
Generalization Theory 
for Deep Learning

 



Rademacher Complexity
Intuition: how well can a classifier class fit random noise? 

(Empirical) Rademacher complexity: For a training set 
, and a class , denote:  

 . 

where  (Rademacher R.V. ). 

(Population) Rademacher complexity:  

.

S = {x1, x2, …, xn} ℱ
R̂n(S) = #σ sup

f∈ℱ

n

∑
i=1

σi f(xi)

σi ∼ Unif{+1, − 1}

Rn = #S [R̂n(s)]



Rademacher Complexity Generalization Bound

Theorem: with probability  over the choice of a training set, 
for a bounded loss , we have
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Norm-based Rademacher complexity bound

Theorem: If the activation function is  is -Lipschitz. Let  
 

then  where 
 is the input data matrix. 

σ ρ
ℱ = {x ↦ WH+1σ(Whσ(⋯σ(W1x)⋯),∥WT

h ∥1,∞ ≤ B ∀h ∈ [H]}
Rn(-) ≤ ∥X⊤∥2,∞(2ρB)H+1 2 ln d

X = [x1, …, xn] ∈ ℝd×n
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Massart Lemma

Lemma: Let  be a set of vectors , we have 
. 

V ⊂ ℝd

RV := #ϵ∼Unif{1,−1}d max
v∈V

⟨ϵ, v⟩ ≤ sup
v∈V

∥v∥2 2 ln d
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Properties of Rademacher Complexity

Let  be a set of vectors : 
1. , 
2. . 

3. Let  be  set of vectors such that for anyway 
,  (e.g., ), then we have

. 

V ⊂ ℝd

RConv(V) = RV
RV = R−V

V1, …, Vm m
ϵ ∈ {−1, + 1}d sup

v∈Vi

⟨v, ϵ⟩ ≥ 0 0 ∈ Vi

R∪m
i=1Vi

≤
m

∑
i=1

RVi

U if U

UE tou CN if u É Dini



Proof of  norm-based bound(1,∞)
Layer by layer induction
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Proof of  norm-based bound(1,∞)
Induction Sten assume hypothesis n'stone

till layers
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Proof of  norm-based bound(1,∞) Cipshitz
scalingproperty
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Comments on generalization bounds
• When plugged in real values, the bounds are rarely non-trivial 

(i.e., smaller than 1) 
• “Fantastic Generalization Measures and Where to Find them” 

by Jiang et al. ’19 : large-scale investigation of the correlation of 
extant generalization measures with true generalization.

Image credits to Andrej Risteski



Comments on generalization bounds
• Uniform convergence may be unable to explain generalization 

of deep learning [Nagarajan and Kolter, ’19] 
• Uniform convergence: a bound for all  
• Exists example that 1) can generalize, 2) uniform 

convergence fails. 

• Rates: 
• Most bounds: . 
• Local Rademacher complexity: .

f ∈ ℱ

1/ n
1/n
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Double descent

• There are cases where the model gets bigger, yet the (test!) 
loss goes down, sometimes even lower than in the classical 
“under-parameterized” regime. 

• Complexity: number of parameters.

Belkin, Hsu, Ma, Mandal ‘18
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Double descent 
Widespread phenomenon, across architectures (Nakkiran et al. 
’19):
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Double descent 
Widespread phenomenon, across architectures (Nakkiran et al. 
’19):



Double descent
Widespread phenomenon, also in kernels (can be formally proved 
in some concrete settings [Mei and Montanari ’20]), random 
forests, etc.



Double descent 
Also in other quantities such as train time, dataset, etc (Nakkiran 
et al. ’19):



Double descent 
Optimal regularization can mitigate double descent [Nakkiran et 
al. ’21]:



Double descent 
Optimal regularization can mitigate double descent [Nakkiran et 
al. ’21]:



Implicit Regularization pavan Dh
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Implicit Bias
Margin: 

• Linear predictors: 
• Gradient descent, mirror descent, natural gradient descent, 

steepest descent, etc maximize margins with respect to 
different norms. 

• Non-linear: 
• Gradient descent maximizes margin for homogeneous neural 

networks. 
• Low-rank matrix sensing: gradient descent finds a low-rank 

solution.
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Separation between NN and kernel
• For approximation and optimization, neural network has no 

advantage over kernel. Why NN gives better performance: 
generalization. 

• [Allen-Zhu and Li ’20] Construct a class of functions such that 
 for some : 

• no kernel is sample-efficient; 
• Exists a neural network that is sample-efficient.

ℱ
y = f(x) f ∈ ℱ


