

Reinforcement Learning Spring 2024

Abhishek Gupta

TAs: Patrick Yin, Qiuyu Chen

Class Structure

Attempt 1: Using Recursive Structure

$$\frac{1}{N} \sum_{i=0}^{N} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i}|s_{t}^{i}) Q^{\pi}(s_{t'}^{i}, a_{t'}^{i}) \qquad Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t'=t}^{T} r(s_{t}', a_{t}') | s_{t}, a_{t} \right]$$

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t'=t}^{T} r(s'_t, a'_t) | s_t, a_t \right]$$

Fit a value function on on-policy data

$$\min_{\phi} \mathbb{E}_{(s_{i}, a_{i}, s_{i}') \sim \pi} \left[(V_{\phi}^{\pi}(s_{i}) - y_{i})^{2} \right]$$
$$y_{i} = r(s_{i}, a_{i}) + V(s_{i}')$$

Compute the policy gradient
$$\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i=0}^{N} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) (r(s_t, a_t) + V(s_{t+1}) - V(s_t))$$

Collect more data

+ lowers variance

- Still on-policy

Does this converge?

$$V_{i+1}^{\pi}(s) \leftarrow \mathbb{E}_{s' \sim p(.|s,a)} \left[r(s,a) + V_i^{\pi}(s') \right] \qquad V_{i+1} \leftarrow B_p^{\pi} V_i^{\pi}$$
 Bellman operator
$$V_{i+1} \leftarrow B_p^{\pi} V_i^{\pi} \qquad U_{i+1} \leftarrow B_p^{\pi} U_i^{\pi}$$
 To prove:
$$d(f(x), f(y)) \leq q d(x, y) \qquad |V_{i+1} - U_{i+1}|_{\infty} \leq \gamma |V_i - U_i|_{\infty}$$

$$|V_{i+1} - U_{i+1}|_{\infty} \leq \gamma |V_i - U_i|_{\infty}$$

$$|V_{i+1} - U_{i+1}|_{\infty} = \max_{s} |V_{i+1}(s) - U_{i+1}(s)|$$

$$= \max_{s} |\left(\int \pi(a|s) \left(\int p(s'|s,a)(r(s,a) + \gamma U_i(s'))ds\right) da\right) - \left(\int \pi(a|s) \left(\int p(s'|s,a)(r(s,a) + \gamma V_i(s'))ds\right) da\right)|$$

$$= \gamma \max_{s} |\left(\int \pi(a|s) \left(\int p(s'|s,a)(U_i(s') - V_i(s'))ds\right) da\right)|$$

$$\leq \gamma \max_{s} |\left(\int \pi(a|s) \left(\int p(s'|s,a)\max_{x}(U_i(x) - V_i(x))ds\right) da\right)|$$

$$= \gamma \max_{s} |\left(\int \pi(a|s)\max_{x}(U_i(x) - V_i(x))ds\right)|$$

$$= \gamma \max_{s} |\left(\int \pi(a|s)\max_{x}(U_i(x) - V_i(x))ds\right)|$$
 Contraction, hence converges to a fixed point

Does this converge for arbitrary function approximation?

For arbitrary function approximation, it is not just a Bellman backup

$$V_{i+1}^{\pi}(s) \leftarrow \mathbb{E}_{s' \sim p(.|s,a)} \left[r(s,a) + V_i^{\pi}(s') \right] \qquad V_{i+1} \leftarrow B_p^{\pi} V_i^{\pi}$$

$$a \sim \pi(\cdot|s')$$

We perform a Bellman backup + a projection

Projection – find closest element of function class to approximate tabular values

$$\min_{\phi} \mathbb{E}_{(s_{i}, a_{i}, s_{i}') \sim \pi} \left[(V_{\phi}^{\pi}(s_{i}) - y_{i})^{2} \right]$$
$$y_{i} = r(s_{i}, a_{i}) + V(s_{i}')$$

Backup may be a contraction, but backup + projection may not be

Attempt 2: Recursive structure in Q functions directly

Q functions have special recursive structure themselves!

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t'=t}^{T} r(s'_t, a'_t) | s_t, a_t \right]$$

$$= r(s_t, a_t) + \mathbb{E}_{\pi} \left[\sum_{t'=t+1} r(s_{t'}, a_{t'}) | s_{t+1}, a_{t+1} \sim \pi(.|s_{t+1}) \right]$$

Bellman equation

$$Q^{\pi}(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{\substack{s_{t+1} \sim p(.|s_t, a_t) \\ a_{t+1} \sim \pi_{\theta}(.|s_{t+1})}} \left[Q^{\pi}(s_{t+1}, a_{t+1}) \right]$$

Can be from different policies

Decompose temporally via dynamic programming

Off-policy!

Learning Q-functions via Dynamic Programming

Policy Evaluation: Try to minimize Bellman Error (almost)

How can we convert this recursion into an off-policy learning objective?

Lecture outline

Working through a complete off-policy algorithm

Getting Off-Policy RL to Work

Frontiers of Off-Policy RL

Model-Based RL - Formulation

Why is this not just the gradient of the Bellman Error?

$$\min_{\phi} \mathbb{E}_{(s_{t}, a_{t}, s_{t+1}) \sim \mathcal{D}} \left(Q_{\phi}^{\pi}(s_{t}, a_{t}) - (r(s_{t}, a_{t}) + \mathbb{E}_{a_{t+1} \sim \pi_{\theta}(a_{t+1}|s_{t+1})} \left[Q_{\hat{\phi}}^{\pi}(s_{t+1}, a_{t+1}) \right] \right)^{2}$$

Approximate using stochastic optimization

Often tough empirically with function approximators

Expectation inside the square, hard to be unbiased

Note: this may look like gradient descent on Bellman error, it is not!

Improving Policies with Learned Q-functions

Policy Improvement: Improve policy with policy gradient

$$\max_{\theta} \mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_{\theta}(a|s)} \left[Q^{\pi_{\theta}}(s, a) \right]$$

Replace Monte-Carlo sum of rewards with learned Q function

Lowers variance compared to policy gradient!

Policy Updates – REINFORCE or Reparameterization

Let's look a little deeper into the policy update

$$\max_{\theta} J(\theta) = \max_{\theta} \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi_{\theta}(.|s)} \left[Q^{\pi}(s, a) \right]$$

Likelihood Ratio/Score Function

Pathwise derivative/Reparameterization

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi_{\theta}(.|s)} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s,a) \right] \qquad \nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{z \sim p(z)} \left[\nabla_{a} Q^{\pi}(s,a) |_{a = \mu_{\theta} + z\sigma_{\theta}} \nabla_{\theta}(\mu_{\theta} + z\sigma_{\theta}) \right]$$

Easier to Apply to Broad Policy Class

Lower variance (empirically)

Remember Lecture 2 and discussion of when gradients can be moved inside

Actor-Critic: Policy Gradient in terms of Q functions

Critic: learned via the Bellman update (Policy Evaluation)

$$\min_{\phi} \mathbb{E}_{(s_t, a_t, s_{t+1}) \sim \mathcal{D}} \left(Q_{\phi}^{\pi}(s_t, a_t) - (r(s_t, a_t) + Q_{\hat{\phi}}^{\pi}(s_{t+1}, a_{t+1})) \right)^2 \quad a_{t+1} \sim \pi(\cdot | s_{t+1})$$

Lowers variance and is off-policy!

Actor: updated using learned critic (Policy Improvement)

$$\max_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi(.|s)} \left[Q^{\pi}(s, a) \right]$$

Actor-Critic in Action

Lecture outline

Working through a complete off-policy algorithm

Getting Off-Policy RL to Work

Frontiers of Off-Policy RL

Model-Based RL - Formulation

What can we do to make off-policy algorithms work in practice?

Going from Batch Updates to Online Updates

This algorithm can go from full batch mode to fully online updates

Allows for much more immediate updates

Challenges of doing online updates

1 sample

Critic: 1 gradient step on Bellman error

Actor: 1 gradient step on policy gradient

When updates are performed online, two issues persist:

- 1. Correlated updates since samples are correlated
- 2. Optimization objective changes constantly, unstable

Decorrelating updates with replay buffers

Updates can be decorrelated by storing and shuffling data in a replay buffer

Sampled from replay buffer

$$\min_{\phi} \mathbb{E}_{\substack{(s_t, a_t, s_{t+1}) \sim \mathcal{D} \\ a_{t+1} \sim \pi(\cdot | s_{t+1})}} \left[(Q_{\phi}^{\pi}(s_t, a_t) - (r(s_t, a_t) + Q_{\hat{\phi}}^{\pi}(s_{t+1}, a_{t+1})))^2 \right]$$

$$\max_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi(.|s)} \left[Q^{\pi}(s, a) \right]$$

Instead of doing updates in order, sample batches from replay buffer

- 1. Sample uniformly
- 2. Prioritize by TD-error
- 3. Prioritize by target error
- 4. ... open area of research!

Slowing moving targets with target networks

Continuous updates can be unstable since there is a churn of projection and backup

$$\min_{\phi} \mathbb{E}_{\substack{(s_t, a_t, s_{t+1}) \sim \mathcal{D} \\ a_{t+1} \sim \pi(\cdot | s_{t+1})}} \left[\left(Q_{\phi}^{\pi}(s_t, a_t) - \left(r(s_t, a_t) + Q_{\hat{\phi}}^{\pi}(s_{t+1}, a_{t+1}) \right) \right)^2 \right]$$

If we set $\,\phi\,$ to $\,\phi\,$ every update, the update becomes very unstable

Move $\overline{\phi}$ to ϕ slowly!

$$\bar{\phi} = (1 - \tau)\phi + \tau\bar{\phi}$$

Polyak averaging

A Practical Off-Policy RL Algorithm

Simplify -- Can we get rid of a parametric actor?

Critic Update

$$\min_{\phi} \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \left[Q_{\phi}^{\pi}(s_t,a_t) - (r(s_t,a_t) + \mathbb{E}_{a_{t+1}\sim\pi(.|s_{t+1})} \left[Q_{\bar{\phi}}(s_{t+1},a_{t+1}) \right] \right]^2$$
 Actor Update
$$\max_{\pi} \mathbb{E}_{s\sim\mathcal{D}} \mathbb{E}_{a\sim\pi(.|s)} \left[Q^{\pi}(s,a) \right]$$

What if we removed this explicit actor completely?

Directly Learning Q*

$$\min_{\phi} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\begin{bmatrix} Q_{\phi}^{\pi}(s_t,a_t) - (r(s_t,a_t) + \max_{a_{t+1}} \left[Q_{\bar{\phi}}(s_{t+1},a_{t+1}) \right]) \end{bmatrix}^2 \right] \\ \pi(a|s) = \max_{a} Q(s,a) \qquad \text{Directly do max in the Bellman update} \\ \text{Add to} \\ \text{Buffer} \qquad \text{Sample batch from buffer} \\ \text{Collect} \\ \text{Data} \qquad \text{Critic: 1 gradient step on Bellman error} \\ \text{Polyak} \\ \text{Averaging} \qquad \text{No actor updates, just learn Q!} \\ \text{No actor updates, just learn Q!} \\ \text{No actor updates, just learn Q!} \\ \text{No actor updates} \\ \text{No acto$$

How can we maximize w.r.t a?

$$\pi(a|s) = \max_{a} Q(s, a)$$

Analytic maximization can be very difficult to perform in continuous action spaces Much easier in discrete spaces!

just do categorical max!

Some ideas to do maximization:

- 1. Sampling based (QT-opt (Kalashnikov et al))
- 2. Optimization based (NAF, Gu et al)

Practical Actor-Critic in Action

Trained using QT-Opt

Practical Actor-Critic in Action

Trained using DDPG

What can we do to make them match on-policy algorithms in asymptotic performance?

Where does this fail?

Performance Double Q-Learning vs Q-Learning

10 actions at B

Some issues remain:

- 1. Overestimation bias
- 2. Insufficient exploration

Let's try and understand these!

Overestimation Bias in Actor-Critic

Optimized Q's are often overly optimistic

$$\min_{\phi} \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \left[\left[Q_{\phi}^{\pi}(s_t, a_t) - (r(s_t, a_t) + \max_{a_{t+1}} \left[Q_{\bar{\phi}}(s_{t+1}, a_{t+1}) \right] \right) \right]^2 \right]$$

Q is meant to be an expectation

→ actually a random variable because of limited data/stochasticity

E(max) > max(E), so values are optimistic

Overestimation Bias in Actor-Critic

Learn two (or N) independent measures of Q, take the minimum

→ pessimistic on random variable

Significantly improves overestimation and in turn sample efficiency!

Overestimation Bias in Actor-Critic

Significantly improves overestimation and in turn sample efficiency!

Double Actor Critic in Action

Double Actor Critic in Action

Where does this fail?

Some issues remain:

- 1. Overestimation bias
- 2. Insufficient exploration

Let's try and understand these!

Collapse of Exploration in Off-Policy RL

Deep RL policies will often converge prematurely or explore insufficiently

Addressing Policy Collapse in Off-Policy RL

Adding entropy to the RL objective can help significantly

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \right]$$

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} (r(s_{t}, a_{t}) + \alpha \mathcal{H}(\pi(.|s_{t}))) \right]$$

Simple change in on-policy RL

$$\mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \left[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{T} \gamma^{t'-t} (r(s_{t}, a_{t}) + \alpha \mathcal{H}(\pi(.|s_{t})) \right] + \alpha \nabla_{\theta} \mathcal{H}(\pi_{\theta}(.|s_{t})) \right]$$
 (via chain rule)

Max-Ent Off-Policy RL

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} (r(s_{t}, a_{t}) + \alpha \mathcal{H}(\pi(.|s_{t}))) \right]$$

Work through the recursion, same as with the regular Bellman

Critic – Policy Evaluation

$$\min_{\phi} \mathbb{E}_{\substack{(s_t, a_t, s_{t+1}) \sim \mathcal{D} \\ a_{t+1} \sim \pi(\cdot | s_{t+1})}} \left[(Q_{\phi}^{\pi}(s_t, a_t) - (r(s_t, a_t) + Q_{\hat{\phi}}^{\pi}(s_{t+1}, a_{t+1})) - \alpha \log \pi(a_{t+1} | s_{t+1}))^2 \right]$$

Actor – Policy Improvement

$$\max_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} \left[Q_{\phi}^{\pi}(s, a) - \alpha \log \pi(a|s) \right] \right]$$

Soft Bellman Equation from Max-Ent RL

Optimize a "soft" Bellman equation

$$Q(s_{t}, a_{t}) \leftarrow r_{t} + \gamma \mathbb{E}_{s_{t+1} \sim p_{s}} \left[V(s_{t+1}) \right]$$

$$Q_{\text{soft}}(s_{t}, a_{t}) \leftarrow r_{t} + \gamma \mathbb{E}_{s_{t+1} \sim p_{s}} \left[V_{\text{soft}}(s_{t+1}) \right]$$

$$V(s_{t}) \leftarrow \max_{a} Q(s_{t}, a)$$

$$V_{\text{soft}}(s_{t}) \leftarrow \alpha \log \int_{\mathcal{A}} \exp \left(\frac{1}{\alpha} Q_{\text{soft}}(s_{t}, a') \right) da'$$

$$\pi(a|s_{t}) \leftarrow \arg \max_{a} Q(s_{t}, a)$$

$$\pi_{\text{soft}}(a|s_{t}) = \exp \left(\frac{1}{\alpha} (Q_{\text{soft}}(s_{t}, a) - V_{\text{soft}}(s_{t})) \right)$$

Go from max to "softmax" (imagine if α goes to 0, it becomes a max)

Prevents premature collapse of exploration while smoothing out optimization landscape!

Ok, but how do I choose α ?

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} (r(s_{t}, a_{t}) + \alpha \mathcal{H}(\pi(.|s_{t}))) \right]$$

Often hard to set as a constant

Can simply formulate a constrained optimization problem \rightarrow entropy above some value

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \right] \qquad \Longrightarrow \qquad \max_{\pi} \min_{\alpha} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) - \alpha (\mathcal{H}(\pi(\cdot|s_{t}) - \epsilon)) \right]$$

$$\mathbb{E}_{s \sim d^{\pi}(s)} \left[\mathcal{H}(\pi(\cdot|s_{t})) \right] \geq \epsilon$$

Alternate between gradient steps on π , α

Maximum Entropy Actor-Critic Algorithms in Action

Lecture outline

Working through a complete off-policy algorithm

Getting Off-Policy RL to Work

Frontiers of Off-Policy RL

Model-Based RL - Formulation

Ok, so are off-policy algorithms perfect?

What makes off-policy RL hard?

These in combination lead to many of the difficulties in stabilizing offpolicy RL with function approximation

Zooming out – what makes off-policy RL hard?

Deadly triad:

- 1. Function Approximation
- 2. Bootstrapping
- 3. Off-policy learning

61% of runs show divergence of Q-values

Diverges even with linear function approximation, when off-policy + bootstrapping

Zooming out – what makes off-policy RL hard?

(b) $v(s) = w\phi(s)$ diverges.

Let's go to the whiteboard!

What should I work on?

Where does the frontier of off-policy RL lie?

Off-policy is an extremely promising tool, but not quite plug and play like PG methods

- Low variance, off-policy, avoids reconstruction, performs dynamic programming
- Has the potential to be <u>performant</u> and <u>sample efficient</u>
 But in practice is often unstable, inefficient with high dimensional observations

Sampling Theory Exploration

States being updated Intermediate values of error (high (L) to low (R) error)

States being updated \hat{Q} Proj. \hat{Q}

Image-based RL

Partial Observability

Prioritizing Experience

Performing uniform buffer TD updates can be catastrophically bad

(a) Sub-optimal convergence for on- (b) Instability for replay buffer distribu- (c) Error (left) and returns (right) for tions: return (dashed) and value error (solid) over training iterations. Note the rapid increase in value error at multiple points, which co-occurs with instabilities in returns.

sparse reward MDP with replay buffer distributions. Note the inability to learn, low return, and highly unstable value error \mathcal{E}_k , often increasing sharply, destabilizing the learning process.

Need to prioritize updates to propagate good values

Theory/Convergence with Function Approximation

Significant body of work on learning dynamics with function approximation

Delusional Bias

Figure 1: A simple MDP that illustrates delusional bias (see text for details).

Implicit regularization

$$\overline{\mathcal{R}}_{\mathrm{exp}}(\theta) = \sum_{i \in \mathcal{D}} \phi(\mathbf{s}_i, \mathbf{a}_i)^{\top} \phi(\mathbf{s}_i', \mathbf{a}_i').$$

Bilinear classes

Framework	B-Rank	B-Complete	W-Rank	Bilinear Class (this work)
B-Rank	✓	×	✓	✓
B-Complete	X	✓	X	\checkmark
W-Rank	Х	Х	✓	✓
Bilinear Class (this work)	Х	X	Х	✓

Exploration in Off-Policy RL

Better exploration methods

Uncertainty based methods

Count-based methods

Information gain methods

Often critical for getting algorithms to work!

Image-based Off-Policy RL

Learning from high dimensional observations is unstable – images/point clouds

Data augmentations

Pre-trained representations

Student-teacher

Still very unstable, lot of open research problems!

Partial Observability in Off-Policy RL

Off-policy methods critically depend on the Markov assumption

Learning history conditioned/recurrent Q-functions is an open area!

Small changes – larger number of ensembles, more minibatch steps allow for training in < 20 mins

Uses MPO – a variant of actor critic with a supervised learning style actor update

Bootstrapped with a few demonstrations

untrained

12 min later 30 min later 1 hour later 2 hours later

Pros/Cons of Off-Policy Methods in Robotics

Pros:

- 1. Sample-efficient enough for real world
- Can learn from images with suitable design choices
- 3. Off-policy, can incorporate prior data

Cons

- 1. Often unstable
- 2. Can achieve lower asymptotic performance
- 3. Requires significant storage

Lecture outline

Working through a complete off-policy algorithm

Getting Off-Policy RL to Work

Frontiers of Off-Policy RL

Model-Based RL - Formulation

Class Structure

Landscape of Reinforcement Learning Algorithms

What if we just learned how the world worked?

- 1. Learn a surrogate model of the transition dynamics from arbitrary off-policy data
- 2. Do reward maximization against this model

Intuitive: learn how the world works first and then plan in that model

Why do model-based RL?

Why would we do this?

Transfer/Adaptive

Efficiency

Simplicity

Naturally off-policy!

Why do model-based RL?

Just 2 hours of real robot training

Connections to Cognitive Science

Significant evidence for mechanisms for prediction of outcomes in neuro/cognitive science

Reinforcement learning in the brain

Yael Niv

Psychology Department & Princeton Neuroscience Institute, Princeton University

Model Based RL – Problem Statement

Model Learning

$$\hat{p}_{\theta} \leftarrow \arg\min_{\hat{p}_{\theta}} \mathcal{L}(\mathcal{D}, \hat{p}_{\theta})$$

Planning

$$\arg\max_{\pi} \mathbb{E}_{\hat{p},\pi} \left[\sum_{t} r(s_t, a_t) \right]$$

Can also just be a single trajectory

How should we instantiate these?

What will we not cover today?

iLQR/iLQG

MBRL with GPs/Non-Parametrics

Non-linear TrajOpt

$$\min_{\mathbf{u}_1,...,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t, \mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})$$
$$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t$$
$$c(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$

Byron's lectures do a wonderful job, do go watch them!

What will we cover today?

Use neural networks as our model!

$$\hat{p}_{\theta} \leftarrow \arg\min_{\hat{p}_{\theta}} \mathcal{L}(\mathcal{D}, \hat{p}_{\theta})$$

$$\arg\max_{\pi} \mathbb{E}_{\hat{p}, \pi} \left[\sum_{t} r(s_{t}, a_{t}) \right]$$

Model Based RL – Assumptions

We will get into this in a later lecture!

Model Based RL – A template

Lecture Outline

Model based RL v0 → random shooting + MPC

Model based RL v1 → MPPI + MPC

Model based RL v2 \rightarrow uncertainty based models

Model based RL v3 \rightarrow policy optimization with models

Model based RL v4 → latent space models with images

Model Based RL – Naïve Algorithm (v0)

Model Based RL – Naïve Algorithm (Model Learning) (v0)

$$\max_{\theta} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\log \hat{p}_{\theta}(s'|s,a) \right]$$

Fit 1-step models

Choice of \hat{p}_{θ} distribution determines the loss function:

- 1. Gaussian \rightarrow L₂
- 2. Energy Based Model \rightarrow Contrastive Divergence
- 3. Diffusion Model → Score Matching

Trick: Model Residual's (s' –s)

More expressive may be better, at the risk of overfitting

Model Based RL – Naïve Algorithm (Planning)

Planning

$$\max_{a_0, a_1, \dots, a_T} \sum_{t=0}^{T} r(\hat{s}_t, a_t)$$

$$\hat{s}_{t+1} \sim \hat{p}_{\theta}(s_{t+1} | \hat{s}_t, a_t)$$

$$\hat{s}_1 \sim \hat{p}_{\theta}(s_{t+1} | s_0, a_0)$$

Just do random search!

Just execute actions open loop!

Can soften by taking softmax rather than argmax

Lecture outline

Working through a complete off-policy algorithm

Getting Off-Policy RL to Work

Frontiers of Off-Policy RL

Model-Based RL - Formulation

Fin.

