
Separation between NN and kernel
• For approximation and optimization, neural network has no

advantage over kernel. Why NN gives better performance:
generalization.

• [Allen-Zhu and Li ’20] Construct a class of functions such that
 for some :

• no kernel is sample-efficient;
• Exists a neural network that is sample-efficient.

ℱ
y = f(x) f ∈ ℱ

Separation between NN and kernel

Separation between NN and kernel

Separation between NN and kernel

Convolutional Neural
Networks

Multi-layer Neural Network

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

5

g(z) =
1

1 + e−z

Binary
Logistic
Regression

Neural Network Architecture

5

The neural network architecture is defined by the number of layers, and the
number of nodes in each layer, but also by allowable edges.

Neural Network Architecture

5

The neural network architecture is defined by the number of layers, and the
number of nodes in each layer, but also by allowable edges.

We say a layer is Fully Connected (FC) if all linear mappings from the current
layer to the next layer are permissible.

a(k+1) = g(⇥a(k)) for any ⇥ 2 Rnk+1⇥nk

A lot of parameters!! n1n2 + n2n3 + · · ·+ nLnL+1

Neural Network Architecture
Objects are often localized
in space so to find the faces
in an image, not every pixel
is important for
classification—makes sense
to drag a window across an
image.

Neural Network Architecture
Objects are often localized
in space so to find the faces
in an image, not every pixel
is important for
classification—makes sense
to drag a window across an
image.

Similarly, to identify
edges or other local
structure, it makes
sense to only look at
local information

vs.

Neural Network Architecture

vs.

Parameters: n2 3n� 2

a(k+1)a(k) a(k+1)a(k)

a(k+1)
i = g

0

@
n�1X

j=0

⇥i,ja
(k)
j

1

A

2

66664

⇥0,0 ⇥0,1 0 0 0
⇥1,0 ⇥1,1 ⇥1,2 0 0
0 ⇥2,1 ⇥2,2 ⇥2,3 0
0 0 ⇥3,2 ⇥3,3 ⇥3,4

0 0 0 ⇥4,3 ⇥4,4

3

77775

2

66664

⇥0,0 ⇥0,1 ⇥0,2 ⇥0,3 ⇥0,4

⇥1,0 ⇥1,1 ⇥1,2 ⇥1,3 ⇥1,4

⇥2,0 ⇥2,1 ⇥2,2 ⇥2,3 ⇥2,4

⇥3,0 ⇥3,1 ⇥3,2 ⇥3,3 ⇥3,4

⇥4,0 ⇥4,1 ⇥4,2 ⇥4,3 ⇥4,4

3

77775

Neural Network Architecture

vs.

Parameters: n2 3n� 2

Mirror/share local
weights everywhere
(e.g., structure equally
likely to be anywhere in
image)

3

a(k+1)a(k) a(k+1)a(k)

a(k+1)
i = g

0

@
n�1X

j=0

⇥i,ja
(k)
j

1

A a(k+1)
i = g

0

@
m�1X

j=0

✓ja
(k)
i+j

1

A

2

66664

✓1 ✓2 0 0 0
✓0 ✓1 ✓2 0 0
0 ✓0 ✓1 ✓2 0
0 0 ✓0 ✓1 ✓2
0 0 0 ✓0 ✓1

3

77775

2

66664

⇥0,0 ⇥0,1 0 0 0
⇥1,0 ⇥1,1 ⇥1,2 0 0
0 ⇥2,1 ⇥2,2 ⇥2,3 0
0 0 ⇥3,2 ⇥3,3 ⇥3,4

0 0 0 ⇥4,3 ⇥4,4

3

77775

2

66664

⇥0,0 ⇥0,1 ⇥0,2 ⇥0,3 ⇥0,4

⇥1,0 ⇥1,1 ⇥1,2 ⇥1,3 ⇥1,4

⇥2,0 ⇥2,1 ⇥2,2 ⇥2,3 ⇥2,4

⇥3,0 ⇥3,1 ⇥3,2 ⇥3,3 ⇥3,4

⇥4,0 ⇥4,1 ⇥4,2 ⇥4,3 ⇥4,4

3

77775

Neural Network Architecture

Convolution*

Fully Connected (FC) Layer Convolutional (CONV) Layer (1 filter)

m=3

is referred to as a “filter”

= g([✓ ⇤ a(k)]i)

✓ = (✓0, . . . , ✓m�1) 2 Rm

a(k+1)
i = g

0

@
m�1X

j=0

✓ja
(k)
i+j

1

Aa(k+1)
i = g

0

@
n�1X

j=0

⇥i,ja
(k)
j

1

A

2

66664

✓1 ✓2 0 0 0
✓0 ✓1 ✓2 0 0
0 ✓0 ✓1 ✓2 0
0 0 ✓0 ✓1 ✓2
0 0 0 ✓0 ✓1

3

77775

2

66664

⇥0,0 ⇥0,1 ⇥0,2 ⇥0,3 ⇥0,4

⇥1,0 ⇥1,1 ⇥1,2 ⇥1,3 ⇥1,4

⇥2,0 ⇥2,1 ⇥2,2 ⇥2,3 ⇥2,4

⇥3,0 ⇥3,1 ⇥3,2 ⇥3,3 ⇥3,4

⇥4,0 ⇥4,1 ⇥4,2 ⇥4,3 ⇥4,4

3

77775

Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

Output ✓ ⇤ x

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j

Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2

Output ✓ ⇤ x

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j

Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2

Output ✓ ⇤ x
1

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j

Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2 1

Output ✓ ⇤ x
1

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j

2d Convolution Layer

Convolution of images (2d convolution)

Image I
Filter K

I ⇤K

Convolution of images
K

Image I

I ⇤K

Stacking convolved images

6

6

3

27

27

1

x 2 Rn⇥n⇥r

Stacking convolved images

d filters

6

6

3 27

27

Repeat with d filters!

Pooling

Pooling reduces the dimension
and can be interpreted as “This
filter had a high response in
this general region”

27x27x64

14x14x64

Pooling Convolution layer

14x14x64

64 filters

6

6

3 27

27

MaxPool with
2x2 filters and
stride 2

Convolve
with 64 6x6x3 filters

Flattening

14x14x64

64 filters

6

6

3 27

27

Convolve
with 64 6x6x3 filters

MaxPool with
2x2 filters and
stride 2

Flatten into a single
vector of size
14*14*64=12544

Training Convolutional Networks

14x14x64

6

6

3 27

27

Recall: Convolutional neural
networks (CNN) are just regular
fully connected (FC) neural
networks with some connections
removed.
Train with SGD!

reshape

output layer

pool
CONV hidden layer FC hidden layer

Training Convolutional Networks

14x14x64

6

6

3 27

27

reshape

output layer

pool
CONV hidden layer FC hidden layer

Real example network: LeNet

Training Convolutional Networks

Real example network: LeNet
Real example network: LeNet

Famous CNNs

ImageNet Dataset

Deng et al. “Imagenet: a large scale hierarchical image database” ‘09

~14 million images, 20k classes

AlexNet

Krizhevsky, Sutskever, Hinton “ImageNet Claasification with Deep
Convolutional Neural Networks”, NIPS 2012.

Breakthrough on ImageNet: ~the beginning of deep learning era

AlexNet

8 layers, ~60M parameters

Top5 error: 18.2%

Techniques used:
ReLU activation, overlapping pooling,
dropout, ensemble (create 10
patches by cropping and average the
predictions), data-augmentation
(intensity of RGB channels)

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet

Remove top fully-connected layer 7

~16 million parameters

1.1% drop in performance

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet

Remove both fully connected
layers 6 and 7

Drop ~50 million parameters

5.7% drop in performance

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet

Remove upper convolutio / feature
extractor layers (layer 3 and 4)

Drop ~1 million parameters

3% drop in performance

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet

Remove top fully connected layer
6,7 and upper convolution layers
3,4.

33.5% drop in performance.

Depth of the network is the key.

[From Rob Fergus’ CIFAR 2016 tutorial]

GoogLeNet

Motivation: multiscale nature of images

Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. ’14]

GoogLeNet

Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. ’14]

Inception Module

Multiple filter scales at each layer

Dimensionality reduction to keep computational requirements down

[Going Deep with Convolutions, Szegedy et al. ’14]

Residual Networks

Motivation: extremely deep nets are hard to train (gradient explosion/
vanishing)

[He, Zhang, Ren, Sun, ’16]

Residual Networks

Motivation: extremely deep nets are hard to train (gradient explosion/
vanishing)

[He, Zhang, Ren, Sun, ’16]

Residual Networks

Idea: identity shortcut, skip one or more layers.

Justification: network can easily simulate shallow network (),
so performance should not degrade by going deeper.

F ≈ 0

[He, Zhang, Ren, Sun, ’16]

Residual Networks

• 3.57% top-5 error on ImageNet
• First deep network with > 100 layers.
• Widely used in many domains

(AlphaGo)

[He, Zhang, Ren, Sun, ’16]

Densely Connected Network

[He, Zhang, Ren, Sun, ’16]

Idea: explicit forward output of layer to all future layers (by
concatenation)

Intuition: helps vanishing gradients,
encourage reuse features (reduce
parameter count)

Issues: network maybe too wide,
need to be careful about memory
consumption

Neural Architecture / Hyper-Parameter Search

Strategies:
• Grid search
• Random search [Bergestra & Bengio ’12]
• Bandit-based [Li et al. ’16]
• Gradient-based (DARTS) [Liu et al. ’19]
• Neural tangent kernel [Xu et al. ’21]
• …

Many design choices:
• Number of layers, width, kernel size, pooling, connections, etc.
• Normalization, learning rate, batch size, etc.

