Reinforcement Learning Spring 2024 Abhishek Gupta TAs: Patrick Yin, Qiuyu Chen #### Class Structure # Attempt 1: Using Recursive Structure $$\frac{1}{N} \sum_{i=0}^{N} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i}|s_{t}^{i}) Q^{\pi}(s_{t'}^{i}, a_{t'}^{i}) \qquad Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t'=t}^{T} r(s_{t}', a_{t}') | s_{t}, a_{t} \right]$$ $$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t'=t}^{T} r(s'_t, a'_t) | s_t, a_t \right]$$ Fit a value function on on-policy data $$\min_{\phi} \mathbb{E}_{(s_{i}, a_{i}, s_{i}') \sim \pi} \left[(V_{\phi}^{\pi}(s_{i}) - y_{i})^{2} \right]$$ $$y_{i} = r(s_{i}, a_{i}) + V(s_{i}')$$ Compute the policy gradient $$\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i=0}^{N} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) (r(s_t, a_t) + V(s_{t+1}) - V(s_t))$$ Collect more data + lowers variance - Still on-policy # Does this converge? $$V_{i+1}^{\pi}(s) \leftarrow \mathbb{E}_{s' \sim p(.|s,a)} \left[r(s,a) + V_i^{\pi}(s') \right] \qquad V_{i+1} \leftarrow B_p^{\pi} V_i^{\pi}$$ Bellman operator $$V_{i+1} \leftarrow B_p^{\pi} V_i^{\pi} \qquad U_{i+1} \leftarrow B_p^{\pi} U_i^{\pi}$$ To prove: $$d(f(x), f(y)) \leq q d(x, y) \qquad |V_{i+1} - U_{i+1}|_{\infty} \leq \gamma |V_i - U_i|_{\infty}$$ $$|V_{i+1} - U_{i+1}|_{\infty} \leq \gamma |V_i - U_i|_{\infty}$$ $$|V_{i+1} - U_{i+1}|_{\infty} = \max_{s} |V_{i+1}(s) - U_{i+1}(s)|$$ $$= \max_{s} |\left(\int \pi(a|s) \left(\int p(s'|s,a)(r(s,a) + \gamma U_i(s'))ds\right) da\right) - \left(\int \pi(a|s) \left(\int p(s'|s,a)(r(s,a) + \gamma V_i(s'))ds\right) da\right)|$$ $$= \gamma \max_{s} |\left(\int \pi(a|s) \left(\int p(s'|s,a)(U_i(s') - V_i(s'))ds\right) da\right)|$$ $$\leq \gamma \max_{s} |\left(\int \pi(a|s) \left(\int p(s'|s,a)\max_{x}(U_i(x) - V_i(x))ds\right) da\right)|$$ $$= \gamma \max_{s} |\left(\int \pi(a|s)\max_{x}(U_i(x) - V_i(x))ds\right)|$$ $$= \gamma \max_{s} |\left(\int \pi(a|s)\max_{x}(U_i(x) - V_i(x))ds\right)|$$ Contraction, hence converges to a fixed point ## Does this converge for arbitrary function approximation? For arbitrary function approximation, it is not just a Bellman backup $$V_{i+1}^{\pi}(s) \leftarrow \mathbb{E}_{s' \sim p(.|s,a)} \left[r(s,a) + V_i^{\pi}(s') \right] \qquad V_{i+1} \leftarrow B_p^{\pi} V_i^{\pi}$$ $$a \sim \pi(\cdot|s')$$ We perform a Bellman backup + a projection Projection – find closest element of function class to approximate tabular values $$\min_{\phi} \mathbb{E}_{(s_{i}, a_{i}, s_{i}') \sim \pi} \left[(V_{\phi}^{\pi}(s_{i}) - y_{i})^{2} \right]$$ $$y_{i} = r(s_{i}, a_{i}) + V(s_{i}')$$ Backup may be a contraction, but backup + projection may not be # Attempt 2: Recursive structure in Q functions directly Q functions have special recursive structure themselves! $$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t'=t}^{T} r(s'_t, a'_t) | s_t, a_t \right]$$ $$= r(s_t, a_t) + \mathbb{E}_{\pi} \left[\sum_{t'=t+1} r(s_{t'}, a_{t'}) | s_{t+1}, a_{t+1} \sim \pi(.|s_{t+1}) \right]$$ Bellman equation $$Q^{\pi}(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{\substack{s_{t+1} \sim p(.|s_t, a_t) \\ a_{t+1} \sim \pi_{\theta}(.|s_{t+1})}} \left[Q^{\pi}(s_{t+1}, a_{t+1}) \right]$$ Can be from different policies Decompose temporally via dynamic programming **Off-policy!** # Learning Q-functions via Dynamic Programming #### Policy Evaluation: Try to minimize Bellman Error (almost) How can we convert this recursion into an off-policy learning objective? #### Lecture outline Working through a complete off-policy algorithm Getting Off-Policy RL to Work Frontiers of Off-Policy RL Model-Based RL - Formulation ## Why is this not just the gradient of the Bellman Error? $$\min_{\phi} \mathbb{E}_{(s_{t}, a_{t}, s_{t+1}) \sim \mathcal{D}} \left(Q_{\phi}^{\pi}(s_{t}, a_{t}) - (r(s_{t}, a_{t}) + \mathbb{E}_{a_{t+1} \sim \pi_{\theta}(a_{t+1}|s_{t+1})} \left[Q_{\hat{\phi}}^{\pi}(s_{t+1}, a_{t+1}) \right] \right)^{2}$$ #### Approximate using stochastic optimization Often tough empirically with function approximators Expectation inside the square, hard to be unbiased Note: this may look like gradient descent on Bellman error, it is not! # Improving Policies with Learned Q-functions Policy Improvement: Improve policy with policy gradient $$\max_{\theta} \mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_{\theta}(a|s)} \left[Q^{\pi_{\theta}}(s, a) \right]$$ Replace Monte-Carlo sum of rewards with learned Q function Lowers variance compared to policy gradient! # Policy Updates – REINFORCE or Reparameterization Let's look a little deeper into the policy update $$\max_{\theta} J(\theta) = \max_{\theta} \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi_{\theta}(.|s)} \left[Q^{\pi}(s, a) \right]$$ Likelihood Ratio/Score Function Pathwise derivative/Reparameterization $$\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi_{\theta}(.|s)} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s,a) \right] \qquad \nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{z \sim p(z)} \left[\nabla_{a} Q^{\pi}(s,a) |_{a = \mu_{\theta} + z\sigma_{\theta}} \nabla_{\theta}(\mu_{\theta} + z\sigma_{\theta}) \right]$$ Easier to Apply to Broad Policy Class Lower variance (empirically) Remember Lecture 2 and discussion of when gradients can be moved inside # Actor-Critic: Policy Gradient in terms of Q functions Critic: learned via the Bellman update (Policy Evaluation) $$\min_{\phi} \mathbb{E}_{(s_t, a_t, s_{t+1}) \sim \mathcal{D}} \left(Q_{\phi}^{\pi}(s_t, a_t) - (r(s_t, a_t) + Q_{\hat{\phi}}^{\pi}(s_{t+1}, a_{t+1})) \right)^2 \quad a_{t+1} \sim \pi(\cdot | s_{t+1})$$ Lowers variance and is off-policy! Actor: updated using learned critic (Policy Improvement) $$\max_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi(.|s)} \left[Q^{\pi}(s, a) \right]$$ #### Actor-Critic in Action # Lecture outline Working through a complete off-policy algorithm Getting Off-Policy RL to Work Frontiers of Off-Policy RL Model-Based RL - Formulation What can we do to make off-policy algorithms work in practice? # Going from Batch Updates to Online Updates This algorithm can go from full batch mode to fully online updates Allows for much more immediate updates # Challenges of doing online updates 1 sample Critic: 1 gradient step on Bellman error Actor: 1 gradient step on policy gradient When updates are performed online, two issues persist: - 1. Correlated updates since samples are correlated - 2. Optimization objective changes constantly, unstable # Decorrelating updates with replay buffers Updates can be decorrelated by storing and shuffling data in a replay buffer Sampled from replay buffer $$\min_{\phi} \mathbb{E}_{\substack{(s_t, a_t, s_{t+1}) \sim \mathcal{D} \\ a_{t+1} \sim \pi(\cdot | s_{t+1})}} \left[(Q_{\phi}^{\pi}(s_t, a_t) - (r(s_t, a_t) + Q_{\hat{\phi}}^{\pi}(s_{t+1}, a_{t+1})))^2 \right]$$ $$\max_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi(.|s)} \left[Q^{\pi}(s, a) \right]$$ Instead of doing updates in order, sample batches from replay buffer - 1. Sample uniformly - 2. Prioritize by TD-error - 3. Prioritize by target error - 4. ... open area of research! # Slowing moving targets with target networks Continuous updates can be unstable since there is a churn of projection and backup $$\min_{\phi} \mathbb{E}_{\substack{(s_t, a_t, s_{t+1}) \sim \mathcal{D} \\ a_{t+1} \sim \pi(\cdot | s_{t+1})}} \left[\left(Q_{\phi}^{\pi}(s_t, a_t) - \left(r(s_t, a_t) + Q_{\hat{\phi}}^{\pi}(s_{t+1}, a_{t+1}) \right) \right)^2 \right]$$ If we set $\,\phi\,$ to $\,\phi\,$ every update, the update becomes very unstable Move $\overline{\phi}$ to ϕ slowly! $$\bar{\phi} = (1 - \tau)\phi + \tau\bar{\phi}$$ Polyak averaging # A Practical Off-Policy RL Algorithm # Simplify -- Can we get rid of a parametric actor? #### Critic Update $$\min_{\phi} \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \left[Q_{\phi}^{\pi}(s_t,a_t) - (r(s_t,a_t) + \mathbb{E}_{a_{t+1}\sim\pi(.|s_{t+1})} \left[Q_{\bar{\phi}}(s_{t+1},a_{t+1}) \right] \right]^2$$ Actor Update $$\max_{\pi} \mathbb{E}_{s\sim\mathcal{D}} \mathbb{E}_{a\sim\pi(.|s)} \left[Q^{\pi}(s,a) \right]$$ What if we removed this explicit actor completely? # Directly Learning Q* $$\min_{\phi} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\begin{bmatrix} Q_{\phi}^{\pi}(s_t,a_t) - (r(s_t,a_t) + \max_{a_{t+1}} \left[Q_{\bar{\phi}}(s_{t+1},a_{t+1}) \right]) \end{bmatrix}^2 \right] \\ \pi(a|s) = \max_{a} Q(s,a) \qquad \text{Directly do max in the Bellman update} \\ \text{Add to} \\ \text{Buffer} \qquad \text{Sample batch from buffer} \\ \text{Collect} \\ \text{Data} \qquad \text{Critic: 1 gradient step on Bellman error} \\ \text{Polyak} \\ \text{Averaging} \qquad \text{No actor updates, just learn Q!} \\ \text{No actor updates, just learn Q!} \\ \text{No actor updates, just learn Q!} \\ \text{No actor updates} acto$$ #### How can we maximize w.r.t a? $$\pi(a|s) = \max_{a} Q(s, a)$$ Analytic maximization can be very difficult to perform in continuous action spaces Much easier in discrete spaces! just do categorical max! Some ideas to do maximization: - 1. Sampling based (QT-opt (Kalashnikov et al)) - 2. Optimization based (NAF, Gu et al) #### Practical Actor-Critic in Action Trained using QT-Opt ## Practical Actor-Critic in Action Trained using DDPG # What can we do to make them match on-policy algorithms in asymptotic performance? #### Where does this fail? #### Performance Double Q-Learning vs Q-Learning 10 actions at B #### Some issues remain: - 1. Overestimation bias - 2. Insufficient exploration Let's try and understand these! #### Overestimation Bias in Actor-Critic Optimized Q's are often overly optimistic $$\min_{\phi} \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \left[\left[Q_{\phi}^{\pi}(s_t, a_t) - (r(s_t, a_t) + \max_{a_{t+1}} \left[Q_{\bar{\phi}}(s_{t+1}, a_{t+1}) \right] \right) \right]^2 \right]$$ Q is meant to be an expectation → actually a random variable because of limited data/stochasticity E(max) > max(E), so values are optimistic #### Overestimation Bias in Actor-Critic Learn two (or N) independent measures of Q, take the minimum → pessimistic on random variable Significantly improves overestimation and in turn sample efficiency! #### Overestimation Bias in Actor-Critic Significantly improves overestimation and in turn sample efficiency! ## Double Actor Critic in Action ## Double Actor Critic in Action ### Where does this fail? Some issues remain: - 1. Overestimation bias - 2. Insufficient exploration Let's try and understand these! # Collapse of Exploration in Off-Policy RL Deep RL policies will often converge prematurely or explore insufficiently # Addressing Policy Collapse in Off-Policy RL Adding entropy to the RL objective can help significantly $$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \right]$$ $$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} (r(s_{t}, a_{t}) + \alpha \mathcal{H}(\pi(.|s_{t}))) \right]$$ Simple change in on-policy RL $$\mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \left[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{T} \gamma^{t'-t} (r(s_{t}, a_{t}) + \alpha \mathcal{H}(\pi(.|s_{t})) \right] + \alpha \nabla_{\theta} \mathcal{H}(\pi_{\theta}(.|s_{t})) \right]$$ (via chain rule) ## Max-Ent Off-Policy RL $$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} (r(s_{t}, a_{t}) + \alpha \mathcal{H}(\pi(.|s_{t}))) \right]$$ Work through the recursion, same as with the regular Bellman Critic – Policy Evaluation $$\min_{\phi} \mathbb{E}_{\substack{(s_t, a_t, s_{t+1}) \sim \mathcal{D} \\ a_{t+1} \sim \pi(\cdot | s_{t+1})}} \left[(Q_{\phi}^{\pi}(s_t, a_t) - (r(s_t, a_t) + Q_{\hat{\phi}}^{\pi}(s_{t+1}, a_{t+1})) - \alpha \log \pi(a_{t+1} | s_{t+1}))^2 \right]$$ Actor – Policy Improvement $$\max_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} \left[Q_{\phi}^{\pi}(s, a) - \alpha \log \pi(a|s) \right] \right]$$ ### Soft Bellman Equation from Max-Ent RL #### Optimize a "soft" Bellman equation $$Q(s_{t}, a_{t}) \leftarrow r_{t} + \gamma \mathbb{E}_{s_{t+1} \sim p_{s}} \left[V(s_{t+1}) \right]$$ $$Q_{\text{soft}}(s_{t}, a_{t}) \leftarrow r_{t} + \gamma \mathbb{E}_{s_{t+1} \sim p_{s}} \left[V_{\text{soft}}(s_{t+1}) \right]$$ $$V(s_{t}) \leftarrow \max_{a} Q(s_{t}, a)$$ $$V_{\text{soft}}(s_{t}) \leftarrow \alpha \log \int_{\mathcal{A}} \exp \left(\frac{1}{\alpha} Q_{\text{soft}}(s_{t}, a') \right) da'$$ $$\pi(a|s_{t}) \leftarrow \arg \max_{a} Q(s_{t}, a)$$ $$\pi_{\text{soft}}(a|s_{t}) = \exp \left(\frac{1}{\alpha} (Q_{\text{soft}}(s_{t}, a) - V_{\text{soft}}(s_{t})) \right)$$ Go from max to "softmax" (imagine if α goes to 0, it becomes a max) Prevents premature collapse of exploration while smoothing out optimization landscape! ### Ok, but how do I choose α ? $$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} (r(s_{t}, a_{t}) + \alpha \mathcal{H}(\pi(.|s_{t}))) \right]$$ Often hard to set as a constant Can simply formulate a constrained optimization problem \rightarrow entropy above some value $$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \right] \qquad \Longrightarrow \qquad \max_{\pi} \min_{\alpha} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) - \alpha (\mathcal{H}(\pi(\cdot|s_{t}) - \epsilon)) \right]$$ $$\mathbb{E}_{s \sim d^{\pi}(s)} \left[\mathcal{H}(\pi(\cdot|s_{t})) \right] \geq \epsilon$$ Alternate between gradient steps on π , α ### Maximum Entropy Actor-Critic Algorithms in Action ### Lecture outline Working through a complete off-policy algorithm Getting Off-Policy RL to Work Frontiers of Off-Policy RL Model-Based RL - Formulation Ok, so are off-policy algorithms perfect? ### What makes off-policy RL hard? These in combination lead to many of the difficulties in stabilizing offpolicy RL with function approximation ### Zooming out – what makes off-policy RL hard? #### Deadly triad: - 1. Function Approximation - 2. Bootstrapping - 3. Off-policy learning 61% of runs show divergence of Q-values Diverges even with linear function approximation, when off-policy + bootstrapping ### Zooming out – what makes off-policy RL hard? (b) $v(s) = w\phi(s)$ diverges. Let's go to the whiteboard! What should I work on? ### Where does the frontier of off-policy RL lie? Off-policy is an extremely promising tool, but not quite plug and play like PG methods - Low variance, off-policy, avoids reconstruction, performs dynamic programming - Has the potential to be <u>performant</u> and <u>sample efficient</u> But in practice is often unstable, inefficient with high dimensional observations Sampling Theory Exploration States being updated Intermediate values of error (high (L) to low (R) error) States being updated \hat{Q} Proj. Image-based RL **Partial Observability** ### Prioritizing Experience #### Performing uniform buffer TD updates can be catastrophically bad (a) Sub-optimal convergence for on- (b) Instability for replay buffer distribu- (c) Error (left) and returns (right) for tions: return (dashed) and value error (solid) over training iterations. Note the rapid increase in value error at multiple points, which co-occurs with instabilities in returns. sparse reward MDP with replay buffer distributions. Note the inability to learn, low return, and highly unstable value error \mathcal{E}_k , often increasing sharply, destabilizing the learning process. Need to prioritize updates to propagate good values ### Theory/Convergence with Function Approximation #### Significant body of work on learning dynamics with function approximation #### **Delusional Bias** Figure 1: A simple MDP that illustrates delusional bias (see text for details). #### Implicit regularization $$\overline{\mathcal{R}}_{\mathrm{exp}}(\theta) = \sum_{i \in \mathcal{D}} \phi(\mathbf{s}_i, \mathbf{a}_i)^{\top} \phi(\mathbf{s}_i', \mathbf{a}_i').$$ #### Bilinear classes | Framework | B-Rank | B-Complete | W-Rank | Bilinear Class (this work) | |----------------------------|--------|------------|--------|----------------------------| | B-Rank | ✓ | × | ✓ | ✓ | | B-Complete | X | ✓ | X | \checkmark | | W-Rank | Х | Х | ✓ | ✓ | | Bilinear Class (this work) | Х | X | Х | ✓ | ### Exploration in Off-Policy RL Better exploration methods Uncertainty based methods Count-based methods Information gain methods Often critical for getting algorithms to work! ## Image-based Off-Policy RL Learning from high dimensional observations is unstable – images/point clouds #### Data augmentations #### Pre-trained representations #### Student-teacher Still very unstable, lot of open research problems! ## Partial Observability in Off-Policy RL Off-policy methods critically depend on the Markov assumption Learning history conditioned/recurrent Q-functions is an open area! Small changes – larger number of ensembles, more minibatch steps allow for training in < 20 mins Uses MPO – a variant of actor critic with a supervised learning style actor update #### Bootstrapped with a few demonstrations untrained 12 min later 30 min later 1 hour later 2 hours later ### Pros/Cons of Off-Policy Methods in Robotics #### Pros: - 1. Sample-efficient enough for real world - Can learn from images with suitable design choices - 3. Off-policy, can incorporate prior data #### Cons - 1. Often unstable - 2. Can achieve lower asymptotic performance - 3. Requires significant storage ### Lecture outline Working through a complete off-policy algorithm Getting Off-Policy RL to Work Frontiers of Off-Policy RL Model-Based RL - Formulation ### Class Structure ## Landscape of Reinforcement Learning Algorithms ## What if we just learned how the world worked? - 1. Learn a surrogate model of the transition dynamics from arbitrary off-policy data - 2. Do reward maximization against this model Intuitive: learn how the world works first and then plan in that model ## Why do model-based RL? #### Why would we do this? Transfer/Adaptive Efficiency Simplicity Naturally off-policy! # Why do model-based RL? Just 2 hours of real robot training ## Connections to Cognitive Science Significant evidence for mechanisms for prediction of outcomes in neuro/cognitive science #### Reinforcement learning in the brain Yael Niv Psychology Department & Princeton Neuroscience Institute, Princeton University ### Model Based RL – Problem Statement #### **Model Learning** $$\hat{p}_{\theta} \leftarrow \arg\min_{\hat{p}_{\theta}} \mathcal{L}(\mathcal{D}, \hat{p}_{\theta})$$ #### Planning $$\arg\max_{\pi} \mathbb{E}_{\hat{p},\pi} \left[\sum_{t} r(s_t, a_t) \right]$$ Can also just be a single trajectory How should we instantiate these? ## What will we not cover today? #### iLQR/iLQG #### MBRL with GPs/Non-Parametrics #### Non-linear TrajOpt $$\min_{\mathbf{u}_1,...,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t, \mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})$$ $$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t$$ $$c(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$ Byron's lectures do a wonderful job, do go watch them! ## What will we cover today? #### Use neural networks as our model! $$\hat{p}_{\theta} \leftarrow \arg\min_{\hat{p}_{\theta}} \mathcal{L}(\mathcal{D}, \hat{p}_{\theta})$$ $$\arg\max_{\pi} \mathbb{E}_{\hat{p}, \pi} \left[\sum_{t} r(s_{t}, a_{t}) \right]$$ ## Model Based RL – Assumptions We will get into this in a later lecture! # Model Based RL – A template ### Lecture Outline Model based RL v0 → random shooting + MPC Model based RL v1 → MPPI + MPC Model based RL v2 \rightarrow uncertainty based models Model based RL v3 \rightarrow policy optimization with models Model based RL v4 → latent space models with images # Model Based RL – Naïve Algorithm (v0) ### Model Based RL – Naïve Algorithm (Model Learning) (v0) $$\max_{\theta} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\log \hat{p}_{\theta}(s'|s,a) \right]$$ Fit 1-step models Choice of \hat{p}_{θ} distribution determines the loss function: - 1. Gaussian \rightarrow L₂ - 2. Energy Based Model \rightarrow Contrastive Divergence - 3. Diffusion Model → Score Matching Trick: Model Residual's (s' –s) More expressive may be better, at the risk of overfitting ## Model Based RL – Naïve Algorithm (Planning) **Planning** $$\max_{a_0, a_1, \dots, a_T} \sum_{t=0}^{T} r(\hat{s}_t, a_t)$$ $$\hat{s}_{t+1} \sim \hat{p}_{\theta}(s_{t+1} | \hat{s}_t, a_t)$$ $$\hat{s}_1 \sim \hat{p}_{\theta}(s_{t+1} | s_0, a_0)$$ Just do random search! Just execute actions open loop! Can soften by taking softmax rather than argmax ### Lecture outline Working through a complete off-policy algorithm Getting Off-Policy RL to Work Frontiers of Off-Policy RL Model-Based RL - Formulation ### Fin.