Generalization Theory for Deep Learning

Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set $S = \{x_1, x_2, \dots, x_n\}$, and a class \mathscr{F} , denote: $\hat{R}_n(S) = \mathbb{E}_{\sigma} \sup_{f \in \mathscr{F}} \sum_{i=1}^n \sigma_i f(x_i)$. where $\sigma_i \sim \text{Unif}\{+1, -1\}$ (Rademacher R.V.).

(Population) Rademacher complexity:

$$R_n = \mathbb{E}_S \left[\hat{R}_n(s) \right].$$

Rademacher Complexity Generalization Bound

Theorem: with probability $1 - \delta$ over the choice of a training set, for a bounded loss ℓ , we have

$$\sup_{f \in \mathscr{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x,y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\frac{\hat{R}_n}{n} + \frac{\log 1/\delta}{n}\right)$$

$$\mathcal{D}_{\mathcal{U}} \subseteq \mathcal{O}\left(\mathcal{V}(\mathcal{F})\right)$$

and

$$\sup_{f \in \mathscr{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x, y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\frac{R_n}{n} + \int \frac{\log 1/\delta}{n}\right)$$

Norm-based Rademacher complexity bound

$$G: \mathcal{R}(L \cup P = I)$$
Theorem: If the activation function is σ is p -Lipschitz. Let

$$\mathcal{F} = \{x \mapsto W_{H+1}\sigma(W_{h}\sigma(\cdots\sigma(W_{1}x)\cdots), ||W_{h}^{T}||_{1,\infty} \leq B \forall h \in [H]\}$$
then $R_{n}(\mathcal{S}) \leq ||X^{T}||_{2,\infty}^{\mathcal{O}(M)}(2pB)^{H+1}\sqrt{2 \ln d}$ where

$$X = [x_{1}, \dots, x_{n}] \in \mathbb{R}^{d \times n}$$
is the input data matrix. $W_{K}W_{H}$

$$(I \otimes \mathbb{C}^{\mathcal{M}(K)} \cap \mathbb{C}^{\mathcal{M}(K)} \cap$$

Massart Lemma

Lemma: Let *V* be a set of vectors $\subset \mathbb{R}^d$, we have $R_V := \mathbb{E}_{\epsilon \sim \bigcup \inf\{1, -1\}^d} \max_{v \in V} \langle \epsilon, v \rangle \leq \sup \|v\|_2 \sqrt{2 \ln d}.$ $v \in V$ · ~ Unit 5(,-13d - Fix $u \in V$ $pefine \quad x_{u,1} = \overline{z_1} \cdot u_1$ $x_u = \overline{z_1} \cdot u_1$ $(\chi_{U,r})^2 = U_r^2$ =) Kuni is U+ - sub Gaussiay => 11×u1/2 is 11/utz -Suy Gaussian =) $(\exists u)$ $(\forall u)$ (

Sub Gaussis expectation l'unequality

Properties of Rademacher Complexity

Let V be a set of vectors $\subset \mathbb{R}^d$: 1. $R_{\text{Conv}(V)} = R_V$, $\bigcup \in Cour(V)$ iff $U = \sum_{j=1}^{M} c_j \sum_{j=1}^{N} c_j \sum_{j$

UTEU

3. Let V_1, \ldots, V_m be m set of vectors such that for anyway $e \in \{-1, +1\}^d$, $\sup \langle v, e \rangle \ge 0$ (e.g., $0 \in V_i$), then we have $R_{\bigcup_{i=1}^m V_i} \le \sum_{i=1}^m R_{V_i}$.

Proof of $(1,\infty)$ norm-based bound

Layer by layer induction
Let
$$F_h = \{x \mapsto b (W_h \ b(W_{h-1} \dots \ b(W_{h}x) \dots) \in \mathbb{R}^{h} \ \|W_{h'}^T\|_{1, W} \leq B, \ b' = 1, \dots, h\}$$

 $F_0 = \{x \mapsto x\}$
Induction: $P_{ad}(F_h[_S) \leq \|X^T\|_{2, W}(2PB)^h \int 2dnd$
 $Take h = [++1] \Rightarrow Theorem$

$$(D h = 0)$$

$$F_{0} = 4 \times (-7) (X(I) \dots X(d)) : d function)$$

$$F_{0} = 4 \times (-7) (X(I) \dots X(d)) : d function)$$

$$Massarr \text{ Acid } (F_{0}|S) \leq (max) [I[X_{1}(j_{1}, \dots, X_{n}(j_{n})](l_{2}) \dots J_{n}d)$$

$$Ie mac = [X^{T}(h, \infty) \dots J_{n}d] = [[X^{T}(l_{2}, \omega) \dots (2Pb)^{0}] J_{n}d$$

Proof of $(1,\infty)$ norm-based bound

(2) Induction Step, assume hypothesis of the till layer h $\mathcal{F}_{h+1}|_{S} = \{x \mapsto G(\mathcal{W}_{h+1}|\mathcal{G}(\mathcal{G}), \mathcal{G}(\mathcal{F}_{h}, ||\mathcal{W}_{h+1}||_{1, \mathcal{G}})\}$ · X I-) 6 (When g(4)) ERM j=J,.- m I (V()) (1,:) $[6(W_{nti}g_{CKJ})](i),$ = 6 (When (1,:) gck) $= X \mapsto G([[W_{ort}(\hat{r},:)]] \cdot \sqrt{T}g(X)) = \frac{\pi(U')}{||W_{ort}(\hat{r},:)||_{1}}$ $= b \left(\left[(W_{n+1}(i, \cdot)) \right] \right) = \int_{j=1}^{\infty} \sqrt{(\frac{1}{2} \int_{j=1}^{$ $= 6 \left(\left((W_{12} + (1^{5}, 1)) \left(1 + \frac{m}{2} \right) V(2) \right) \cdot Sgn(V_{2}) (g_{1}) \left((1^{5}, 1) \right) \left(1 + \frac{m}{2} \right) V(2) \right) \cdot Sgn(V_{2}) (g_{1}) (g_{1}) (g_{2}) (g_{1}) (g_{2}) (g_{2$ GRE (On V(Ful)(-Fu)) $= \mathcal{F}_{\mathcal{H}_{1}}|_{\varsigma} = \{\chi \mapsto \delta(\|\mathcal{W}_{\mathcal{H}_{\mathcal{H}}}(\gamma_{\mathcal{H}_{1}})\|_{1}, \mathcal{G}(\kappa)),$

Proof of $(1,\infty)$ norm-based bound *Litshitz* &scoling properly Rad (Fhills) 27 Rad S PB Lad ((onv ((Fals)) (-Fals)) = PB Rad (Fn/s ((-Fn/s) (property)) SPB (Pad (Fals)) + (B · Pad (-Fals) (property) = 2PBRad (Fh/s) (property 2) < (2013)⁶⁺¹ /(X^T(1), w J2.lud ()

Comments on generalization bounds

- When plugged in real values, the bounds are rarely non-trivial (i.e., smaller than 1)
- "Fantastic Generalization Measures and Where to Find them" by Jiang et al. '19 : large-scale investigation of the correlation of extant generalization measures with true generalization.

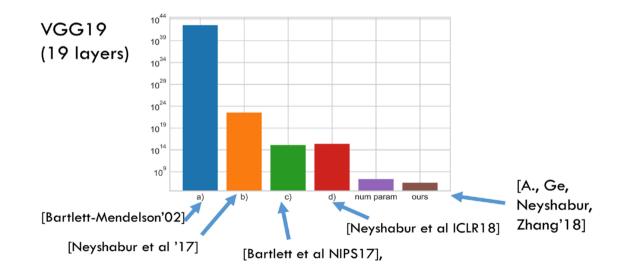


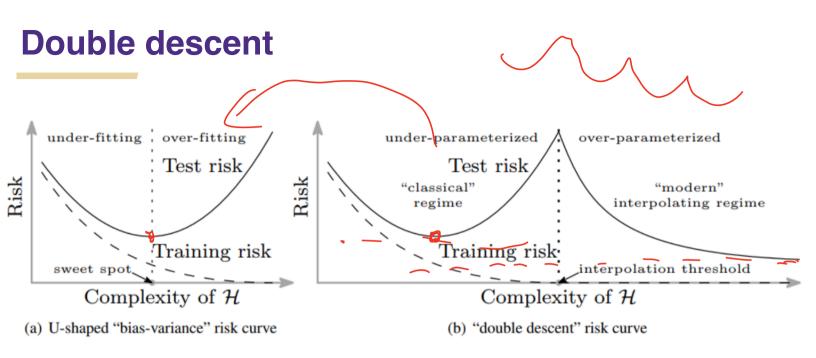
Image credits to Andrej Risteski

Comments on generalization bounds

- Uniform convergence may be unable to explain generalization of deep learning [Nagarajan and Kolter, '19]
 - Uniform convergence: a bound for all $f \in \mathscr{F}$
 - Exists example that 1) can generalize, 2) uniform convergence fails.
 ywy Unicate decomposition

K- Neavert - Usighton

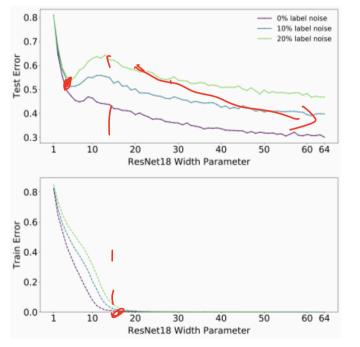
- Rates:
 - Most bounds: $1/\sqrt{n}$.
 - Local Rademacher complexity: 1/n.



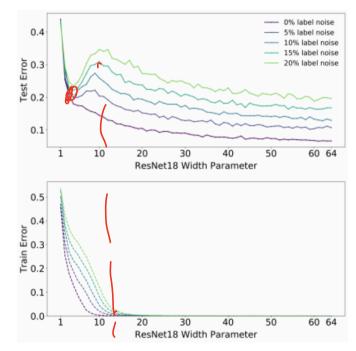
Belkin, Hsu, Ma, Mandal '18

- There are cases where the model gets bigger, yet the (test!) loss goes down, sometimes even lower than in the classical "under-parameterized" regime.
- Complexity: number of parameters.

Widespread phenomenon, across architectures (Nakkiran et al. '19):

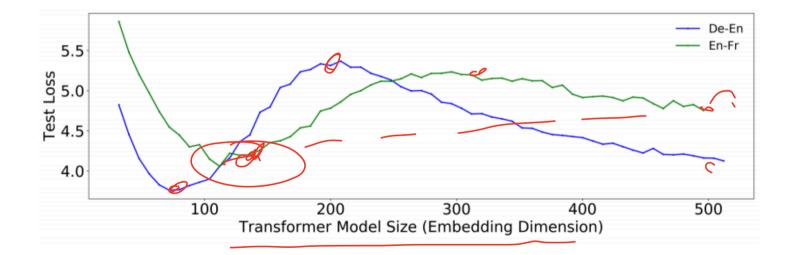


(a) **CIFAR-100.** There is a peak in test error even with no label noise.

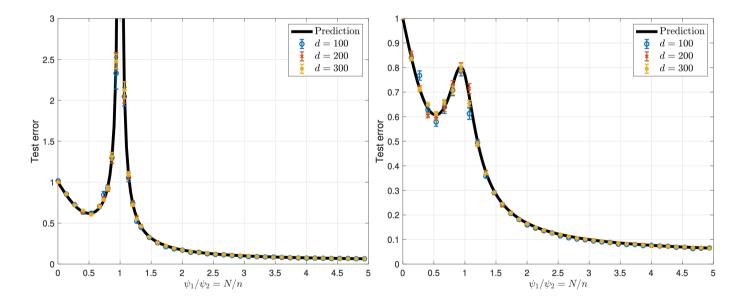


(b) **CIFAR-10.** There is a "plateau" in test error around the interpolation point with no label noise, which develops into a peak for added label noise.

Widespread phenomenon, across architectures (Nakkiran et al. '19):



Widespread phenomenon, also in kernels (can be formally proved in some concrete settings [Mei and Montanari '20]), random forests, etc.



Also in other quantities such as train time, dataset, etc (Nakkiran et al. '19):

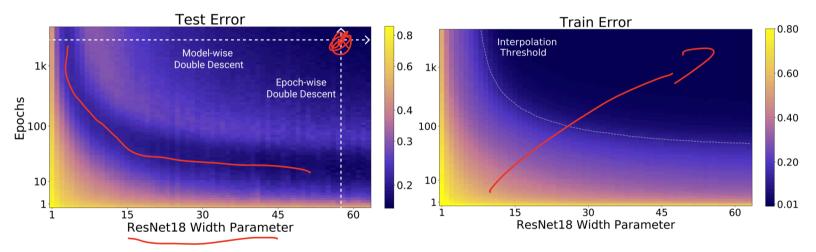
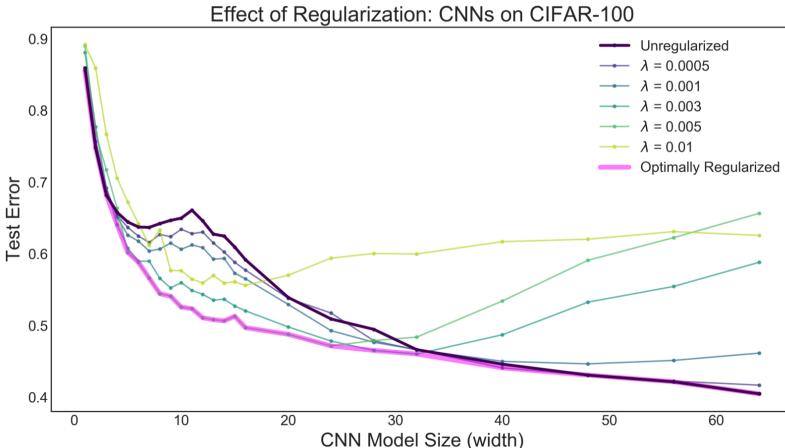
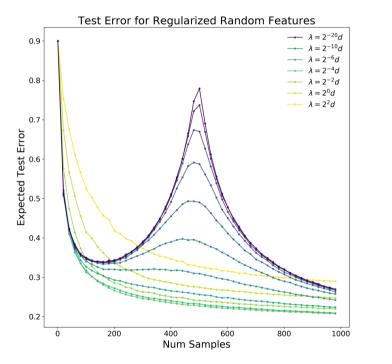


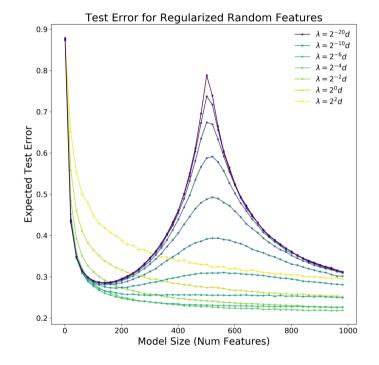
Figure 2: Left: Test error as a function of model size and train epochs. The horizontal line corresponds to model-wise double descent-varying model size while training for as long as possible. The vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent as train time increases. **Right** Train error of the corresponding models. All models are Resnet18s trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.

Optimal regularization can mitigate double descent [Nakkiran et al. '21]:



Optimal regularization can mitigate double descent [Nakkiran et al. '21]:





a) Test Classification Error vs. Number of Trainng Samples.

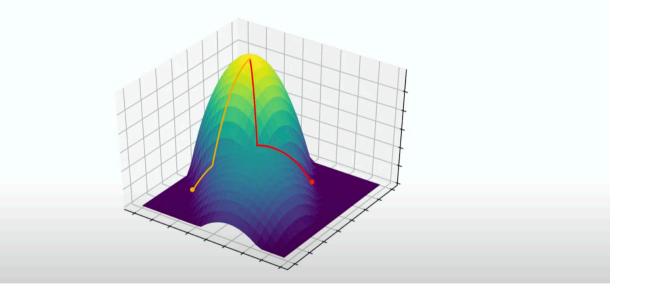
(b) Test Classification Error vs. Model Size (Number of Random Features).

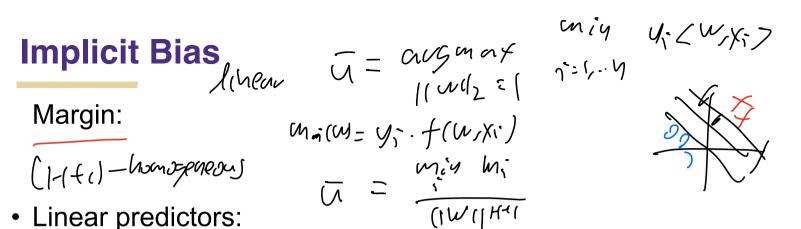
Implicit Regularization

plicit Regularization # Dacans > h
Different optimization algorithm _ suitidi ratue, hyper-canoneter
→ Different bias in optimum reached

- - ➔ Different Inductive bias

→ Different generalization properties





- Gradient descent, mirror descent, natural gradient descent, steepest descent, etc maximize margins with respect to different norms.
- Non-linear:
 - Gradient descent maximizes margin for homogeneous neural networks.
 - Low-rank matrix sensing: gradient descent finds a low-rank solution. $M = UU^{T}$ M : Iou - VGWC U : fW-VGWC

Separation between NN and kernel

• For approximation and optimization, neural network has no advantage over kernel. Why NN gives better performance: generalization.

- [Allen-Zhu and Li '20] Construct a class of functions \mathscr{F} such that y = f(x) for some $f \in \mathscr{F}$:
 - no kernel is sample-efficient;
 - Exists a neural network that is sample-efficient.