Generalization Theory
for Deep Learning
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Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set

S = {X{,%y, ..., X, }, and a class &, denote:
n
R(S) = E,sup ) 6,f(x).
fEQ‘r‘ i=1

where 6; ~ Unif{+1, — 1} (Rademacher R.V.).

(Population) Rademacher complexity:
R = E, [Rn(s)].



Rademacher Complexity Generalization Bound

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have
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Norm-based Rademacher complexity bound

Theorem: If the activation function is o is p-Lipschitz. Let
F = {x > Wy o(W,o(---c(Wx)--)IW/ ||, ,» < BVh € [H]}

then R(S) < ||XT||2 (2pB)1*14/2 Ind where
=[x, ..., x,] € R®"is the input data matrix.



Massart Lemma

Lemma: Let V be a set of vectors C IRd, we have

Ry = E, unif(1,—1y« Max(e, v) < sup [|v|l,3/21Ind.
veV veV



Properties of Rademacher Complexity

Let V be a set of vectors C R%:

1. RConV(V) = Ry,
2. Ry = R_y,.

3.LetV,,..., V,g be m set of vectors such that for anyway
e € {—1,+ 1}% sup(v,e) >0 (e.g., 0 € V), then we have
vevV,

m
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Proof of (1,00) norm-based bound



Proof of (1,00) norm-based bound



Proof of (1,00) norm-based bound



Comments on generalization bounds

* When plugged in real values, the bounds are rarely non-trivial
(i.e., smaller than 1)

“Fantastic Generalization Measures and Where to Find them”
by Jiang et al. '19 : large-scale investigation of the correlation of
extant generalization measures with true generalization.
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Comments on generalization bounds

« Uniform convergence may be unable to explain generalization
of deep learning [Nagarajan and Kolter, "19]

» Uniform convergence: a bound for all f € &#

« Exists example that 1) can generalize, 2) uniform
convergence fails.

* Rates:

« Most bounds:l/\/z.
« Local Rademacher complexity: 1/n.



Double descent

under-fitting . over- fitting
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* There are cases where the model gets bigger, yet the (test!)
loss goes down, sometimes even lower than in the classical
“under-parameterized” regime.

« Complexity: number of parameters.



Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
'19):
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(a) CIFAR-100. There is a peak in test error even (b) CIFAR-10. There is a “plateau” in test error
with no label noise. around the interpolation point with no label noise,
which develops into a peak for added label noise.



Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
'19):
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Double descent

Widespread phenomenon, also in kernels (can be formally proved
in some concrete settings [Mei and Montanari "20]), random
forests, etc.
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Double descent

Also in other quantities such as train time, dataset, etc (Nakkiran
et al. '19):
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Figure 2: Left: Test error as a function of model size and train epochs. The horizontal line corre-
sponds to model-wise double descent—varying model size while training for as long as possible. The
vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent
as train time increases. Right Train error of the corresponding models. All models are Resnet18s
trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.



Double descent

Optimal regularization can mitigate double descent [Nakkiran et
al. '21]:
Effect of Regularization: CNNs on CIFAR-100
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Double descent

Optimal regularization can mitigate double descent [Nakkiran et

al. '21]:

Test Error for Regularized Random Features
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Implicit Regularization

Different optimization algorithm
=» Different bias in optimum reached
=>» Different Inductive bias
=>» Different generalization properties




Implicit Bias

Margin:

 Linear predictors:

« Gradient descent, mirror descent, natural gradient descent,
steepest descent, etc maximize margins with respect to
different norms.

 Non-linear:

« Gradient descent maximizes margin for homogeneous neural
networks.

« Low-rank matrix sensing: gradient descent finds a low-rank
solution.



Separation between NN and kernel

* For approximation and optimization, neural network has no
advantage over kernel. Why NN gives better performance:
generalization.

- [Allen-Zhu and Li '20] Construct a class of functions & such that
y = f(x) for some f € F:
* no kernel is sample-efficient;
» Exists a neural network that is sample-efficient.



