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1 1D Approximation

Theorem 1. Let g : [0, 1] → R, and ρ-Lipschitz. For any ϵ > 0, 2-layer neural network f with ⌈ρϵ ⌉
nodes, threshold activation σ(z) : z → 1{z ≥ 0} such that supx∈[0,1] |f(x)− g(x)| ≤ ϵ.

Proof. Proof idea: divide the [0, 1] interval into equal length of ϵ
ρ sub-intervals. Then construct a

piece wise constant function f on each interval to approximate our target function g, which can be
represented by a 2-layer neural network with a threshold activation function.

Define m := ⌈ρϵ ⌉, and xi :=
(i−1)ϵ

ρ for i ∈ {0, . . . ,m − 1}, and a0 = g(0), ai = g(xi) − g(xi−1),

and lastly define our neural network f(x) :=
∑m−1

i=0 ai1[x− xi ≥ 0]. This is saying that if x < x1,
all except x0 is 0. So f(x) = a0 = g(x0). If x1 ≤ x < x2, f(x) = g(x1). Thus, on each sub-interval,
this constant function will equal to part of the target function applies to the left of the interval.
Then for any x ∈ [0, 1], letting xi be the largest index so that xi ≤ x,

|g(x)− f(x)| = |g(x)− f(xi)| where xi ≤ x and closest to x on the left

≤ |g(x)− g(xi)|+ |g(xi)− f(xi)| by triangle inequality

≤ ρ|x− xi| by Lipschitzness of g

≤ ρ · ϵ
ρ

= ϵ.

Note: the length of the sub-interval depends on Lipschitzness of the target function. If target
function is smooth, then we don’t need many sub-intervals, and vice versa.

2 Multivariate Approximation

Theorem 2. Let g be a continuous function that satisfies ||x − x′||∞ ≤ δ ⇒ |g(x) − g(x′)| ≤ ϵ
(Lipschitzness). Then there exists a 3-layer ReLU neural network with O( 1

δd
) nodes that satisfy∫

[0,1]d
|f(x)− g(x)|dx = ||f − g||1 ≤ ϵ

Proof. Proof idea: 1) Use h(x) =
∑

i αi1Ri(x) in the partition lemma. 2) Use a 2-layer neu-
ral network to approximate the threshold indicator function x 7→ 1Ri(x), then find some linear
combination to represent h.
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Our goal is to show
||f − g||1 ≤ ||f − h||1 + ||h− g||1

where the second term on the right is bounded by ϵ by the partition lemma. Thus we want to show
||f − h||1 ≤ ϵ.

Formally, define f(x) =
∑N

i=1 αifi(x) where the αi’s are the same as defined in h(x) above. Then

||f − g||1 = ||
N∑
i=1

αi(1Ri − fi)||1

≤
N∑
i=1

|αi|||1Ri − fi||1

We want ||1Ri − fi|| ≤ ϵ∑N
i=1 |αi|

.

To construct fi’s, we define a region Ri := [a1b1]× [a2b2]× · · · [adbd], which is a Cartesian product
of 1-d intervals.

The idea is that we would use a bump function (through our smoother ReLU) to approximate the
indicator function, which is non-smooth.

In the 1 dimensional case, given γ > 0, we define gγ,j(z) = σ(
z−(aj−γ)

γ ) − σ(
z−aj
γ ) − σ(

z−bj
γ ) +

σ(
z−(bj+γ)

γ ), where σ function is ReLU.

In general, where x is a d-dimensional vector, we define gγ(x) = σ(
∑d

j=1 gγ,j(x
j) − (d − 1)). We

can check by definition that

gγ(x) =

{
1 if xi

0 if x /∈ [α1 − γ, b1 + γ]× · · · [ad − γ, bd + γ]

Since γ → 0, gγ → 1Ri by definition, so , ∃γ s.t. ||gγ − 1Ri ||1 ≤ ϵ∑
i |αi|

Therefore we define fi = gγ , f :=
∑N

i=1 αifi.
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