Techniques for
Improving Generalization

W



Weight Decay

L2 regularization: 5||9||%

Implementation: 6 < (1 — n1)0 — n Vf(0)



Dropout

Intuition: randomly cut off some connections and neurons.

Training: for each input, at each iteration, randomly “turn off”
each neuron with a probability 1 —

 Change a neuron to 0 by sampling a Bernoulli variable.

e Gradient only propogatd from non-zero neurons.
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Dropout

Dropout changes the scale of the output neuron:

v = Dropout(c(WX))
» Ely] = aklo(Wx)]

Test time:y = ao(Wx) to match the scale
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Understanding Dropout

* Dropout forces the neural network to learn redundant patterns.

* Dropout can be viewed as an implicit L2 regularizer (Wager,
Wang, Liang '13).
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Early Stopping

» Continue training may lead to overfitting.
» Track performance on a held-out validation set.
« Theory: for linear models, equivalent to L2 regularization.
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Data Augmentation

Depend on data types.

Computer vision: rotation, stretching, flipping, etc
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Mixup data augmentation

e %=+ (1= A,

e 4 ~ Beta(0.2)




Data Augmentation

Depend on data types.

Natural language processing:
« Synonym replacement

 This article will focus on summarizing data augmentation in
NLP.

» This write-up will focus on summarizing data augmentation in
NLP.

« Back translation: translate the text data to some language and
then translate back

- | have no time. -> ;% 8H18]. -> | do not have time.



Learning rate scheduling

Start with large learning rate. After some epochs, use small
learning rate.

Learning rate schedule
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Learning rate scheduling

Start with large learning rate. After some epochs, use small
learning rate.

Theory:

* Linear model / Kernel: large learning rate first learns
eigenvectors with large eigenvalues (Nakkiran, "20).

* Representation learning (Li et al., ‘19)
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Normalizations

Batch normalization (loffe & Szegedy, '15)

Layer normalization (Ba, Kiros, Hinton, "16)

Weight normalization (Salimans, Kingma, '16)

Instant normalization (Ulyanov, Vedaldi, Lempitsky, *16)

« Group normalization (Wu & He, '18)



Generalization Theory
for Deep Learning
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Basic version: finite hypothesis class

Finite hypothesis class: with probability 1 — ¢ over the choice
of a training set of size n, for a bounded loss £, we have

sup
feF

1 &
; Z f(f(xl-), yi) — [E(x,y)ND [f(f(x)’ )7)]
i=1
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VC-Dimension

Motivation: Do we need to consider every classifier in & ?

Intuitively, pattern of classifications on the training set should
suffice. (Two predictors that predict identically on the training set
should generalize similarly).

Let F = {f: RY - {+1, — 1]} be a class of binary classifiers.

The growth function I1g : N — [Fis defined as:
Npom) = max | {(fx). f), ... f,)) | f€ FY |

(X[ X0s -+ X))

The VC dimension of & is defined as:
VCdim(F) = max{m : [Ig(m) = 2"} .



VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability 1 — o over
the choice of a training set, for a bounded loss £, we have

sup
feF

1 n
= 2 A3 = Eqeyyep [£(F@).)
=1

Examples:

 Linear functions: VC-dim = O(dimension)

* Neural network: VC-dimension of fully-connected net with width
W and H layers is ® (WH) (Bartlett et al., ’17).
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Problems with VC-dimension bound

1. In over-parameterized regime, bound >> 1.
2. Cannot explain the random noise phenomenon:

 Neural networks that fit random labels and that fit true labels
have the same VC-dimension.

Practice: gradient descent
OL(0(t))

O(t+ 1)« 0(t) —n 0
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PAC Bayesian Generalization Bounds

Setup: Let P be a prior over function in class &, let Q be the
posterior (after algorithm’s training).

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have

o KL P)+logl/é6
sup | — 3 £(f05), %) = Euyyep [£(F0), )] :0<\/ B >
=1

feF n




Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set

S = {X{,%y, ..., X, }, and a class &, denote:
n
R(S) = E,sup ) 6,f(x).
fEQ‘r‘ i=1

where 6; ~ Unif{+1, — 1} (Rademacher R.V.).

(Population) Rademacher complexity:
R = E, [Rn(s)].



Rademacher Complexity Generalization Bound

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have

sup
fesF

and

sup
fexF

1 n
- 2 C(f(x), ¥) = Eeyyen lf(f(x)’ y)]
i=1

1 n
= 3" A3 = Equyyop [£(00.9)]
i=1
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Kernel generalization bound

Use Rademacher complexity theory, we can obtain a

generalization bound 0(\/yT(H*)_1y/n) where y € R" are n
labels, and H* € R"" is the kernel (e.g., NTK) matrix.
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Norm-based Rademacher complexity bound

Theorem: If the activation function is o is p-Lipschitz. Let
F = {x > Wy o(W,o(---c(Wx)--)IW/ ||, ,» < BVh € [H]}

then R(S) < ||XT||2 (2pB)1*14/2 Ind where
=[x, ..., x,] € R®"is the input data matrix.



