• For approximation and optimization, neural network has no advantage over kernel. Why NN gives better performance: generalization.

- [Allen-Zhu and Li '20] Construct a class of functions \mathscr{F} such that y = f(x) for some $f \in \mathscr{F}$:
 - no kernel is sample-efficient;
 - Exists a neural network that is sample-efficient.

Convolutional Neural Networks

Multi-layer Neural Network

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

:

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l+1)} = g(z^{(l+1)})$$

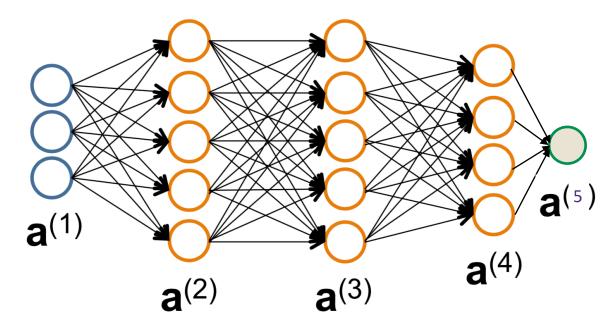
:

$$\hat{y} = a^{(L+1)}$$

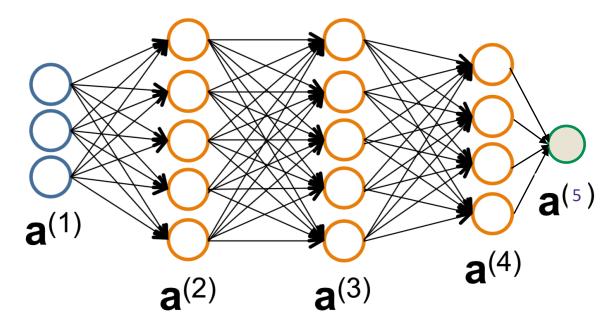
$$\mathbf{a}^{(2)} \mathbf{a}^{(3)} \mathbf{a}^{(4)}$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$
$$g(z) = \frac{1}{1 + e^{-z}}$$
Binary
Logistic
Regression

The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by **allowable edges**.



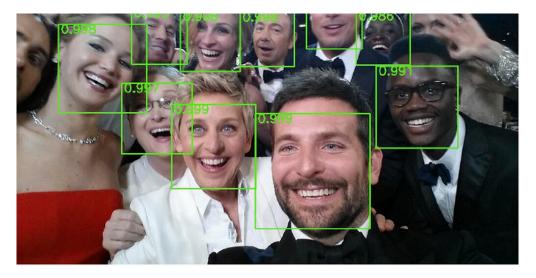
The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by **allowable edges**.



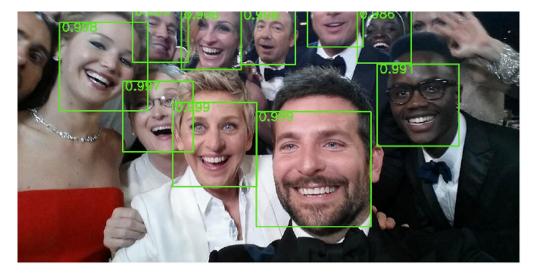
We say a layer is **Fully Connected (FC)** if all linear mappings from the current layer to the next layer are permissible.

$$\mathbf{a}^{(k+1)} = g(\Theta \mathbf{a}^{(k)})$$
 for any $\Theta \in \mathbb{R}^{n_{k+1} \times n_k}$
A lot of parameters!! $n_1 n_2 + n_2 n_3 + \dots + n_L n_{L+1}$

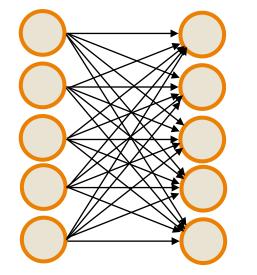
Objects are often **localized in space** so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.



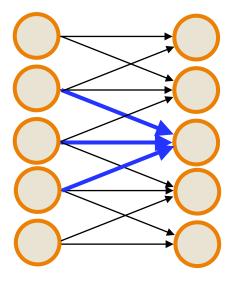
Objects are often **localized in space** so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.

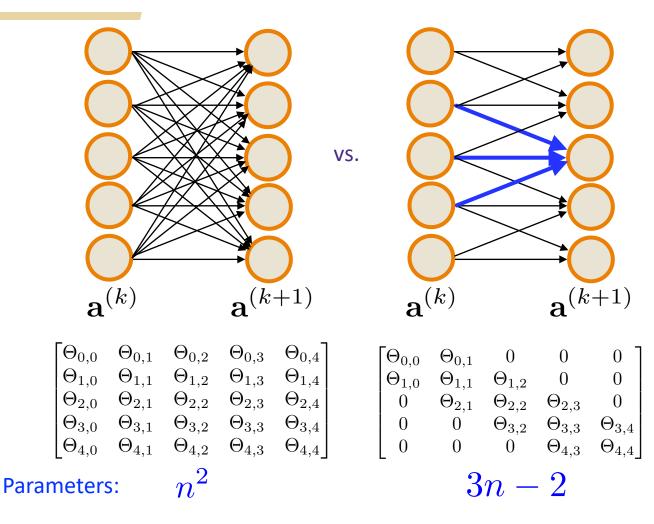


Similarly, to identify edges or other local structure, it makes sense to only look at **local information**

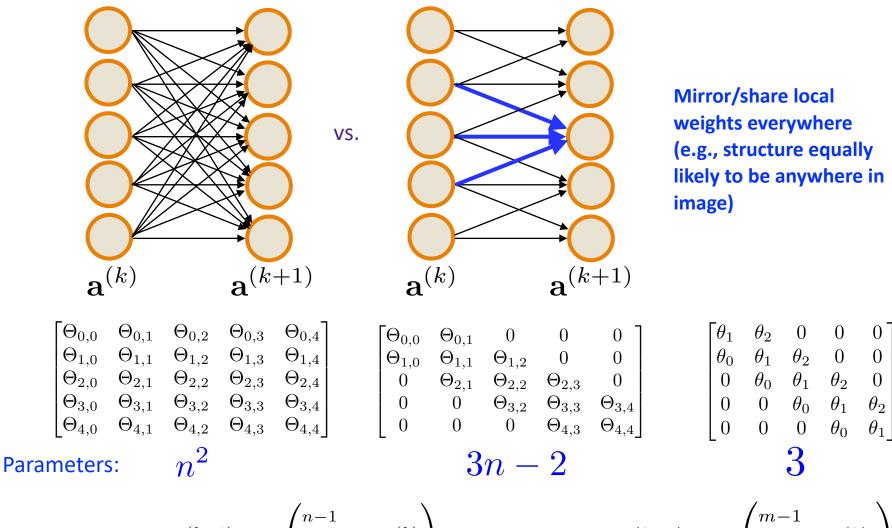


VS.





$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right)$$



$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right)$$

$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right)$$

Fully Connected (FC) Layer

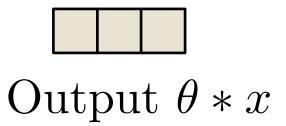
Convolutional (CONV) Layer (1 filter)

$$\begin{bmatrix} \Theta_{0,0} & \Theta_{0,1} & \Theta_{0,2} & \Theta_{0,3} & \Theta_{0,4} \\ \Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & \Theta_{1,3} & \Theta_{1,4} \\ \Theta_{2,0} & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & \Theta_{2,4} \\ \Theta_{3,0} & \Theta_{3,1} & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\ \Theta_{4,0} & \Theta_{4,1} & \Theta_{4,2} & \Theta_{4,3} & \Theta_{4,4} \end{bmatrix} \qquad \qquad \begin{bmatrix} \theta_1 & \theta_2 & 0 & 0 & 0 \\ \theta_0 & \theta_1 & \theta_2 & 0 & 0 \\ 0 & \theta_0 & \theta_1 & \theta_2 & 0 \\ 0 & 0 & \theta_0 & \theta_1 & \theta_2 \\ 0 & 0 & 0 & \theta_0 & \theta_1 \end{bmatrix} m=3$$

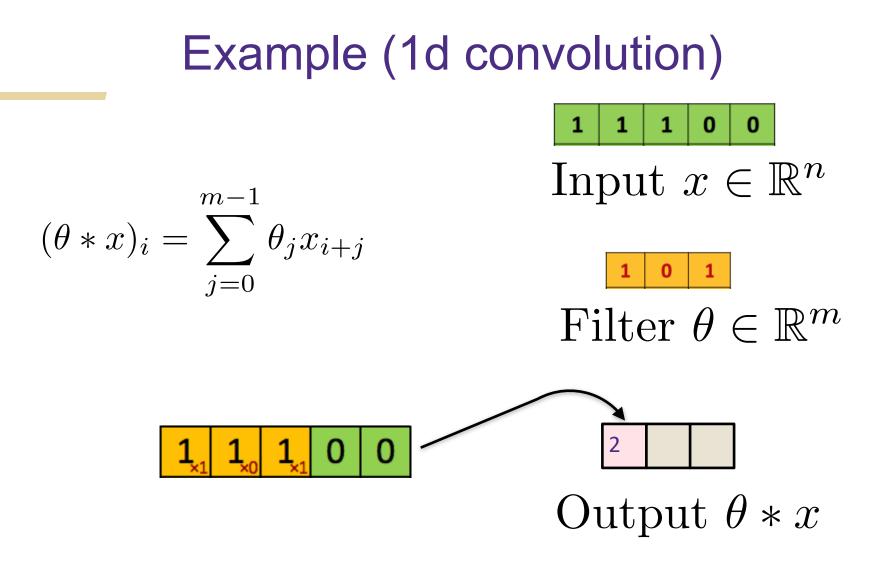
$$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right) \qquad \mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right) = g([\theta * \mathbf{a}^{(k)}]_{i})$$
Convolution*

 $heta = (heta_0, \dots, heta_{m-1}) \in \mathbb{R}^m$ is referred to as a "filter"

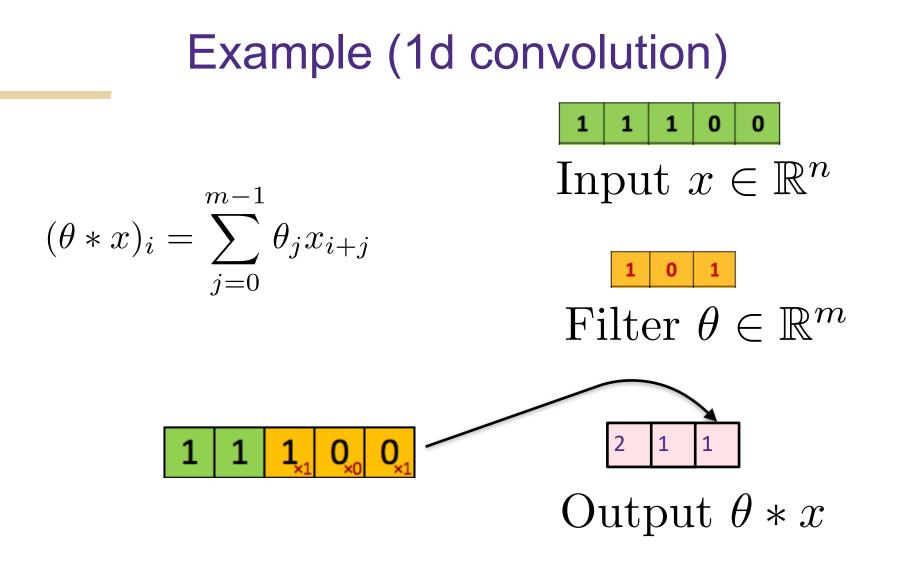
Example (1d convolution)



$$(\theta * x)_i = \sum_{j=0}^{m-1} \theta_j x_{i+j}$$



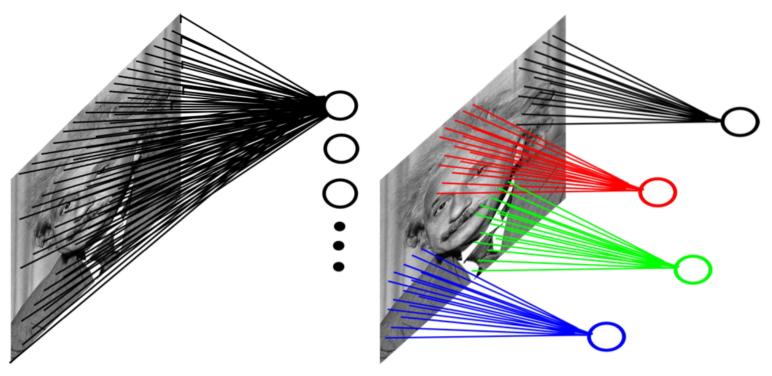
Example (1d convolution) Input $x \in \mathbb{R}^n$ m-1 $(\theta * x)_i = \sum_{j=0} \theta_j x_{i+j}$ Filter $\theta \in \mathbb{R}^m$ Output $\theta * x$



2d Convolution Layer

Example: 200x200 image

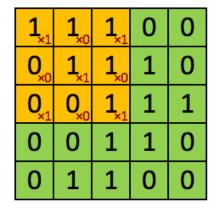
- Fully-connected, 400,000 hidden units = 16 billion parameters
- Locally-connected, 400,000 hidden units 10x10 fields = 40 million params
- Local connections capture local dependencies



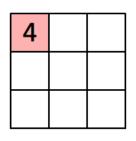
Convolution of images (2d convolution)

$$(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

Image I



Image



Convolved Feature I * K

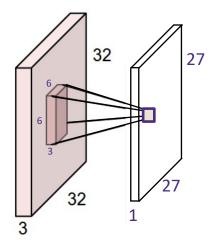
Convolution of images

$$(I * K)(i, j) = \sum_{m} \sum_{n} I(i + m, j + n) K(m, n)$$

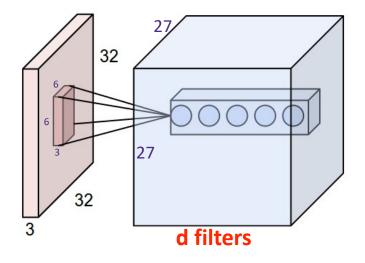
Image I

Operation	Filter K	$\overset{\text{Convolved}}{\operatorname{Image}} I \ast K$
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

Stacking convolved images



Stacking convolved images



Repeat with d filters!

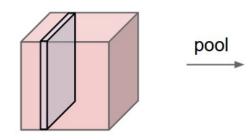
Pooling

Pooling reduces the dimension and can be interpreted as "This filter had a high response in this general region"

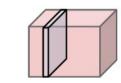
Single depth slice1124

max pool with 2x2 filters and stride 2

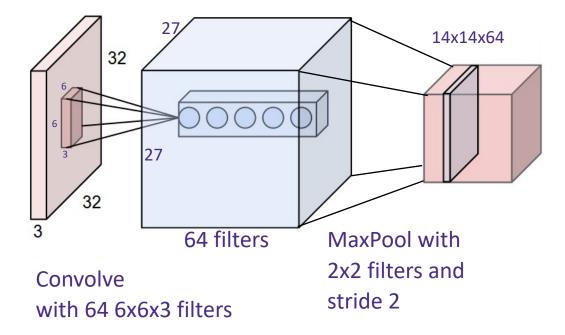
6	8
3	4



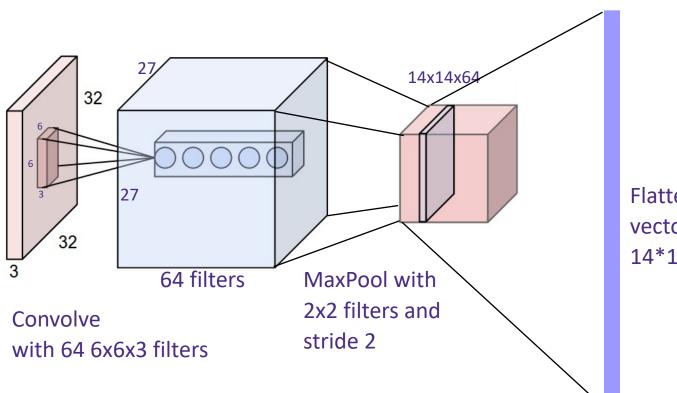
X



Pooling Convolution layer

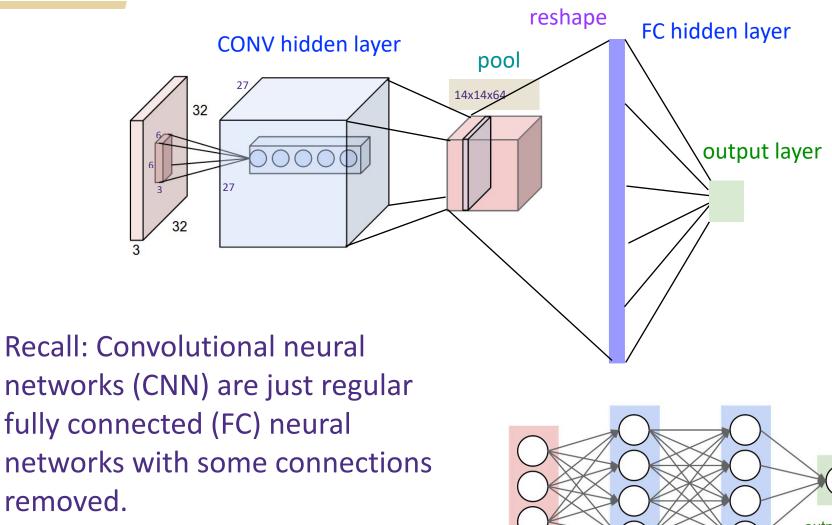


Flattening



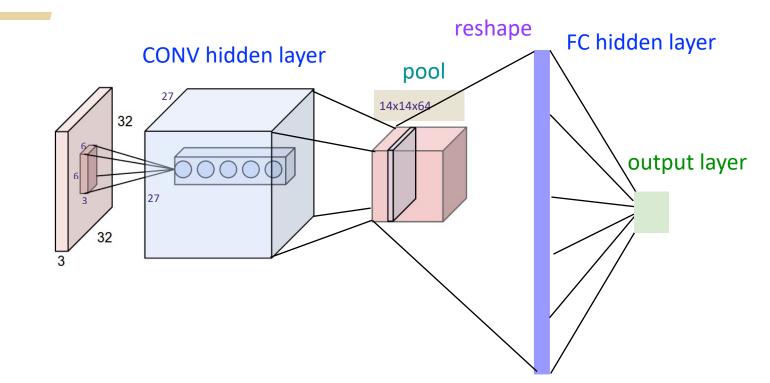
Flatten into a single vector of size 14*14*64=12544

Training Convolutional Networks

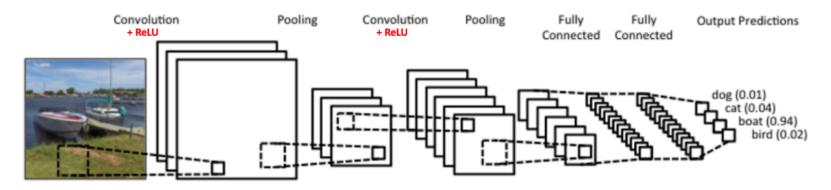


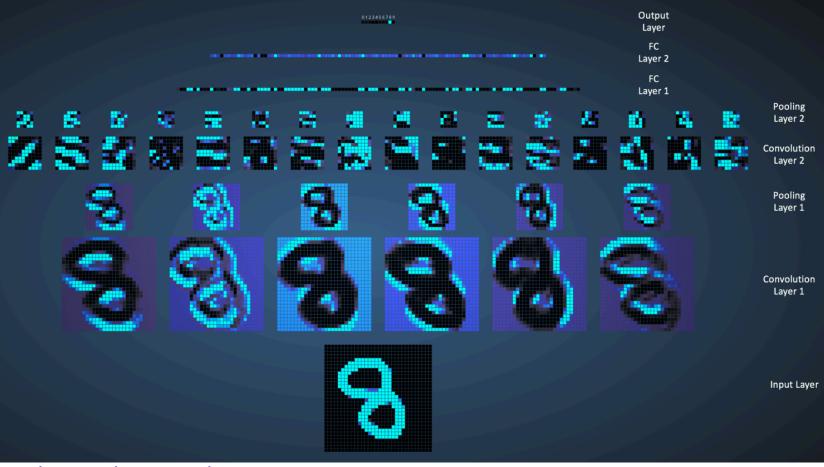
Train with SGD!

Training Convolutional Networks

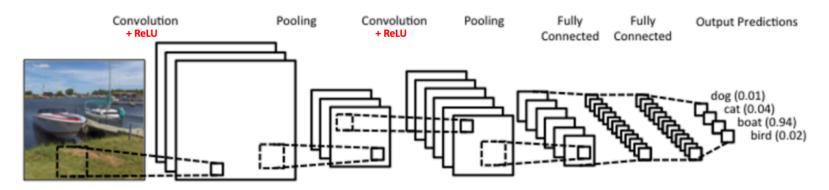


Real example network: LeNet





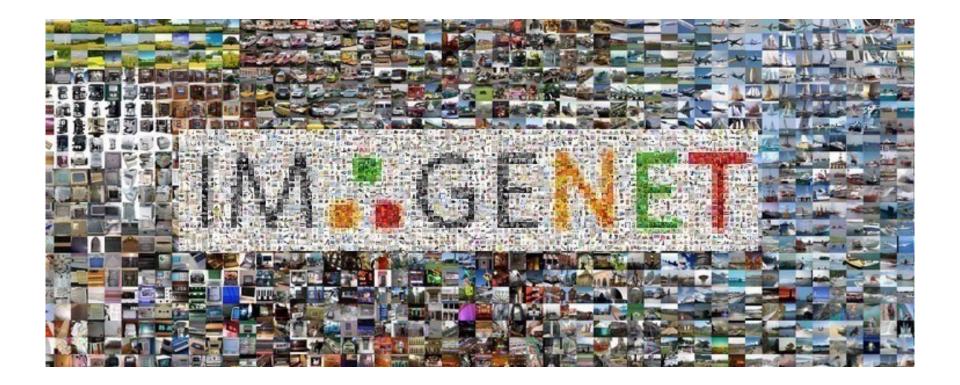
Real example network: LeNet



Famous CNNs

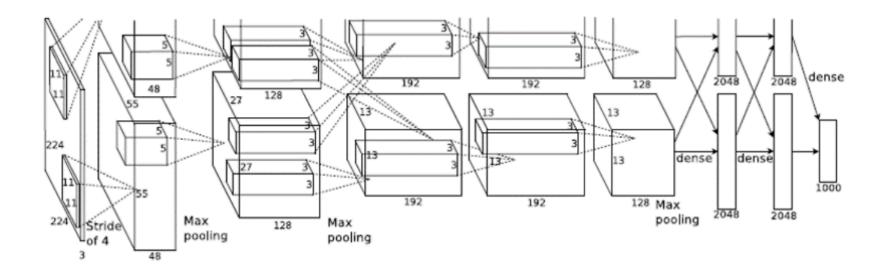
ImageNet Dataset

~14 million images, 20k classes



Deng et al. "Imagenet: a large scale hierarchical image database" '09

Breakthrough on ImageNet: ~the beginning of deep learning era



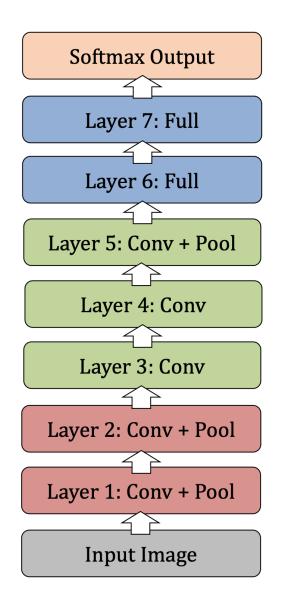
Krizhevsky, Sutskever, Hinton "ImageNet Claasification with Deep Convolutional Neural Networks", NIPS 2012.

AlexNet

8 layers, ~60M parameters

Top5 error: 18.2%

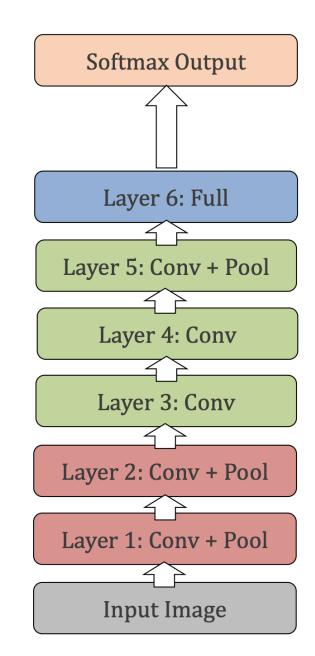
Techniques used: ReLU activation, overlapping pooling, dropout, ensemble (create 10 patches by cropping and average the predictions), data-augmentation (intensity of RGB channels)



Remove top fully-connected layer 7

~16 million parameters

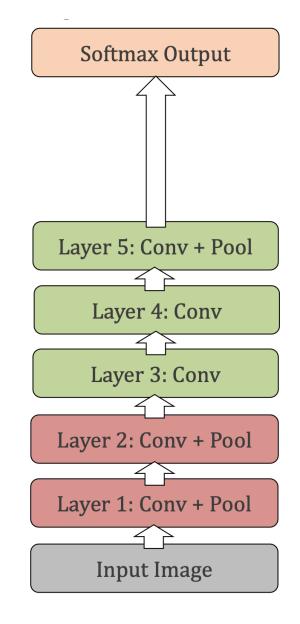
1.1% drop in performance



Remove both fully connected layers 6 and 7

Drop ~50 million parameters

5.7% drop in performance



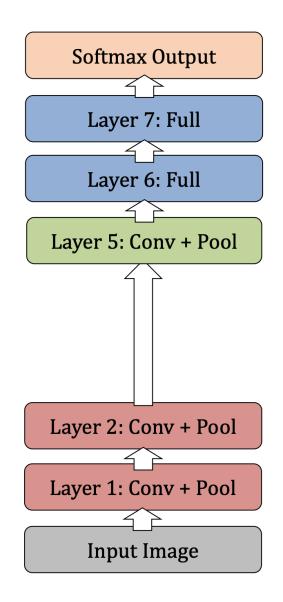
[From Rob Fergus' CIFAR 2016 tutorial]

AlexNet

Remove upper convolutio / feature extractor layers (layer 3 and 4)

Drop ~1 million parameters

3% drop in performance



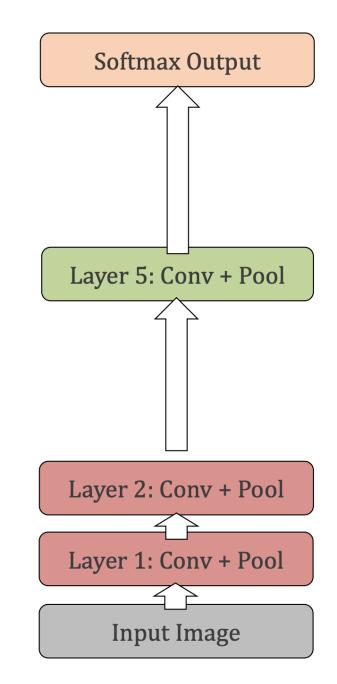
[From Rob Fergus' CIFAR 2016 tutorial]

Remove top fully connected layer 6,7 and upper convolution layers 3,4.

33.5% drop in performance.

Depth of the network is the key.

[From Rob Fergus' CIFAR 2016 tutorial]

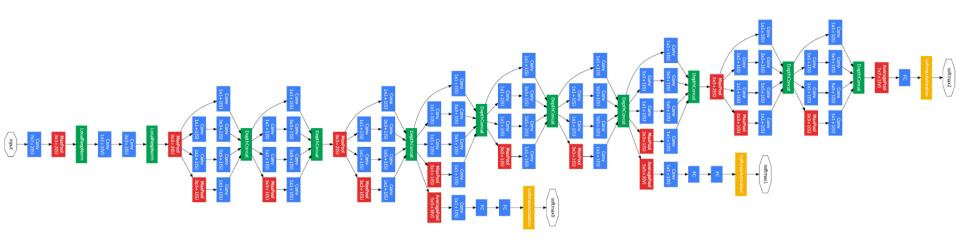


Motivation: multiscale nature of images

Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]

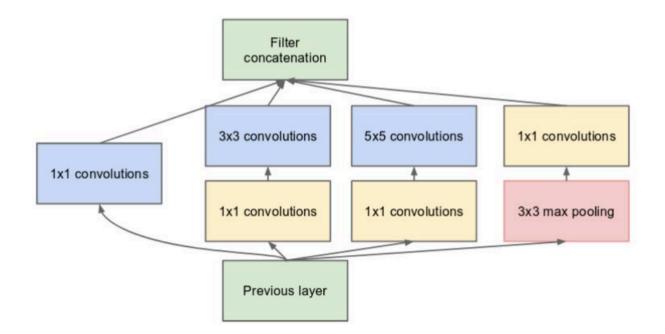


Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]

Inception Module



Multiple filter scales at each layer

Dimensionality reduction to keep computational requirements down

[Going Deep with Convolutions, Szegedy et al. '14]

Motivation: extremely deep nets are hard to train (gradient explosion/ vanishing)

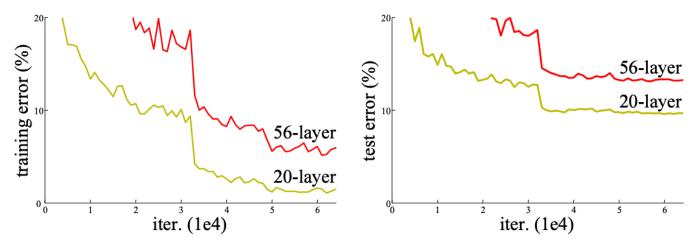


Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Motivation: extremely deep nets are hard to train (gradient explosion/ vanishing)

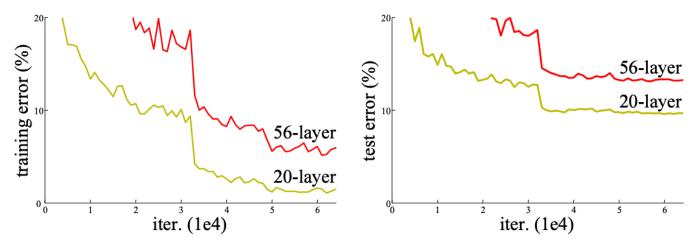
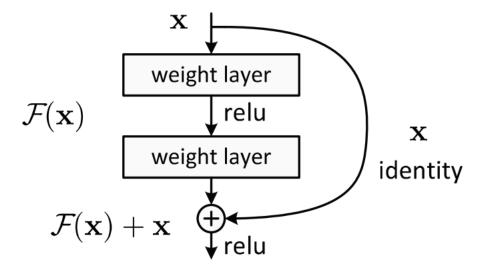


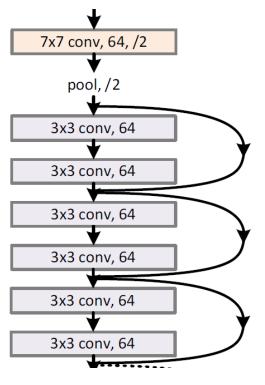
Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

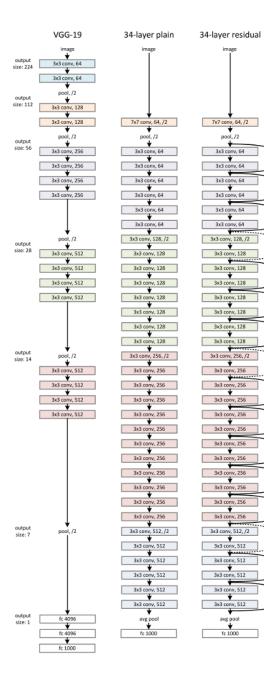
Idea: identity shortcut, skip one or more layers.

Justification: network can easily simulate shallow network ($F \approx 0$), so performance should not degrade by going deeper.



- 3.57% top-5 error on ImageNet
- First deep network with > 100 layers.
- Widely used in many domains (AlphaGo)

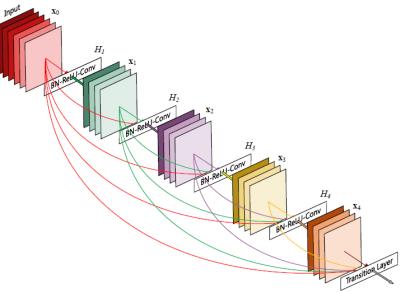


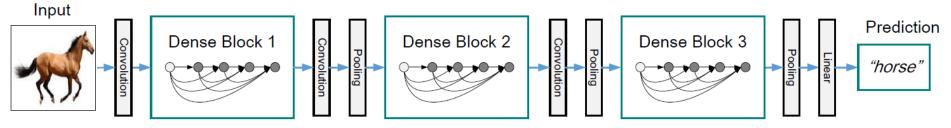


Densely Connected Network

Idea: explicit forward output of layer to all future layers (by concatenation)

- Intuition: helps vanishing gradients, encourage reuse features (reduce parameter count)
- **Issues:** network maybe too wide, need to be careful about memory consumption





Neural Architecture / Hyper-Parameter Search

Many design choices:

- Number of layers, width, kernel size, pooling, connections, etc.
- Normalization, learning rate, batch size, etc.

Strategies:

- Grid search
- Random search [Bergestra & Bengio '12]
- Bandit-based [Li et al. '16]
- Gradient-based (DARTS) [Liu et al. '19]
- Neural tangent kernel [Xu et al. '21]