Reinforcement Learning
Spring 2024

Abhishek Gupta
TAs: Patrick Yin, Qiuyu Chen

Class Structure

14

/—[Imitation Learning]\
/

4 Model-free Reinforcement Learning

~

Policy Gradient ADP Model-based Reinforcement Learning
J
\—[Unifying Perspectives on RL and IRL]—/
Frontiers A
Exploration Learning from Prior Data Learning across tasks
J

Why is Policy Gradient sample inefficient?

VoJ(6) = / po(7) Vg log po(7)dr

T
—ZZVglogmg at\st Z st,at
/=t

N

On-policy, unable to

effectively use past data High Variance Estimator

Can we develop a low variance off-policy RL algorithm that can bootstrap from prior data?

What can we do to lower variance?

VoJ(6) = / po(7) Vg log po(7)dr

N T

1 0| o0 i i
~N Z Z Vg log mp(ay|st) Z r(s,ap)
i=1 t t=t

|dea: bundle this across many (s, a) with a function approximator

=
PN

Function approximator bundles return estimates across states

What we do

s it

Single sample estimate

What we actually want

Averaged return estimate

¢ = e e e = = -

Defining Q and V functions

1

Expected sum of rewards in the future, starting from (s, a) on first step, then

T
N - Yve log ma(ajls}) Y r(sy, af)
t

t' =t

QW(Shat) = Er, ZT(S;,&;HSt,at

VW (St) = Eﬂ-e

Lay~mg(-|se) [Q(Stv at)]

¢ = e e =)

Attempt 0: Monte-Carlo Estimation of Q-Functions

Vo log mg(a;|s)Q" (sy:, ay)

]~

|
N 2

1=0 t=0
T
/ / . .
Q" (s¢,a:) = EL, E r(sy, ay)|st, a; |+—— Monte-carlo approximation
t'=t

ldea: Regression from (s, a) to Monte-Carlo estimate

Fully-

ted
Convolution cor;:;gr i
layer 1 Convolution
| layer 2 le ol
State \\\ 34.0.. p . 5 2 ';‘:',-"' —.:') o . . I
Act - [Gifsd T I o o Return to Go Unbiased, but high variance!
ction - / 12| 6 3 3 ~.1:~.‘\; C‘b
9 Max pooling @[
Max pooling ayer2
layer 1 Output
layers

Input Layer

Attempt 1: Using Recursive Structure

N T -

1 . .) . / /

N S:S:vg 10gﬂ6(a;|S;)QW(S;7a/;) QT‘-(St,axt) :]Eﬂ'e ZT(St7a/t)|Staat:|
1=0 t=0 o

T

> r(seap)|s:

t'=t

Note the definition of a value function V™(s;) =E,, = Ko, momo(-]se) [Q (S5 at)]

Average Q-function over actions sampled from policy

T
Value functions are recursive VT(st) = Er, |T(s¢,0¢) + Z (S, ap st}
t'=t+1
T
V™(st) = Erp |7(S¢,0a¢) + Ep, Z T(St/,at/)|8t+1]% VF!
t'=t+1

V™(st) = Eg, [7(s¢,at) + VW(SjH_l)]

Attempt 1: Using Recursive Structure

1
N

T
Z r (s, ay)| s, at}

t'=t

T
S Vologmolails)Q(shral) Q7 (sivar) = En,
t=0

M-

mgbiﬂ E(Si,ai,si/)’\“ﬂ' [(VCZZT(SZ) o yz)ﬂ

Fit a value function on on-policy data ,
pPOTCY y; = r(si,a;) + V(s;)

N T
Compute the policy gradient Vs J(0) = %ZZW log o (ay|sy)(r(se, ar) + V(set1) = V(st))

=0 t=0

Collect more data

+ lowers variance - Still on-policy

Revisit: Generalized Advantage Estimation

Sum up all the estimators in a geometric sum

A?V(Slaal) =Ty +yrg + -
A?\f—1(817a1) =ri+yre+---

A5(s1,a1) = r1 +yra + -

Al(s1,a1) =71 + vV (s2)

+ VPV (sno1)

-+ ’YQV(Sg) — V(Sl)

— V(s1)

+ ’YN_lTN — V(Sl)
—V(s1)

—_—

Geometric sum

AH (s1,a1) Z)\JAH s, a)

)\ controls bias-variance tradeoff

Best of both worlds — very similar idea to eligibility traces

L ecture outline

Going from On-Policy to Off-Policy AC

|

Getting Off-Policy RL to Work

|

Frontiers of Off-Policy RL

A Closer Look at the Value Bellman Equation

Bellman Update Bellman equation
min [Si,@;i,Si)~ [(VJ(S@') _ yZ)Q] «
¢ (157,57) / VW(St) — EW@ T‘(St,at) + Vﬁ(st—|—1)
yi = r(si,a;) + V(s) ——
Fixed-point iteration algorithm Holds at convergence

Ln+1 = f(,’,l?n) : r* = f(x*) Fixed-point

Q: Does this update converge to the true value as a fixed point?

Does this converge?

Q: Does this update converge to the true value as a fixed point?

qu;ln E(Si,ai,si/)f\“w [(VCZZT(SZ) o yz)ﬂ

/

yi = 1r(si,a;) + V(s;)

Banachs fixed point theorem Let's consider a simple version of this algorithm

Let (M, d) be a complete metric space.

i7—T|—1 (S) A Es’wp(.|s,a) [T(S, CL) + V;W(Sl)]

arvr(-]s’)
Vierw < BV

Prove this is a contraction

Let f : M — M be a contraction.

That is, there exists g € [0. . 1) such thatforall x,y € M:
d(f(x), f(¥) <qd(x,y)

Then there exists a unique fixed point of f.

Does this converge?

i7—T|—1(S) < ES/Np(.|8,CL) [T(Sa CL) + ‘/iﬂ-(sl)] ‘/ti—|—1 — Bg‘/;ﬂ-
arv(-]s’)
Bellman operator V- BTV.T U/ BTUT
l ’L—|—]. % p 2 ’L—|—1 % P 7
To prove: d(f(x),f () <qd(x,y)
t T ‘V;—i—l _Ui—l—l‘oo S’Y‘V;_Uz‘oo

inf-norm Value functions

Vier —Uit1loo = max Vig1(s) — Uip1(9))

~ max| (/ r(als) (/ p(s']s,a)(r(s, a) + *in(s’))ds> da) _ (/ x(als) (/ p(s']5,0)(r(s, a) + ’YVi(S/))ds) da) |
—ymax| ([w(als) ([pls'15,0)(Ui(s) = Vils)ds) da)|
| =t

(7r (s'[s, @) max(Us () — m-(x))ds) da) |
— ~max| ((als) max(Uy(x) - V(x)da) |
U,

\U;(x) — Vi(x)| = v|U; — Vil Contraction, hence converges to a fixed point

Does this converge for arbitrary function approximation?

For arbitrary function approximation, it is not just a Bellman backup

z7—r|—1(5) N Es'wp(.\s,a) [T(S7 CL) + V;W(S/)] ‘/’H—l — Bg‘/zﬂ-

ar~(-|s’)
We perform a Bellman backup + a projection

Projection - find closest element of function class to approximate tabular values

Projecti ' y
rojection mg;n E(Si,ai,sil)wﬂ [(qu (5i) — yz)ﬂ

yi = (8, a;) + V(si/)

Backup may be a contraction, but backup
+ projection may not be

Tabular backup

Why is this not enough?

qun E(Si,ai,si/)NW [(VQZT(SZ) o yZ)Q}

Fit a value function on on-policy data ,
POICY yi = r(si,a;) + V(s;)

N T
Compute the policy gradient Vs J(0) = %ZZW log g (at|sy) (7(se,at) + V(ser1) = V(st))

=0 t=0

Collect more data

+ lowers variance - Still on-policy

Need to be able to use arbitrary data

Past iterates data

Other tasks data

Attempt 2: Recursive structure in Q functions directly

Q functions have special recursive structure themselves!
-7 _

QW(Shat) — EW@ ZT(S;,CL;NSt,at

|t/ =1 i

— T(St, at) + EW Z T(St/, at/)‘SH_l, Agy1 ™~ 7T(.|8t_|_1)
[t/ =t+1 _

Bellman equation QW(St, at) — "“(St, Cbt) +E ser1~p(.|se,ae) [QW(St—Ha at+1)]

at4+1~7o (. |St41) /
6LO0-6 B

Decompose temporally via dynamic programming Off-policy!

Can be from
different policies

Learning Q-functions via Dynamic Programming

Policy Evaluation: Try to minimize Bellman Error (almost)

Bellman equation = Q" (s¢,a¢) =r(st,ar) + E ser1~p(.|st,a+) Q7 (St41, a1
at4+1~7o (. |St41)

Same function approximator

How can we convert this recursion into an off-policy learning objective?

Why is this not just the gradient of the Bellman Error?

| 2
mggnE(St,at,St—i—l)N,D (Qg(sta at) T (T(Sta at) T IEOLt-H’WTe(CLt+1|3t+1) [Qg(st‘H’ at_l_l)}))

Approximate using stochastic optimization

. 2
mgg'nE(St,at,St—l—l)N,D (Qg(sta at) — (T(Sh a’t) + Qg(st—Fl? CLt_|_1))) At4+1 ™ W(.‘St+1)
AN

"Target” moves too much

Often tough empirically with Expectation inside the square,
function approximators hard to be unbiased

Note: this may look like gradient descent on Bellman error, it is not!

Improving Policies with Learned Q-functions

Policy Improvement: Improve policy with policy gradient

I1N1axX {"SND,QNWQ (CL|S) [Qﬂ-e (87 a’)]

g

Replace Monte-Carlo sum of rewards with learned Q function

Lowers variance compared to policy gradient! /\AQ

+ off-policy

Policy Updates — REINFORCE or Reparameterization

Let’s look a little deeper into the policy update

mgax J(@) — m@ax ESNDEaNWQ(.|S) [QW(S, CL)]

Likelihood Ratio/Score Function Pathwise derivative/Reparameterization

VQJ<‘9> — ESNDEaNﬂ'Q(.|8) [VO log g (a‘S)QW(S, a)] VQJ(H) = ESND]Esz(z) [VQQW(S, a)|a=,u9+209 Vi (MQ + 209)]

Easier to Apply to Broad Policy Class Lower variance (empirically)

Remember Lecture 2 and discussion of when gradients can be moved inside

Actor-Critic: Policy Gradient in terms of Q functions

Critic: learned via the Bellman update (Policy Evaluation)

min s, a,,5,41)~D (Q;Z(st, ar) — (r(st,ar) + Qg(stﬂa Clt+1)))2 aty1 ~ m(+|Se41)

@
—
Learn Q function
via Bellman

[Collect] } Lowers variance and is off-policy!
Data

Take Gradient
\ Steponm
Actor: updated using learned critic (Policy Improvement)

m?JX ESNDEQNW(.|S) [Qﬂ- (87 a)}

Actor-Critic in Action

Approach B.|: Natural Actor-Critic

s

Peters & Schaal (2003). Reinforcement Learning for Humanoid Robotics, HUMANOI

L ecture outline

Going from On-Policy to Off-Policy AC

|

Getting Off-Policy RL to Work

|

Frontiers of Off-Policy RL

What can we do to make off-policy algorithms work
in practice’

Going from Batch Updates to Online Updates

This algorithm can go from full batch mode to fully online updates

Collect W _| Learn Q function Critic: 1 gradient step on
1 sample - - Bellman
Data Via be Bellman error
Target 1 (Take Gradient Actor: 1 gradient step
Update J L Step on pi on policy gradient

Allows for much more immediate updates

Challenges of doing online updates

1 sample Collect W .| Learn Q function Critic: 1 gradient step on
P Data via Bellman Bellman error
Target 1 (Take Gradient Actor: 1 gradient step
Update J L Step on pi on policy gradient

When updates are performed online, two issues persist:
1. Correlated updates since samples are correlated
2. Optimization objective changes constantly, unstable

Decorrelating updates with replay buffers

7

Updates can be decorrelated by storing and shuffling data in a replay buffer

%mon Instead of doing updates in order,
sample batches from replay buffer

D |

/ ~— How?

Sampled from replay buffer 1 Sample uniformly
minE, Q5 (51, 1) 2. Prioritize by TD-error
St,Qt,St41) Y . o . o
? aepa~m(lsi) 3. Prioritize by target error
max EeBEar(|s) [Q7 (5, 0)] 4, ... open area of research!

((st,a0) + QF (5041, 0:41)))°)

Slowing moving targets with target networks

7

Continuous updates can be unstable since there is a churn of projection and backup

minE(Staat,StH)Np {(Qg(styat) — (T(Staat) + Qg(st—l—l? at+1)))2}

? att1~T(-[Se41)

If we set ¢ to ¢ every update, the update becomes very unstable

U

Move & to ¢ slowly!

¢ — (1 — 7-)¢ + T& Polyak averaging

A Practical Off-Policy RL Algorithm

Add to
Buffer Sample batch from buffer
Learn Q function Critic: 1 gradient step on
1 sample Collect i g P
Data Via beliman Bellman error

) 4
Polyak Target |, Take Gradient Actor: 1 gradient step
Averaging Update Step on pi on policy gradient

Simplity -- Can we get rid of a parametric actor?

Critic Update

2

mqbin]E(s,a,s’)ND [Qg(stv at) T (T(SU at) + IIE?‘Q’CLH—l’\”T(-|~‘5t+1) [QC}B(SH'l’ at+1)“

Actor Update

m;xx gD “3amw(.|s) [QW(Sa a)}

What if we removed this explicit actor completely?

Directly Learning Q¥

2
minlE; 4 s/)~p [Qg(st, at) — (r(s¢, ar) + max [qu(StJrl, at—H)])

¢ at+1
W(a‘s) — max Q(S, CL) Directly do max in the Bellman update
a
~
Add to
Buffer Sample batch from buffer
J
-
1 sample Collect Learn Q function | critic: 1 gradient step on
Data via Bellman Bellman error
.
Polyak Target

) No actor updates, just learn Q!
Averaging Update

How can we maximize w.rt a’

m(als) = max Q(s,a)

T

Analytic maximization can be very difficult to perform in continuous action spaces
Much easier in discrete spaces! = just do categorical max!

Some ideas to do maximization:
1. Sampling based (QT-opt (Kalashnikov et al))
2. Optimization based (NAF, Gu et al)

Practical Actor-Critic in Action

‘ i \ 7] P
g - . N A 14
"""")) i e | ¥ e ,-'A\/ / 4
p———] - —,, .) V. l g 4
—— = 4wy - A% o f | g 5
B f ‘, s Y . : 7 /.
- -l an ’ RN Y ‘D : " 4
Jet—— ! ! AR by e 20
e B B, B A0V § : g ‘
i ' . o 1 :
- ' Y B AL 2 .
- 4 ! T W ks -
F PR 3 : " S -
" B) w .
v - | 'S
" » .

aninc . \ oad >
\ S
oS

Trained using QT-Opt

Practical Actor-Critic in Action

Trained using DDPG

What can we do to make them match on-policy
algorithms in asymptotic performance?

Where does this fail?

Performance Double Q-Learning vs Q-Learning

Some issues remain:
. 1. Overestimation bias
2. Insufficient exploration

Let’s try and understand these!

Overestimation Bias in Actor-Critic

Average Value

¢

M CDQ - True CDQ
DDPG -e- True DDPG

Optimized Q’s are often overly optimistic

QF (st,ar) — (r(se, ap) +max |Qz(se41, at+1)D] }

IIllrlHE(s,aws’)nulD

500
400
300
200

100

|

ol «

at4+1

Q is meant to be an expectation
—> actually a random variable because of limited data/stochasticity

0.0

0.2 0.4 0.6 0.8 1.0
Time steps (1€6)

(a) Hopper-vl

0.0

0.2 0.4 0.6 0.8
Time steps (1€6)

(b) Walker2d-vl

1.0

E(max) > max(E), so values are optimistic

Overestimation Bias in Actor-Critic
4
max(X)
1
B S B > E(X;) 1
IR Rt > max(E(X;) E(Xy))
<
p max(X,)
S e R > E(max(X;) max(Xy))
5
ST N R et > E(Xy)
Q-learning can overestimate when values are imperfect
(even when unbiased)

Overestimation Bias in Actor-Critic — Ensemble Q

Learn two (or N) independent measures of Q, take the minimum
—> pessimistic on random variable

- | Dy
y; =r(s,a)+y min Qg (s m(s"))

S minE(s,a,S/)ND [(quj (37 a) — yj)Q]

Independent b J
updates

- B

g 11N ax ESNDEaNWQ. [qug (87 a’)]

< 95 ’

J

Significantly improves overestimation and in turn sample efficiency!

Overestimation Bias in Actor-Critic

Significantly improves overestimation and in turn sample efficiency!

m TD3 m DDPG m our DDPG m PPO m TRPO mm ACKTR mm SAC
5000
4000
4000
3000
3000
2000
2000
1000
1000 0
0 _
00 02 04 06 08 10 10065602 04 06 08 10
Time steps (1e6) Time steps (1€6)

(¢) Walker2d-v1l (d) Ant-v1

Double Actor Critic in Action

Double Actor Critic in Action

Where does this fail?

Some issues remain:
1. Overestimation bias
2. Insufficient exploration

Let’s try and understand these!

Collapse of Exploration in Off-Policy RL

Deep RL policies will often converge prematurely or explore insufficiently

2500

U-shaped maze

2000
1500

1000

500

0 50 100 15y 200

Very unstable learning

Addressing Policy Collapse in Off-Policy RL

Adding entropy to the RL objective can help significantly

Z /Vtr(stv at):|

t=0

U

> (st ar) + a%(wcst))}

t=0

max [
T

max [
7T

Simple change in on-policy RL

+ anH(WG(-St))] (via chain rule)

Max-Ent Off-Policy RL

T

D A (r(seya0) + aH(m(]se))

t=0

max K
7T

Work through the recursion, same as with the regular Bellman
Critic — Policy Evaluation

m(gn E(s,,a1,5011)~D {(Qg(st, a;) — (r(sg, ar) + Qg(st—l—la at+1)) — alog W(at+1!8t+1))2}
at+1~7(-|St41)

Actor — Policy Improvement

IIl?JXESND [anw(-b) [Qg(S, a) — alogﬁ(a\s)ﬂ

Soft Bellman Equation from Max-Ent RL

Optimize a "soft” Bellman equation

Q(st,at) < ¢ + 7E8t+1~ps [V (st41)] Qsoft(5t7 at) T 7E8t+1Nps [‘/SOft(St-l-l)]
V(st) + max Q(s¢, a) Vot (8¢) alog/ exp <;Qsoft(3t,a’)>da/
a A

1
m(alsy) < arg max Q(s¢,a) Tsoft (@]St) = exp (a(Qsoft(Sta a) — Vsoft(St))>

N _—

Go from max to “softmax” (imagine if a goes to 0, it becomes a max)

Prevents premature collapse of exploration while smoothing out optimization landscape!

Maximum Entropy Actor-Critic Algorithms in Action

N AG
6000 - __ pppg
—— PPO
<
é SQL ;
® 4000 _ p3 (concufrent)
80
©
g M MH
2 2000 e
KAy L
iy 00 il
0 2 4 6 8 10

million steps

(f) Humanoid (rllab)

L ecture outline

Going from On-Policy to Off-Policy AC

|

Getting Off-Policy RL to Work

|

Frontiers of Off-Policy RL

Ok, so are off-policy algorithms perfect?

What makes off-policy RL hard?

Deadly triad:

1. Function Approximation
2. Bootstrapping —
3. Off-policy learning

) 2

m(gn E(S’Q’S/)ND Qg(st, ar) — (r(s¢, ar) + Igl?;?f [Q(E(SH—M at+1)})

These in combination lead to many of the difficulties in stabilizing off-
policy RL with function approximation

/00oming out — what makes off-policy RL hard?

Deadly triad:
1. Function Approximation
2. Bootstrapping 61% of runs show divergence of Q-values

3. Off-policy learning

100000 - Q -
o 1220061% 14%] 33% 0%] Diverges even with linear
a8 100-) function approximation,
S 10 <|> when off-policy +
< _
g 1- bootstrapping
0.1-
0.01 - -

I | I I
Q Target Q Inverse Double Q
Double Q

/00oming out — what makes off-policy RL hard?

12
]l -¢ 1o
108

19°
104
102
10°

500 1000 1500 2000

(b) v(s) = we(s) diverges.

Let’s go to the whiteboard!

What should | work on?

Where does the frontier of off-policy RL lie?

Off-policy is an extremely promising tool, but not quite plug and play like PG
methods

- Low variance, off-policy, avoids reconstruction, performs dynamic programming
- Has the potential to be performant and sample efficient

But in practice is often unstable, inefficient with high dimensional observations

Sampling Theory Exploration

o HQ
!
Pr[’j@J Pr()j:I,

Q

/

V% -
Qu*

Prioritizing Experience

Performing uniform buffer TD updates can be catastrophically bad

“wee. @OO0O00O

Intermediate values of error

(high (L) to low (R) error)

Iteration 6 Iteration 7 Iteration 8

Iteration 9

Intermediate values of error

(high (L) to low (R) error)

“waess @OOO0CO0O

Iteration 0 Iteration 1 Iteration 2

Iteration 3

Iteration 10

Suboptimal Convergence

------------------- 1.00 =

S

Ei

0.75 3

= 101 \ym==mmmmmmmm e =1
-] 1 =1
& | — Optimal - |50 3
E ‘l —— On-Policy é
& 51 025 %
i E

! £

1)

z

(a) Sub-optimal convergence for on-
policy distributions: return (dashed) and
value error (solid). Note that value error
decreases rapidly at the start and finally
converges to a nonzero value, leading to
sub-optimal return.

Instability in Learning

S © o =
= o Y o
Normalized Return (Dashed)

e
S

e
o

0 100 200

w
=]
=]

(b) Instability for replay buffer distribu-
tions: return (dashed) and value error
(solid) over training iterations. Note the
rapid increase in value error at multiple
points, which co-occurs with instabilities
in returns.

Need to prioritize updates to propagate good values

Sparse Reward

""" e gl [0

10.0 R =

Replay Buffer 0.8 ;\

= =
= 75

3 0.6 &

o g

£ 50 o~

g 0.4.8

2.5 0.275'

) 5

e — T L

0 100 200 300

(c) Error (left) and returns (right) for
sparse reward MDP with replay buffer
distributions. Note the inability to learn,
low return, and highly unstable value
error &, often increasing sharply, desta-
bilizing the learning process.

Theory/Convergence with Function Approximation

Significant body of work on learning dynamics with function approximation

Delusional Bias

a; prob. 1 —¢
R(s1,a1)

Figure 1: A simple MDP that illustrates delusional bias (see text for details).

Implicit regularization
Bilinear classes

— Framework B-Rank | B-Complete | W-Rank | Bilinear Class (this work)
Rexp (0) = Z ¢(Si7 ai)Tqb(S'li) a;,) B-Rank v X v v
€D B-Complete X v X v
W-Rank X X v v
Bilinear Class (this work) X X X v

Exploration in Off-Policy RL

Better exploration methods

Uncertainty based methods Count-based methods Information gain methods

Shared network

Often critical for getting algorithms to work!

Image-based Off-Policy RL

Learning from high dimensional observations is unstable — images/point clouds

Data augmentations Pre-trained representations Student-teacher

Environment

Critic

f

State &) Obs
Observation PVR Model Policy Goal @Goal-ObS

Cutout-color Random conv

Still very unstable, lot of open research problems!

Partial Observability in Off-Policy RL

Off-policy methods critically depend on the Markov assumption

Q-Values

%
/ LSTM / 512

Conv3
64-filters 64
3x3
Stride 1
7 7
[

Conv2 =

64-filters
4x4 64
Stride 2

100" 120 < 100% 120 C

,F_J.'-

o

Convl

20

'C7 32-filters ’C7 32
\\ 8 x8 \\
- Stride 4 - 20

84

Learning history conditioned/recurrent Q-functions is an open area!

84

ifested in robotics?

iIcy RL man

ole]

Small changes - larger number of ensembles

How has off-

INS

20m

ining in <

ibatch steps allow for trai

N

more mi

7

How has off-policy RL manifested in robotics?

How has off-policy RL manifested in robotics?

Uses MPO - a variant of actor critic with a supervised learning style actor update

)

Ir'd §ped object used to reorient the DUROIRODECE

|
|
.

Triplet 2

e

How has off-policy RL manifested in robotics?

Bootstrapped with a few demonstrations

How has off-policy RL manifested in robotics?

untrained

12 min later 30 min later

1 hour later

8 P
2 hours later

Pros/Cons of Off-Policy Methods in Robotics

Pros: Cons

1. Sample-efficient enough for real world 1. Often unstable

2. Can learn from images with suitable 2. Can achieve lower asymptotic
design choices performance

3. Off-policy, can incorporate prior data 3. Requires significant storage

L ecture outline

Going from On-Policy to Off-Policy AC

|

Getting Off-Policy RL to Work

|

Frontiers of Off-Policy RL

Class Structure

14

/—[Imitation Learning]\
/

4 Model-free Reinforcement Learning

~

Policy Gradient ADP Model-based Reinforcement Learning
J
\—[Unifying Perspectives on RL and IRL]—/
Frontiers A
Exploration Learning from Prior Data Learning across tasks
J

