w Reinforcement Learning
Spring 2024

Abhishek Gupta
TAs: Patrick Yin, Qiuyu Chen

g

Class Structure

14

/—[Imitation Learning]\
/

4 Model-free Reinforcement Learning

~

Policy Gradient ADP Model-based Reinforcement Learning
J
\—[Unifying Perspectives on RL and IRL]—/
Frontiers A
Exploration Learning from Prior Data Learning across tasks
J

Attempt 1: Using Recursive Structure

1
N

T
Z r (s, ay)| s, at}

t'=t

T
S Vologmolails)Q(shral) Q7 (sivar) = En,
t=0

M-

mgbiﬂ E(Si,ai,si/)’\“ﬂ' [(VCZZT(SZ) o yz)ﬂ

Fit a value function on on-policy data ,
pPOTCY y; = r(si,a;) + V(s;)

N T
Compute the policy gradient Vs J(0) = %ZZW log o (ay|sy)(r(se, ar) + V(set1) = V(st))

=0 t=0

Collect more data

+ lowers variance - Still on-policy

Does this converge?

i7—T|—1(S) < ES/Np(.|8,CL) [T(Sa CL) + ‘/iﬂ-(sl)] ‘/ti—|—1 — Bg‘/;ﬂ-
arv(-]s’)
Bellman operator V- BTV.T U/ BTUT
l ’L—|—]. % p 2 ’L—|—1 % P 7
To prove: d(f(x),f () <qd(x,y)
t T ‘V;—i—l _Ui—l—l‘oo S’Y‘V;_Uz‘oo

inf-norm Value functions

Vier —Uit1loo = max Vig1(s) — Uip1(9))

~ max| (/ r(als) (/ p(s']s,a)(r(s, a) + *in(s’))ds> da) _ (/ x(als) (/ p(s']5,0)(r(s, a) + ’YVi(S/))ds) da) |
—ymax| ([w(als) ([pls'15,0)(Ui(s) = Vils)ds) da)|
| =t

(7r (s'[s, @) max(Us () — m-(x))ds) da) |
— ~max| ((als) max(Uy(x) - V(x)da) |
U,

\U;(x) — Vi(x)| = v|U; — Vil Contraction, hence converges to a fixed point

Does this converge for arbitrary function approximation?

For arbitrary function approximation, it is not just a Bellman backup

z7—r|—1(5) N Es'wp(.\s,a) [T(S7 CL) + V;W(S/)] ‘/’H—l — Bg‘/zﬂ-

ar~(-|s’)
We perform a Bellman backup + a projection

Projection - find closest element of function class to approximate tabular values

Projecti ' y
rojection mg;n E(Si,ai,sil)wﬂ [(qu (5i) — yz)ﬂ

yi = (8, a;) + V(si/)

Backup may be a contraction, but backup
+ projection may not be

Tabular backup

Attempt 2: Recursive structure in Q functions directly

Q functions have special recursive structure themselves!
-7 _

QW(Shat) — EW@ ZT(S;,CL;NSt,at

|t/ =1 i

— T(St, at) + EW Z T(St/, at/)‘SH_l, Agy1 ™~ 7T(.|8t_|_1)
[t/ =t+1 _

Bellman equation QW(St, at) — "“(St, Cbt) +E ser1~p(.|se,ae) [QW(St—Ha at+1)]

at4+1~7o (. |St41) /
6LO0-6 B

Decompose temporally via dynamic programming Off-policy!

Can be from
different policies

Learning Q-functions via Dynamic Programming

Policy Evaluation: Try to minimize Bellman Error (almost)

Bellman equation = Q" (s¢,a¢) =r(st,ar) + E ser1~p(.|st,a+) Q7 (St41, a1
at4+1~7o (. |St41)

Same function approximator

How can we convert this recursion into an off-policy learning objective?

L ecture outline

Working through a complete off-policy algorithm

|

Getting Off-Policy RL to Work

|

Frontiers of Off-Policy RL

Model-Based RL - Formulation

Why is this not just the gradient of the Bellman Error?

| 2
mggnE(St,at,St—i—l)N,D (Qg(sta at) T (T(Sta at) T IEOLt-H’WTe(CLt+1|3t+1) [Qg(st‘H’ at_l_l)}))

Approximate using stochastic optimization

. 2
mgg'nE(St,at,St—l—l)N,D (Qg(sta at) — (T(Sh a’t) + Qg(st—Fl? CLt_|_1))) At4+1 ™ W(.‘St+1)
AN

"Target” moves too much

Often tough empirically with Expectation inside the square,
function approximators hard to be unbiased

Note: this may look like gradient descent on Bellman error, it is not!

Improving Policies with Learned Q-functions

Policy Improvement: Improve policy with policy gradient

I1N1axX {"SND,QNWQ (CL|S) [Qﬂ-e (87 a’)]

g

Replace Monte-Carlo sum of rewards with learned Q function

Lowers variance compared to policy gradient! /\AQ

+ off-policy

Policy Updates — REINFORCE or Reparameterization

Let’s look a little deeper into the policy update

mgax J(@) — m@ax ESNDEaNWQ(.|S) [QW(S, CL)]

Likelihood Ratio/Score Function Pathwise derivative/Reparameterization

VQJ<‘9> — ESNDEaNﬂ'Q(.|8) [VO log g (a‘S)QW(S, a)] VQJ(H) = ESND]Esz(z) [VQQW(S, a)|a=,u9+209 Vi (MQ + 209)]

Easier to Apply to Broad Policy Class Lower variance (empirically)

Remember Lecture 2 and discussion of when gradients can be moved inside

Actor-Critic: Policy Gradient in terms of Q functions

Critic: learned via the Bellman update (Policy Evaluation)

min s, a,,5,41)~D (Q;Z(st, ar) — (r(st,ar) + Qg(stﬂa Clt+1)))2 aty1 ~ m(+|Se41)

@
—
Learn Q function
via Bellman

[Collect] } Lowers variance and is off-policy!
Data

Take Gradient
\ Steponm
Actor: updated using learned critic (Policy Improvement)

m?JX ESNDEQNW(.|S) [Qﬂ- (87 a)}

Actor-Critic in Action

Approach B.|: Natural Actor-Critic

s

Peters & Schaal (2003). Reinforcement Learning for Humanoid Robotics, HUMANOI

L ecture outline

Working through a complete off-policy algorithm

|

Getting Off-Policy RL to Work

|

Frontiers of Off-Policy RL

Model-Based RL - Formulation

What can we do to make off-policy algorithms work
in practice’

Going from Batch Updates to Online Updates

This algorithm can go from full batch mode to fully online updates

Collect W _| Learn Q function Critic: 1 gradient step on
1 sample - - Bellman
Data Via be Bellman error
Target 1 (Take Gradient Actor: 1 gradient step
Update J L Step on pi on policy gradient

Allows for much more immediate updates

Challenges of doing online updates

1 sample Collect W .| Learn Q function Critic: 1 gradient step on
P Data via Bellman Bellman error
Target 1 (Take Gradient Actor: 1 gradient step
Update J L Step on pi on policy gradient

When updates are performed online, two issues persist:
1. Correlated updates since samples are correlated
2. Optimization objective changes constantly, unstable

Decorrelating updates with replay buffers

7

Updates can be decorrelated by storing and shuffling data in a replay buffer

%mon Instead of doing updates in order,
sample batches from replay buffer

D |

/ ~— How?

Sampled from replay buffer 1 Sample uniformly
minE, Q5 (51, 1) 2. Prioritize by TD-error
St,Qt,St41) Y . o . o
? aepa~m(lsi) 3. Prioritize by target error
max EeBEar(|s) [Q7 (5, 0)] 4, ... open area of research!

((st,a0) + QF (5041, 0:41)))°)

Slowing moving targets with target networks

7

Continuous updates can be unstable since there is a churn of projection and backup

minE(Staat,StH)Np {(Qg(styat) — (T(Staat) + Qg(st—l—l? at+1)))2}

? att1~T(-[Se41)

If we set ¢ to ¢ every update, the update becomes very unstable

U

Move & to ¢ slowly!

¢ — (1 — 7-)¢ + T& Polyak averaging

A Practical Off-Policy RL Algorithm

Add to
Buffer Sample batch from buffer
Learn Q function Critic: 1 gradient step on
1 sample Collect i g P
Data Via beliman Bellman error

) 4
Polyak Target |, Take Gradient Actor: 1 gradient step
Averaging Update Step on pi on policy gradient

Simplity -- Can we get rid of a parametric actor?

Critic Update

2

mqbin]E(s,a,s’)ND [Qg(stv at) T (T(SU at) + IIE?‘Q’CLH—l’\”T(-|~‘5t+1) [QC}B(SH'l’ at+1)“

Actor Update

m;xx gD “3amw(.|s) [QW(Sa a)}

What if we removed this explicit actor completely?

Directly Learning Q¥

2
minlE; 4 s/)~p [Qg(st, at) — (r(s¢, ar) + max [qu(StJrl, at—H)])

¢ at+1
W(a‘s) — max Q(S, CL) Directly do max in the Bellman update
a
~
Add to
Buffer Sample batch from buffer
J
-
1 sample Collect Learn Q function | critic: 1 gradient step on
Data via Bellman Bellman error
.
Polyak Target

) No actor updates, just learn Q!
Averaging Update

How can we maximize w.rt a’

m(als) = max Q(s,a)

T

Analytic maximization can be very difficult to perform in continuous action spaces
Much easier in discrete spaces! = just do categorical max!

Some ideas to do maximization:
1. Sampling based (QT-opt (Kalashnikov et al))
2. Optimization based (NAF, Gu et al)

Practical Actor-Critic in Action

‘ i \ 7] P
g - . N A 14
"""")) i e | ¥ e ,-'A\/ / 4
p———] - —,, .) V. l g 4
—— = 4wy - A% o f | g 5
B f ‘, s Y . : 7 /.
- -l an ’ RN Y ‘D : " 4
Jet—— ! ! AR by e 20
e B B, B A0V § : g ‘
i ' . o 1 :
- ' Y B AL 2 .
- 4 ! T W ks -
F PR 3 : " S -
" B) w .
v - | 'S
" » .

aninc . \ oad >
\ S
oS

Trained using QT-Opt

Practical Actor-Critic in Action

Trained using DDPG

What can we do to make them match on-policy
algorithms in asymptotic performance?

Where does this fail?

Performance Double Q-Learning vs Q-Learning

Some issues remain:
. 1. Overestimation bias
2. Insufficient exploration

Let’s try and understand these!

Overestimation Bias in Actor-Critic

Average Value

¢

M CDQ - True CDQ
DDPG -e- True DDPG

Optimized Q’s are often overly optimistic

QF (st,ar) — (r(se, ap) +max |Qz(se41, at+1)D] }

IIllrlHE(s,aws’)nulD

500
400
300
200

100

|

ol «

at4+1

Q is meant to be an expectation
—> actually a random variable because of limited data/stochasticity

0.0

0.2 0.4 0.6 0.8 1.0
Time steps (1€6)

(a) Hopper-vl

0.0

0.2 0.4 0.6 0.8
Time steps (1€6)

(b) Walker2d-vl

1.0

E(max) > max(E), so values are optimistic

Overestimation Bias in Actor-Critic
4
max(X)
1
B S B > E(X;) 1
IR Rt > max(E(X;) E(Xy))
<
p max(X,)
S e R > E(max(X;) max(Xy))
5
ST N R et > E(Xy)
Q-learning can overestimate when values are imperfect
(even when unbiased)

Overestimation Bias in Actor-Critic — Ensemble Q

Learn two (or N) independent measures of Q, take the minimum
—> pessimistic on random variable

- | Dy
y; =r(s,a)+y min Qg (s m(s"))

S minE(s,a,S/)ND [(quj (37 a) — yj)Q]

Independent b J
updates

- B

g 11N ax ESNDEaNWQ. [qug (87 a’)]

< 95 ’

J

Significantly improves overestimation and in turn sample efficiency!

Overestimation Bias in Actor-Critic

Significantly improves overestimation and in turn sample efficiency!

m TD3 m DDPG m our DDPG m PPO m TRPO mm ACKTR mm SAC
5000
4000
4000
3000
3000
2000
2000
1000
1000 0
0 _
00 02 04 06 08 10 10065602 04 06 08 10
Time steps (1e6) Time steps (1€6)

(¢) Walker2d-v1l (d) Ant-v1

Double Actor Critic in Action

Double Actor Critic in Action

Where does this fail?

Some issues remain:
1. Overestimation bias
2. Insufficient exploration

Let’s try and understand these!

Collapse of Exploration in Off-Policy RL

Deep RL policies will often converge prematurely or explore insufficiently

2500

U-shaped maze

2000
1500

1000

500

0 50 100 15y 200

Very unstable learning

Addressing Policy Collapse in Off-Policy RL

Adding entropy to the RL objective can help significantly

Z /Vtr(stv at):|

t=0

U

> (st ar) + a%(wcst))}

t=0

max [
T

max [
7T

Simple change in on-policy RL

+ anH(WG(-St))] (via chain rule)

Max-Ent Off-Policy RL

T

D A (r(seya0) + aH(m(]se))

t=0

max K
7T

Work through the recursion, same as with the regular Bellman
Critic — Policy Evaluation

m(gn E(s,,a1,5011)~D {(Qg(st, a;) — (r(sg, ar) + Qg(st—l—la at+1)) — alog W(at+1!8t+1))2}
at+1~7(-|St41)

Actor — Policy Improvement

IIl?JXESND [anw(-b) [Qg(S, a) — alogﬁ(a\s)ﬂ

Soft Bellman Equation from Max-Ent RL

Optimize a "soft” Bellman equation

Q(st,at) < ¢ + 7E8t+1~ps [V (st41)] Qsoft(5t7 at) T 7E8t+1Nps [‘/SOft(St-l-l)]
V(st) + max Q(s¢, a) Vot (8¢) alog/ exp <;Qsoft(3t,a’)>da/
a A

1
m(alsy) < arg max Q(s¢,a) Tsoft (@]St) = exp (a(Qsoft(Sta a) — Vsoft(St))>

N _—

Go from max to “softmax” (imagine if a goes to 0, it becomes a max)

Prevents premature collapse of exploration while smoothing out optimization landscape!

Ok, but how do | choose o

max [E._
7T

> A4 (se a0) + c{mﬂ(.st))}

Often hard to set as a constant

Can simply formulate a constrained optimization problem = entropy above some value

T

Z f)/tr(stv at):|

Eyar (o) [H(x(50))] > €

T

> A'r(sear) — a(H(r(-]s) —€))

t=0

max K
7T

|::> max min E.
TT (8%

Alternate between gradient steps on m,

Maximum Entropy Actor-Critic Algorithms in Action

N AG
6000 - __ pppg
—— PPO
<
é SQL ;
® 4000 _ p3 (concufrent)
80
©
g M MH
2 2000 e
KAy L
iy 00 il
0 2 4 6 8 10

million steps

(f) Humanoid (rllab)

L ecture outline

Working through a complete off-policy algorithm

|

Getting Off-Policy RL to Work

|

Frontiers of Off-Policy RL

Model-Based RL - Formulation

Ok, so are off-policy algorithms perfect?

What makes off-policy RL hard?

Deadly triad:

1. Function Approximation
2. Bootstrapping —
3. Off-policy learning

) 2

m(gn E(S’Q’S/)ND Qg(st, ar) — (r(s¢, ar) + Igl?;?f [Q(E(SH—M at+1)})

These in combination lead to many of the difficulties in stabilizing off-
policy RL with function approximation

/00oming out — what makes off-policy RL hard?

Deadly triad:
1. Function Approximation
2. Bootstrapping 61% of runs show divergence of Q-values

3. Off-policy learning

100000 - Q -
o 1220061% 14%] 33% 0%] Diverges even with linear
a8 100-) function approximation,
S 10 <|> when off-policy +
< _
g 1- bootstrapping
0.1-
0.01 - -

I | I I
Q Target Q Inverse Double Q
Double Q

/00oming out — what makes off-policy RL hard?

12
]l -¢ 1o
108

19°
104
102
10°

500 1000 1500 2000

(b) v(s) = we(s) diverges.

Let’s go to the whiteboard!

What should | work on?

Where does the frontier of off-policy RL lie?

Off-policy is an extremely promising tool, but not quite plug and play like PG
methods

- Low variance, off-policy, avoids reconstruction, performs dynamic programming
- Has the potential to be performant and sample efficient

But in practice is often unstable, inefficient with high dimensional observations

Sampling Theory Exploration

o HQ
!
Pr[’j@J Pr()j:I,

Q

/

V% -
Qu*

Prioritizing Experience

Performing uniform buffer TD updates can be catastrophically bad

“wee. @OO0O00O

Intermediate values of error

(high (L) to low (R) error)

Iteration 6 Iteration 7 Iteration 8

Iteration 9

Intermediate values of error

(high (L) to low (R) error)

“waess @OOO0CO0O

Iteration 0 Iteration 1 Iteration 2

Iteration 3

Iteration 10

Suboptimal Convergence

------------------- 1.00 =

S

Ei

0.75 3

= 101 \ym==mmmmmmmm e =1
-] 1 =1
& | — Optimal - |50 3
E ‘l —— On-Policy é
& 51 025 %
i E

! £

1)

z

(a) Sub-optimal convergence for on-
policy distributions: return (dashed) and
value error (solid). Note that value error
decreases rapidly at the start and finally
converges to a nonzero value, leading to
sub-optimal return.

Instability in Learning

S © o =
= o Y o
Normalized Return (Dashed)

e
S

e
o

0 100 200

w
=]
=]

(b) Instability for replay buffer distribu-
tions: return (dashed) and value error
(solid) over training iterations. Note the
rapid increase in value error at multiple
points, which co-occurs with instabilities
in returns.

Need to prioritize updates to propagate good values

Sparse Reward

""" e gl [0

10.0 R =

Replay Buffer 0.8 ;\

= =
= 75

3 0.6 &

o g

£ 50 o~

g 0.4.8

2.5 0.275'

) 5

e — T L

0 100 200 300

(c) Error (left) and returns (right) for
sparse reward MDP with replay buffer
distributions. Note the inability to learn,
low return, and highly unstable value
error &, often increasing sharply, desta-
bilizing the learning process.

Theory/Convergence with Function Approximation

Significant body of work on learning dynamics with function approximation

Delusional Bias

a; prob. 1 —¢
R(s1,a1)

Figure 1: A simple MDP that illustrates delusional bias (see text for details).

Implicit regularization
Bilinear classes

— Framework B-Rank | B-Complete | W-Rank | Bilinear Class (this work)
Rexp (0) = Z ¢(Si7 ai)Tqb(S'li) a;,) B-Rank v X v v
€D B-Complete X v X v
W-Rank X X v v
Bilinear Class (this work) X X X v

Exploration in Off-Policy RL

Better exploration methods

Uncertainty based methods Count-based methods Information gain methods

Shared network

Often critical for getting algorithms to work!

Image-based Off-Policy RL

Learning from high dimensional observations is unstable — images/point clouds

Data augmentations Pre-trained representations Student-teacher

Environment

Critic

f

State &) Obs
Observation PVR Model Policy Goal @Goal-ObS

Cutout-color Random conv

Still very unstable, lot of open research problems!

Partial Observability in Off-Policy RL

Off-policy methods critically depend on the Markov assumption

Q-Values

%
/ LSTM / 512

Conv3
64-filters 64
3x3
Stride 1
7 7
[

Conv2 =

64-filters
4x4 64
Stride 2

100" 120 < 100% 120 C

,F_J.'-

o

Convl

20

'C7 32-filters ’C7 32
\\ 8 x8 \\
- Stride 4 - 20

84

Learning history conditioned/recurrent Q-functions is an open area!

84

ifested in robotics?

iIcy RL man

ole]

Small changes - larger number of ensembles

How has off-

INS

20m

ining in <

ibatch steps allow for trai

N

more mi

7

How has off-policy RL manifested in robotics?

How has off-policy RL manifested in robotics?

Uses MPO - a variant of actor critic with a supervised learning style actor update

)

Ir'd §ped object used to reorient the DUROIRODECE

|
|
.

Triplet 2

e

How has off-policy RL manifested in robotics?

Bootstrapped with a few demonstrations

How has off-policy RL manifested in robotics?

untrained

12 min later 30 min later

1 hour later

8 P
2 hours later

Pros/Cons of Off-Policy Methods in Robotics

Pros: Cons

1. Sample-efficient enough for real world 1. Often unstable

2. Can learn from images with suitable 2. Can achieve lower asymptotic
design choices performance

3. Off-policy, can incorporate prior data 3. Requires significant storage

L ecture outline

Working through a complete off-policy algorithm

|

Getting Off-Policy RL to Work

|

Frontiers of Off-Policy RL

Model-Based RL - Formulation

Class Structure

14

/—[Imitation Learning]\
/

4 Model-free Reinforcement Learning

~

Policy Gradient ADP Model-based Reinforcement Learning
J
\—[Unifying Perspectives on RL and IRL]—/
Frontiers A
Exploration Learning from Prior Data Learning across tasks
J

Landscape of Reinforcement Learning Algorithms

state

’,l Agent Jl

-

reward action T
R, A, maXIETNWQ E r(s¢, at)
§< t+1 . t:O
. S.. | Environment
\

/

Gradient Ascent

o

Dynamic Programming : Model-Based Optimization :

What it we just learned how the world worked?

Agent)

T
stafte reward action maX ETNWQ g r St7 at
\Y R, A, t—=0

t+1 (
.. | Environment]4

R
<
b8
; L @
t
v

1. Learn a surrogate model of the transition dynamics from arbitrary off-policy data
2. Do reward maximization against this model

Intuitive: learn how the world works first and then plan in that model

Why do model-based RL:

Transfer/Adaptive

A

1A

O‘\C-)J

-7.5

—10.0

—-12.5

—15.0

-17.5

-20.0

—22.5

—25.0

—-27.5

Why would we do this?

Efficiency

Handwriting: Arbitrary Trajectories

— SAC

— NPG

—— PDDM (Ours)
0.0 0.1 0.2 0.3 0.4

Number of datapoints (M)

Naturally off-policy!

Hitry,
7
£

975
AL

II,
7
%7

D

il
I/I/I/
1ty

2
7
7

e r oy
LKL
% &%I"I

7
it
LI
7548
by

./
v,

4
)

47
Y
il

'I,,,';

= SGD

= Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

%
"%
KK

R
ol
000, /
g o,'o,o,,'c,;;:'

0000,
00,9 0,50,
KON

1.0

Why do model-based RL?

Just 2 hours of real robot training

Connections to Cognitive Science

Significant evidence for mechanisms for prediction of outcomes in neuro/cognitive science

Active inference

* %" (discrete)
¥ 5
A
\f I
L Expected free energy minimisation Policy selection
A, - '
a, ~Q(a‘) InNex) = ~Glax)

))= D01 i)£y, 1) | Reinforcement learning in the brain
Ma.'k‘o‘.'
=S o oo s Yael Niv
. N Y e e Psychology Department & Princeton Neuroscience Institute, Princeton University

A F(x,)=DIQ, (n,)l P(p,))+ E, [3(s, 1 ,)]
b\ Compienity Incoarss

Model Based RL — Problem Statement

Model Learning
Do

@4» Do — arg minE(D,ﬁg)

Planning _ _

arg Hl;lXEﬁm Zr(st,at)
é 5 é fi '\t _

Can also just be a single trajectory

How should we instantiate these?

What will we not cover today?

T

t=1

C(Xt,llt) — =

ILOR/ILOG MBRL with GPs/Non-Parametrics Non-linear TrajOpt

|||||||||||||||

Byron’s lectures do a wonderful job, do go watch them!

2
min Zc(xt,ut) gt i = filoe-dyWi—i) N o
up,...,ur L \ . /
Xt | " ; .
f(xtaut) — Ft |: ut + ft = 1.0 . 3 : ,../.oq‘_‘v\',’."”
t | - B o - w’/—//»//
= -1 o T 117’ S '
t -
t

What will we cover today?

Use neural networks as our model!

Input Layer

Hidden Layers
¥ M

%
a

Output Layer

Py < argmin L(D, py)

arg max s »
v

Peo

Zr(st,at)

t

; Testing I%\p time: 9.45 s :
: \
| 1 1,

Model Based RL — Assumptions

state

Agent)

s

reward

R,
E RHI
|-
E Sr+1
-

\

Environment

T
action maXIETNM E r(s¢,at)
4 t=0

y

L

v -
t
v

Assumptions:

1. Can only sample from dynamics
2. Can reset the environment
3. Reward function is known

|

We will get into this in a later lecture!

Model Based RL — A template

4)

-» Model Learning
/ \ y,
p

Data Collection

/
A 4

Planning

-

-

L ecture Outline

Model based RL vO = random shooting + MPC

Model based RL v1 = MPPI + MPC

Model based RL v2 = uncertainty based models

Model based RL v3 = policy optimization with models

Model based RL v4 = latent space models with images

Model Based RL — Naive Algorithm (vO)

-

_

e

Data Collection

N

-

-

Model Learning

~N

J

A 4

Planning

/

\

Maximum likelihood supervised Learning

0

Random Search

L=,

max]E(s,a,s’)ND [lOg ﬁQ (S/ ‘ S, CL)]

Model Based RL — Nalve Algorithnm (Model Learning) (vO)

meax]E(s,a,,s’)ND [lOg]3@(8/‘8, CL)] Fit 1-step models

Input Layer Hidden Layers Output Layer

= SGD
- Momentum
-~ NAG

Adadelta
Rmsprop
—

2

r'd N ‘
° o s] S

— \ More expressive may be

Choice of Py distribution determines the loss function: better, at the risk of

Trick: Model Residual’s (s’ —s) 1. Gaussian 2 L, overfitting
2. Energy Based Model - Contrastive Divergence

3. Diffusion Model = Score Matching

N

N

Model Based RL — Naive Algorithm (Planning)

T

max Zr(ét,at)

t=0

Planning
St41 ~ p0(5t+1|5t7 Gt)
51 ~ Po(St+1/50,a0)
! ‘ Just do random search!
T
arg max E r(5),al) Just execute
A, 5,0) / actions open loop!

St—l—l Do (- ’Stvat) \/‘

Can soften by taking softmax rather than argmax

L ecture outline

Working through a complete off-policy algorithm

|

Getting Off-Policy RL to Work

|

Frontiers of Off-Policy RL

Model-Based RL - Formulation

