
Separation between NN and kernel
• For approximation and optimization, neural network has no 

advantage over kernel. Why NN gives better performance: 
generalization. 

• [Allen-Zhu and Li ’20] Construct a class of functions such that 
 for some : 

• no kernel is sample-efficient; 
• Exists a neural network that is sample-efficient.

ℱ
y = f(x) f ∈ ℱ
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Convolutional Neural 
Networks



Multi-layer Neural Network

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

5

g(z) =
1

1 + e−z

Binary 
Logistic 
Regression



Neural Network Architecture
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The neural network architecture is defined by the number of layers, and the 
number of nodes in each layer, but also by allowable edges. 
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5

The neural network architecture is defined by the number of layers, and the 
number of nodes in each layer, but also by allowable edges. 

We say a layer is Fully Connected (FC) if all linear mappings from the current 
layer to the next layer are permissible. 

a(k+1) = g(⇥a(k)) for any ⇥ 2 Rnk+1⇥nk

A lot of parameters!! n1n2 + n2n3 + · · ·+ nLnL+1



Neural Network Architecture
Objects are often localized 
in space so to find the faces 
in an image, not every pixel 
is important for 
classification—makes sense 
to drag a window across an 
image.



Neural Network Architecture
Objects are often localized 
in space so to find the faces 
in an image, not every pixel 
is important for 
classification—makes sense 
to drag a window across an 
image.

Similarly, to identify 
edges or other local 
structure, it makes 
sense to only look at 
local information 

vs.



Neural Network Architecture
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Neural Network Architecture

vs.

Parameters: n2 3n� 2

Mirror/share local 
weights everywhere 
(e.g., structure equally 
likely to be anywhere in 
image) 

3
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Neural Network Architecture

Convolution*

Fully Connected (FC) Layer Convolutional (CONV) Layer (1 filter)

m=3

is referred to as a “filter”

= g([✓ ⇤ a(k)]i)
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Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

Output ✓ ⇤ x

(✓ ⇤ x)i =
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Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2 1

Output ✓ ⇤ x
1

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j



2d Convolution Layer



Convolution of images (2d convolution)

Image I
Filter K

I ⇤K



Convolution of images
K

Image I

I ⇤K



Stacking convolved images

6

6

3

27

27

1

x 2 Rn⇥n⇥r



Stacking convolved images

d filters

6

6

3 27

27

Repeat with d filters!



Pooling

Pooling reduces the dimension 
and can be interpreted as “This 
filter had a high response in 
this general region”

27x27x64

14x14x64



Pooling Convolution layer

14x14x64

64 filters

6

6

3 27

27

MaxPool with 
2x2 filters and 
stride 2

Convolve 
with 64 6x6x3 filters



Flattening

14x14x64

64 filters

6

6

3 27

27

Convolve 
with 64 6x6x3 filters

MaxPool with 
2x2 filters and 
stride 2

Flatten into a single 
vector of size 
14*14*64=12544



Training Convolutional Networks

14x14x64

6

6

3 27

27

Recall: Convolutional neural 
networks (CNN) are just regular 
fully connected (FC) neural 
networks with some connections 
removed.  
Train with SGD!

reshape

output layer

pool
CONV hidden layer FC hidden layer



Training Convolutional Networks
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reshape

output layer

pool
CONV hidden layer FC hidden layer

Real example network: LeNet



Training Convolutional Networks

Real example network: LeNet
Real example network: LeNet



Famous CNNs



ImageNet Dataset

Deng et al. “Imagenet: a large scale hierarchical image database” ‘09

~14 million images, 20k classes



AlexNet

Krizhevsky, Sutskever, Hinton “ImageNet Claasification with Deep 
Convolutional Neural Networks”, NIPS 2012.

Breakthrough on ImageNet: ~the beginning of deep learning era



AlexNet

8 layers, ~60M parameters 

Top5 error: 18.2% 

Techniques used: 
ReLU activation, overlapping pooling, 
dropout, ensemble (create 10 
patches by cropping and average the 
predictions), data-augmentation 
(intensity of RGB channels)

[From Rob Fergus’ CIFAR 2016 tutorial]



AlexNet

Remove top fully-connected layer 7 

~16 million parameters 

1.1% drop in performance

[From Rob Fergus’ CIFAR 2016 tutorial]



AlexNet

Remove both fully connected 
layers 6 and 7 

Drop ~50 million parameters 

5.7% drop in performance

[From Rob Fergus’ CIFAR 2016 tutorial]



AlexNet

Remove upper convolutio / feature 
extractor layers (layer 3 and 4) 

Drop ~1 million parameters 

3% drop in performance

[From Rob Fergus’ CIFAR 2016 tutorial]



AlexNet

Remove top fully connected layer 
6,7 and upper convolution layers 
3,4. 

33.5% drop in performance. 

Depth of the network is the key.

[From Rob Fergus’ CIFAR 2016 tutorial]



GoogLeNet

Motivation: multiscale nature of images

Large kernel for global features, and smaller kernel for local features. 

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. ’14]



GoogLeNet

Large kernel for global features, and smaller kernel for local features. 

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. ’14]



Inception Module

Multiple filter scales at each layer 

Dimensionality reduction to keep computational requirements down

[Going Deep with Convolutions, Szegedy et al. ’14]



Residual Networks

Motivation: extremely deep nets are hard to train (gradient explosion/
vanishing)

[He, Zhang, Ren, Sun, ’16]
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Residual Networks

Idea: identity shortcut, skip one or more layers. 

Justification: network can easily simulate shallow network ( ), 
so performance should not degrade by going deeper. 

F ≈ 0

[He, Zhang, Ren, Sun, ’16]



Residual Networks

• 3.57% top-5 error on ImageNet 
• First deep network with > 100 layers. 
• Widely used in many domains 

(AlphaGo) 

[He, Zhang, Ren, Sun, ’16]



Densely Connected Network

[He, Zhang, Ren, Sun, ’16]

Idea: explicit forward output of layer to all future layers (by 
concatenation)

Intuition: helps vanishing gradients, 
encourage reuse features (reduce 
parameter count) 

Issues: network maybe too wide, 
need to be careful about memory 
consumption



Neural Architecture / Hyper-Parameter Search

Strategies: 
• Grid search 
• Random search [Bergestra & Bengio ’12] 
• Bandit-based [Li et al. ’16] 
• Gradient-based (DARTS) [Liu et al. ’19] 
• Neural tangent kernel [Xu et al. ’21] 
• …

Many design choices: 
• Number of layers, width, kernel size, pooling, connections, etc. 
• Normalization, learning rate, batch size, etc.


