{-1, 1\}^d$$
,  $2^d$  elements  
 $C = \int C_{\mathcal{G}^{-}(K)} = \prod_{s \in S} X_s$ ,  $S \subset \{1, \dots, d\}\}$   
part ii) choose a basis:  $\begin{pmatrix} -1 \\ \vdots \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ \vdots \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ \vdots \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ \vdots \\ -1 \end{pmatrix}$   
 $e_1 \quad e_2 \quad e_d$   
 $observe$   $Y_{3}^{-} = C(e_{5}), \quad 1f \quad 3 \in S \Rightarrow Y_{3}^{-} = f$   
 $g \leq S \Rightarrow Y_{3}^{-} = 1$   
 $g = \int Know$  whether is is in  $S \circ v$  not  
 $g = \int identify$   $S \Rightarrow C_{S}$ 

Paul  $\vec{n}$  ( $\vec{r}$ ) ( $\vec{r}$ )  $\vec{r}$  is a basis for  $\{f: \{4,1\}, -72\}$ with distribution by symmetry  $\vec{r}$  symmetry  $\vec{F}_{X nm} [C_S(K) \cdot (C_S^{-1}(K)] = \{0, 1\}, S = S^{-1}$ Goal: to compute  $\mathbb{E}_{X \sim M}\left[\left(C_{S}^{*}(K) - \angle f, f(K)\right)^{2}\right]$ Since  $f \in Spag(f(x_i))_{i=1}^{N}$  $=) f = \sum_{j=1}^{n} U_{i} \Phi(K_{j})$  $x \mapsto \sum_{s \in U} \lambda_{i,s} (S(k))$ 

=)  $\mathbb{E}_{Knm} \left[ \left( \sum_{s} (x) - \langle f, \phi(x) \rangle \right)^{2} \right]$  $= \mathbb{E}_{X^{n}M}\left[\left(C_{S^{*}}(X) - \sum_{\substack{j \in \mathcal{I} \\ S \in [\mathcal{I}]}} \sum_{\substack{j=1 \\ j=1}}^{N} \mathcal{U}_{j} \cdot \sum_{\substack{j \in \mathcal{I} \\ S \in [\mathcal{I}]}} \sum_{\substack{j=1 \\ j=1}}^{N} \mathcal{U}_{j} \cdot \sum_{\substack{j \in \mathcal{I} \\ S \in [\mathcal{I}]}} \sum_{\substack{j=1 \\ j=1 \\$  $= \left( \left[ -\frac{2}{2} \mathcal{U}_{i} \mathcal{H}_{i}, s^{*} \right]^{2} + \sum_{s \neq s^{*}} \left( \frac{2}{3} \mathcal{U}_{i} \mathcal{H}_{i}, s^{*} \right)^{2} \right)^{2}$ by assumption evor  $\leq \frac{1}{4}$ >> N72d-1  $= \int \left( \left[ - \sum_{j=1}^{N} Q(j_{j}) \int f^{*} \right]^{2} \leq \frac{1}{q} \right)^{2}$  $k = (\sum_{j \in I^{*}} (\sum_{j} (i \wedge i / S))^{2} \leq \frac{1}{2}$ 

Notartions: A: 2d K M  $(N \leq 2^{d})$ Asii = Diis A: uxzd  $A_{1}, S^{*} = (l_{1}, S^{*})$  $SL = \Lambda A : 2^{d} \times 2^{d} \text{ of } Vauk-n$  $(1 - 125*, 5*)^2 \leq \frac{5}{9} - 225*, 7^2$ ( )525,5×59 S F F\*  $\leq \overline{\mathcal{A}}$ Zd



# **Convolutional Neural Networks**



## **Multi-layer Neural Network**

$$a^{(1)} = x$$
  

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$
  

$$a^{(2)} = g(z^{(2)})$$
  

$$\vdots$$
  

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$
  

$$a^{(l+1)} = g(z^{(l+1)})$$
  

$$\vdots$$
  

$$\hat{y} = a^{(L+1)}$$
  

$$a^{(L+1)} = y(z^{(l+1)})$$
  

$$g(z) = \frac{1}{1 + e^{-z}}$$
  

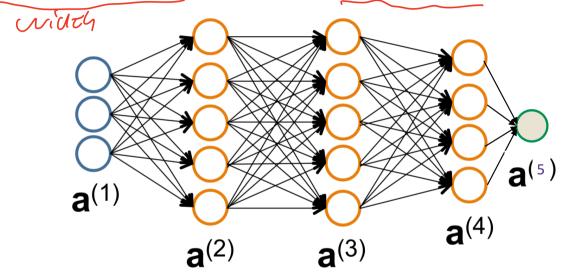
$$a^{(L+1)} = a^{(L+1)}$$

**Binary** Logistic Regression

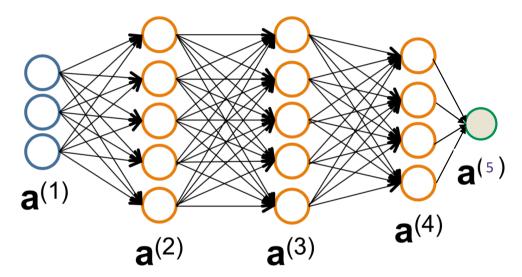
**a**<sup>(4)</sup>

**a**(5)

The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by **allowable edges**.



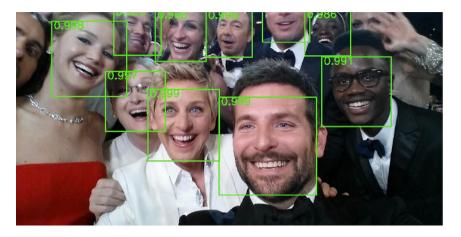
The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by **allowable edges**.



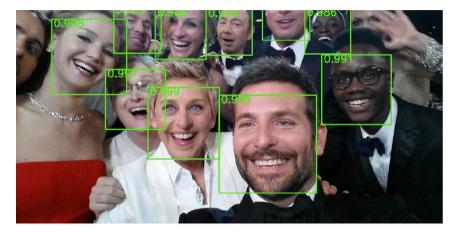
We say a layer is **Fully Connected (FC)** if all linear mappings from the current layer to the next layer are permissible.

$$\mathbf{a}^{(k+1)} = g(\Theta \mathbf{a}^{(k)})$$
 for any  $\Theta \in \mathbb{R}^{n_{k+1} \times n_k}$   
A lot of parameters!!  $n_1 n_2 + n_2 n_3 + \dots + n_L n_{L+1}$ 

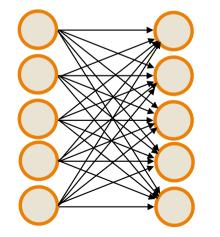
Objects are often **localized in space** so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.



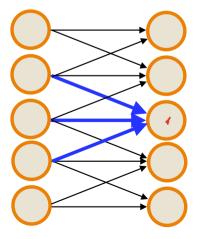
Objects are often **localized in space** so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.

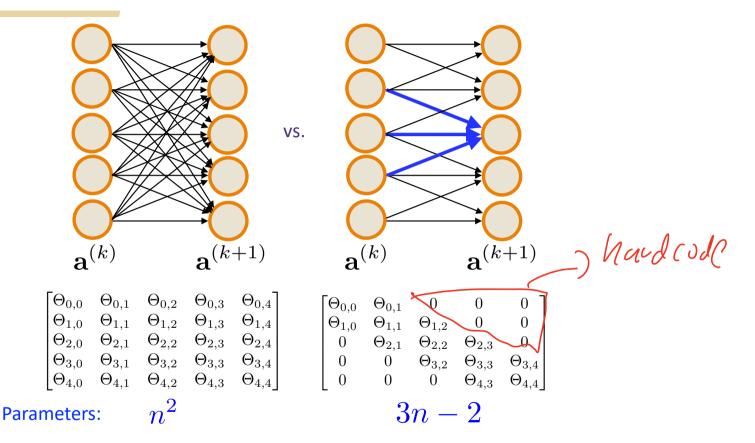


Similarly, to identify edges or other local structure, it makes sense to only look at **local information** 

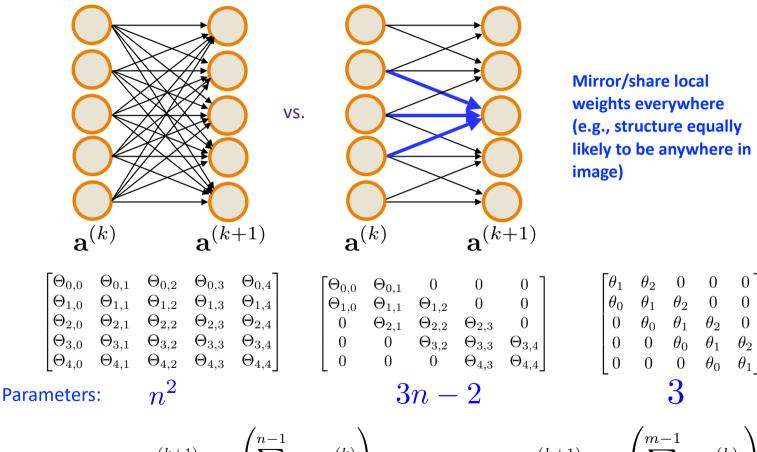


VS.





$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1}\Theta_{i,j}\mathbf{a}_{j}^{(k)}\right)$$



$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right)$$

 $\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right)$ 

#### Fully Connected (FC) Layer

#### Convolutional (CONV) Layer (1 filter)

$$\begin{bmatrix} \Theta_{0,0} & \Theta_{0,1} & \Theta_{0,2} & \Theta_{0,3} & \Theta_{0,4} \\ \Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & \Theta_{1,3} & \Theta_{1,4} \\ \Theta_{2,0} & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & \Theta_{2,4} \\ \Theta_{3,0} & \Theta_{3,1} & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\ \Theta_{4,0} & \Theta_{4,1} & \Theta_{4,2} & \Theta_{4,3} & \Theta_{4,4} \end{bmatrix} \qquad \begin{bmatrix} \theta_1 & \theta_2 & 0 & 0 & 0 \\ \theta_0 & \theta_1 & \theta_2 & 0 & 0 \\ 0 & \theta_0 & \theta_1 & \theta_2 & 0 \\ 0 & 0 & \theta_0 & \theta_1 & \theta_2 \\ 0 & 0 & 0 & \theta_0 & \theta_1 \end{bmatrix} m=3$$

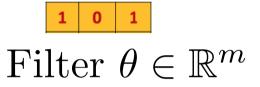
$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right) \qquad \mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right) = g([\theta * \mathbf{a}^{(k)}]_{i})$$
Convolution\*

 $heta = ( heta_0, \dots, heta_{m-1}) \in \mathbb{R}^m$  is referred to as a "filter"

## Example (1d convolution)

$$(\theta * x)_i = \sum_{j=0}^{m-1} \theta_j x_{i+j}$$

m - 1



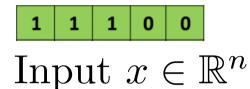
Output  $\theta * x$ 

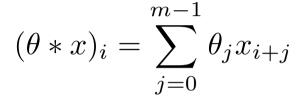
E2h-2

Stride = (

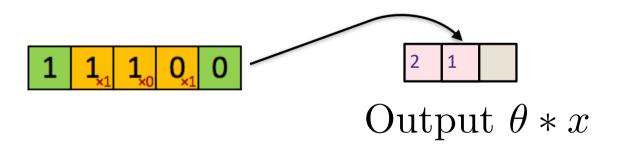
#### Example (1d convolution) 1 0 1 0 Input $x \in \mathbb{R}^n$ m-1 $(\theta * x)_i = \sum \theta_j x_{i+j}$ 0 1 j=0Filter $\theta \in \mathbb{R}^m$ 1 2 0 O Output $\theta * x$

## Example (1d convolution)





Filter  $\theta \in \mathbb{R}^m$ 

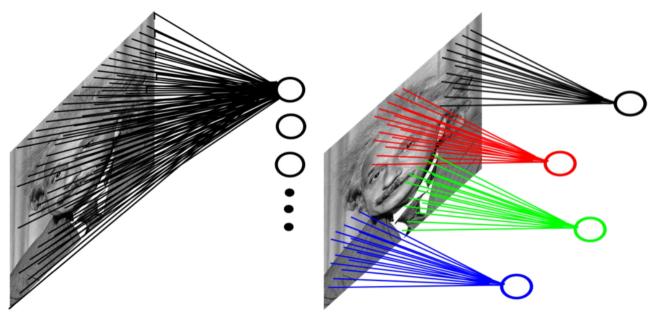


#### Example (1d convolution) 1 1 0 0 Input $x \in \mathbb{R}^n$ m-1 $(\theta * x)_i = \sum \theta_j x_{i+j}$ 0 j=0Filter $\theta \in \mathbb{R}^m$ 1 0 Output $\theta * x$ padding 0001 10

#### 2d Convolution Layer

#### Example: 200x200 image

- Fully-connected, 400,000 hidden units = 16 billion parameters
- Locally-connected, 400,000 hidden units 10x10 fields = 40 million params
- Local connections capture local dependencies



## Convolution of images (2d convolution)

$$(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

 $\mathcal{O}$ 

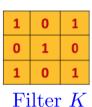
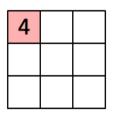


Image I

| <b>1</b> _×1           | 1_×0                   | <b>1</b> _×1 | 0 | 0 |
|------------------------|------------------------|--------------|---|---|
| <b>0</b> <sub>×0</sub> | <b>1</b> _×1           | 1_×0         | 1 | 0 |
| <b>0</b> ,×1           | <b>0</b> <sub>×0</sub> | <b>1</b> _×1 | 1 | 1 |
| 0                      | 0                      | 1            | 1 | 0 |
| 0                      | 1                      | 1            | 0 | 0 |

Image



Convolved Feature I \* K

(N-2) (N-2 )

## **Convolution of images**

$$(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

Image I



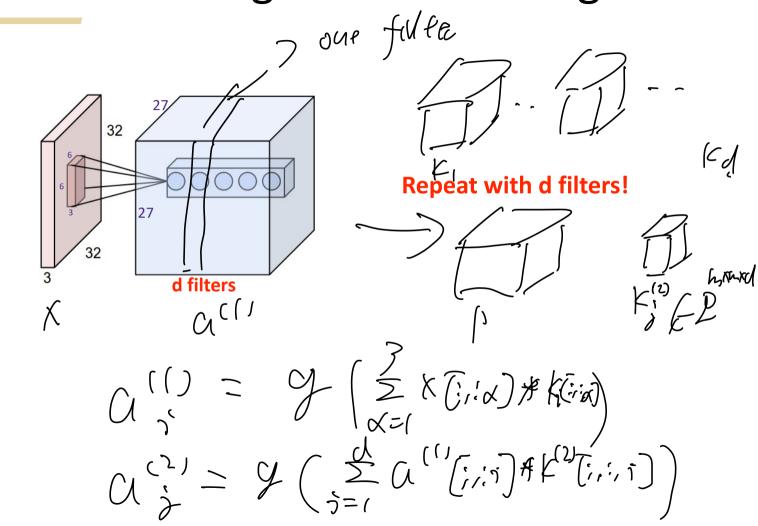
hand Crofted

NN: Learned

| Operation                        | Filter $K$                                                                       | $\begin{array}{c} \text{Convolved} \\ \text{Image} \ I \ast K \end{array}$ |
|----------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Edge detection                   | $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$            |                                                                            |
|                                  | $\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$             |                                                                            |
|                                  | $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$      |                                                                            |
| Sharpen                          | $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$          |                                                                            |
| Box blur<br>(normalized)         | $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$  |                                                                            |
| Gaussian blur<br>(approximation) | $\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ | S.                                                                         |

# Stacking convolved images M アニイ 32 27 Channel $x \in \mathbb{R}^{n \times n \times r} \xrightarrow{\mathcal{Q}} \mathcal{Q} \mid \mathbf{x}$ 32 Z= × X[:,:,x]\*K[:,:,] X=1

# Stacking convolved images



# Pooling

Pooling reduces the dimension and can be interpreted as "This filter had a high response in this general region"

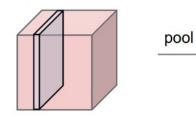
#### Single depth slice

| 1 | 1 | 2 | 4 |
|---|---|---|---|
| 5 | 6 | 7 | 8 |
| 3 | 2 | 1 | 0 |
| 1 | 2 | 3 | 4 |
|   |   |   |   |
|   |   |   | У |

max pool with 2x2 filters and stride 2

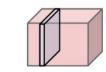
| 6 | 8 |
|---|---|
| 3 | 4 |



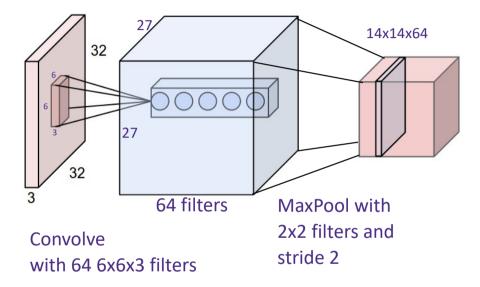


X

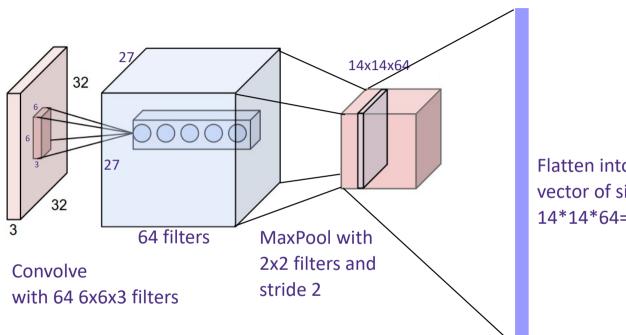




# **Pooling Convolution layer**

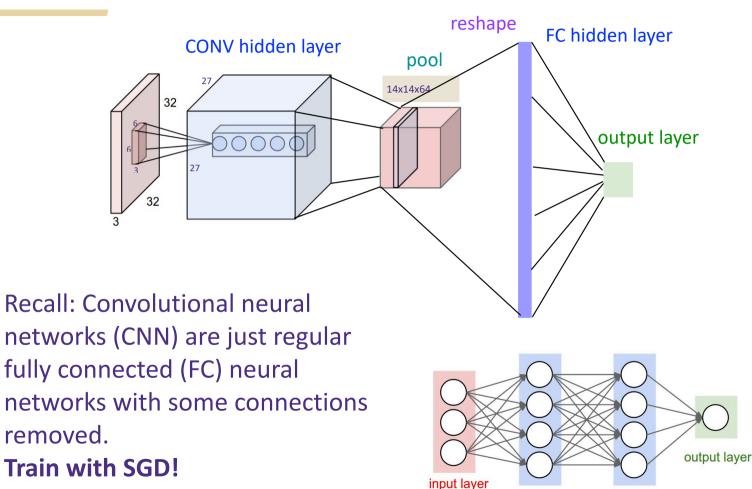


# Flattening



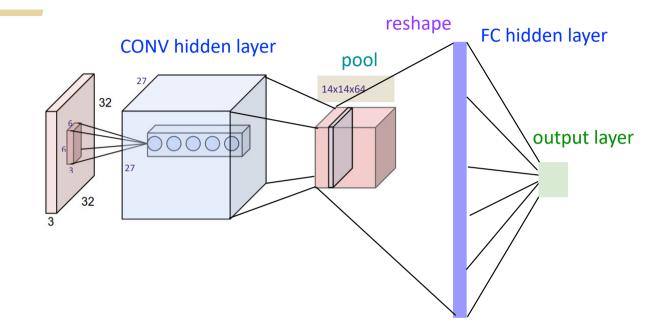
Flatten into a single vector of size 14\*14\*64=12544

## **Training Convolutional Networks**

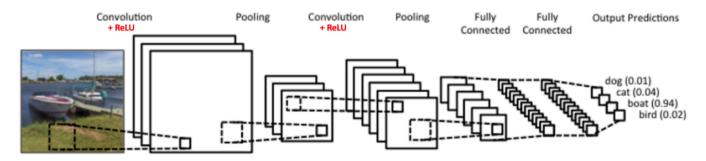


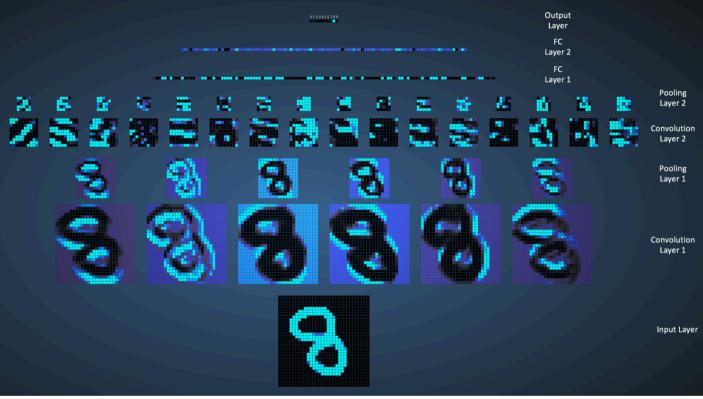
hidden layer 1 hidden layer 2

## **Training Convolutional Networks**

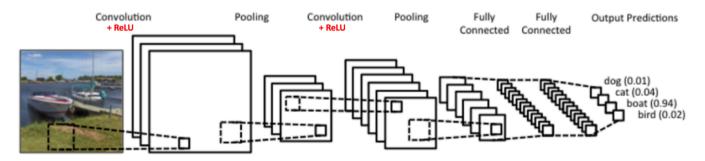


#### Real example network: LeNet





#### Real example network: LeNet

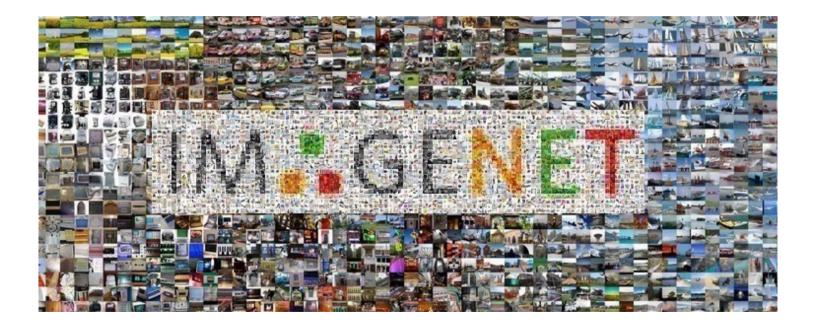


# **Famous CNNs**



## **ImageNet Dataset**

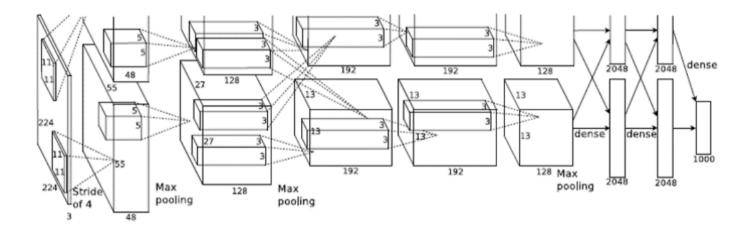
~14 million images, 20k classes



Deng et al. "Imagenet: a large scale hierarchical image database" '09



#### Breakthrough on ImageNet: ~the beginning of deep learning era



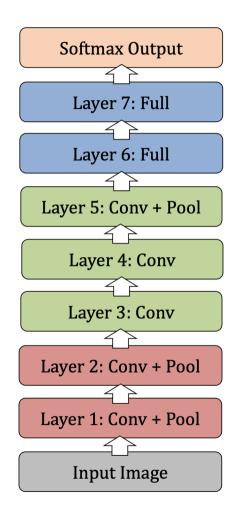
Krizhevsky, Sutskever, Hinton "ImageNet Claasification with Deep Convolutional Neural Networks", NIPS 2012.

## **AlexNet**

8 layers, ~60M parameters

Top5 error: 18.2%

Techniques used: ReLU activation, overlapping pooling, dropout, ensemble (create 10 patches by cropping and average the predictions), data-augmentation (intensity of RGB channels)



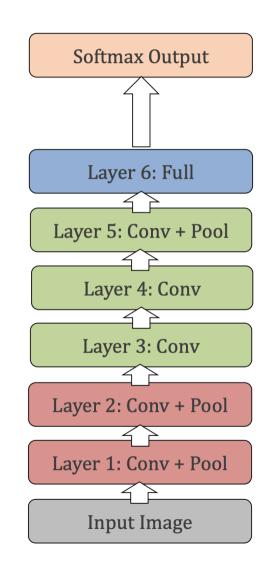


Remove top fully-connected layer 7

Drop ~16 million parameters

1.1% drop in performance



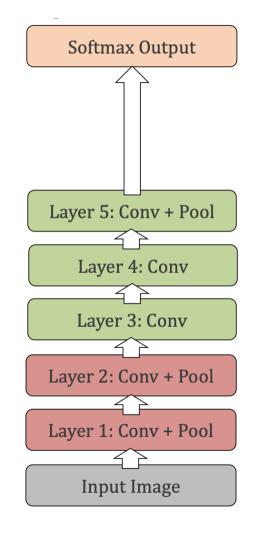




# Remove both fully connected layers 6 and 7

Drop ~50 million parameters

5.7% drop in performance



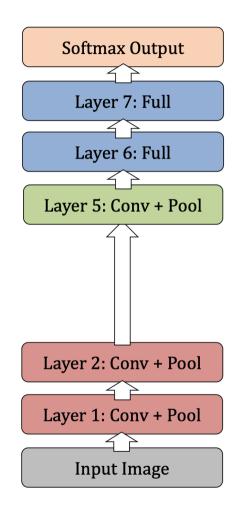
[From Rob Fergus' CIFAR 2016 tutorial]

#### **AlexNet**

Remove upper convolutio / feature extractor layers (layer 3 and 4)

Drop ~1 million parameters

3% drop in performance



[From Rob Fergus' CIFAR 2016 tutorial]

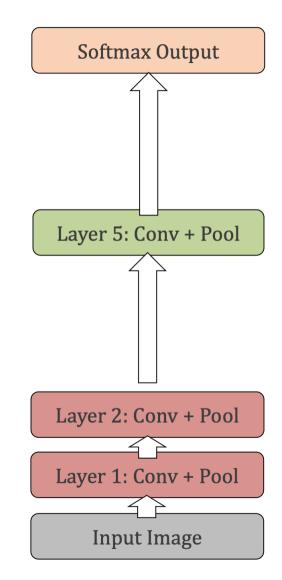


Remove top fully connected layer 6,7 and upper convolution layers 3,4.

33.5% drop in performance.

Depth of the network is the key.

[From Rob Fergus' CIFAR 2016 tutorial]





#### Motivation: multiscale nature of images

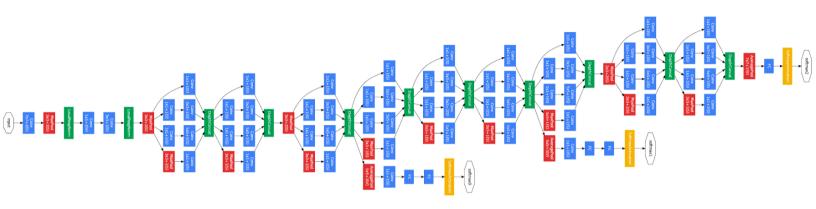


Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]



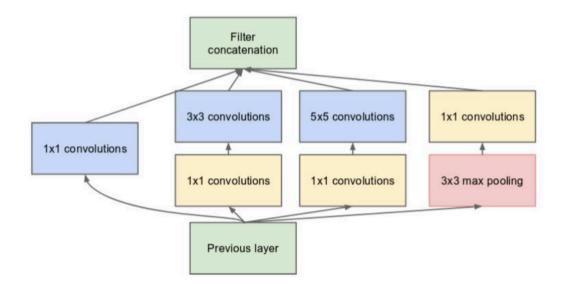


Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]

### **Inception Module**



Multiple filter scales at each layer

Dimensionality reduction to keep computational requirements down

[Going Deep with Convolutions, Szegedy et al. '14]

### **Residual Networks**

Motivation: extremely deep nets are hard to train (gradient explosion/ vanishing)

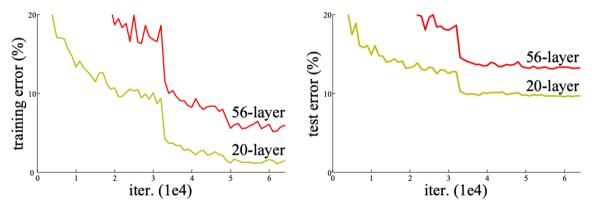
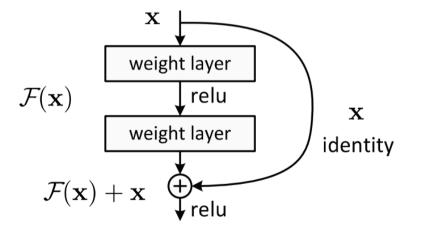


Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

#### **Residual Networks**

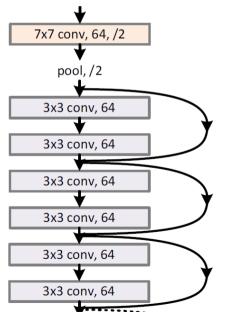
Idea: identity shortcut, skip one or more layers.

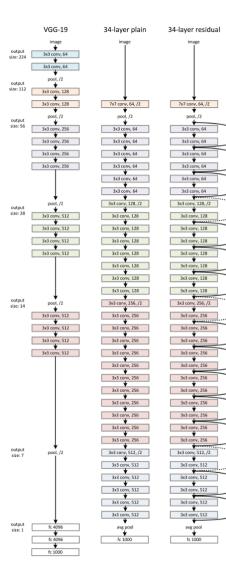
**Justification:** network can easily simulate shallow network ( $F \approx 0$ ), so performance should not degrade by going deeper.



# **Residual Networks**

- 3.57% top-5 error on ImageNet
- First deep network with > 100 layers.
- Widely used in many domains (AlphaGo)

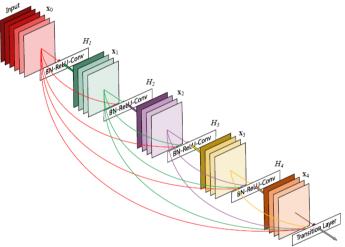


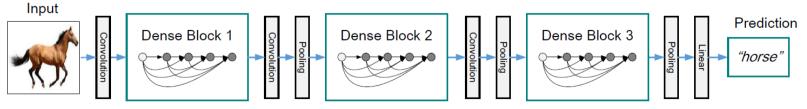


# **Densely Connected Network**

**Idea:** explicit forward output of layer to all future layers (by concatenation)

- Intuition: helps vanishing gradients, encourage reuse features (reduce parameter count)
- **Issues:** network maybe too wide, need to be careful about memory consumption





# **Neural Architecture / Hyper-Parameter Search**

Many design choices:

- Number of layers, width, kernel size, pooling, connections, etc.
- Normalization, learning rate, batch size, etc.

Strategies:

. . .

- Grid search
- Random search [Bergestra & Bengio '12]
- Bandit-based [Li et al. '16]
- Gradient-based (DARTS) [Liu et al. '19]
- Neural tangent kernel [Xu et al. '21]