Reinforcement Learning
Spring 2024

Abhishek Gupta
TAs: Patrick Yin, Qiuyu Chen

Class Structure

14

/—[Imitation Learning]\
/

4 Model-free Reinforcement Learning

~

Policy Gradient ADP Model-based Reinforcement Learning
J
\—[Unifying Perspectives on RL and IRL]—/
Frontiers A
Exploration Learning from Prior Data Learning across tasks
J

| ast lecture outline

Making NPG Practical = Trust Region Policy Optimization

Reducing Variance of Critic with GAE

One Algorithm to Rule Them All - Proximal Policy Optimization

Trust Region Policy Optimization

© o ©
w

Probability density function (A.U.)

3 key ideas:

1. On-policy updates = importance sampled objective
2. Huge matrix inversion = conjugate gradient method
3. Step size may be too large = backtracking line search

°

[3,]

Importance Sampling
I density function

Original density function |

v

TRPO, Schulman ‘15

Generalized Advantage Estimation

Sum up all the estimators in a geometric sum

A?V(Slaal) =Ty +yrg + -
A?\f—1(817a1) =ri+yre+---

A5(s1,a1) = r1 +yra + -

Al(s1,a1) =71 + vV (s2)

+ VPV (sno1)

-+ ’YQV(Sg) — V(Sl)

— V(s1)

+ ’YN_lTN — V(Sl)
—V(s1)

—_—

Geometric sum

AH (s1,a1) Z)\JAH s, a)

)\ controls bias-variance tradeoff

Best of both worlds — very similar idea to eligibility traces

Proximal Policy Optimization

L(s,a,0;,0) =min (mo(als) A(s,a), clip(mo(als) 1 —e 1+ e) A(s, a))

o, (als) o, (als)

v Multiple minibatch gradient steps
v No second order optimization
v Simple and stable, without huge updates

L ecture outline

Kronecker Factorization (K-FAQ)

|

Frontiers of Policy Gradients

Going from Monte Carlo Returns to Critic Estimation

|

Going from Monte Carlo Returns to Critic Estimation

Approximations to effectively invert FIM

Instead of solving with conjugate gradient, what if we approximated FIM

Major issue with FIM is huge dimensionality

nnnnnnn

i it tractable with 2 approx:
| 1. Block diagonalize FIM by layer
2. Represent each block diagonal as a
Kronecker product (easy inversion)

U e 5 Kronecker factorization (K-FAC) makes

Dimensionality of FIM - huge!
Very challenging to invert

ACKTR, Wu ‘17

What is a Kronecker product?

Generalization of the tensor product

|dentities
[A], ;B (A], ., B !;!:.l Vec(uvT) —uRu
A®B:= o L — I _ T u a®b C@d _ a,c@bd
([A],,.B - [A],,B) @ Eﬁp& IE:: ..!=: ()() ()

T (A X B)_l — A_l X]3_1

A € R™*"™ B € R**?: Kronecker factors

9 99>
-1 — -1 | We will represent the (per layer) fisher
F, | ~ i ~ D_1® . information metric as a Kronecker
0 : Kronecker product product of two smaller matrices

FIM Block-diagonal Kronecker factorization of diagonal block

ACKTR, Wu ‘17

K-FAC approximation for NPG

Kronecker factorization (K-FAC) makes it tractable with 2 approx:

1. Block diagonalize FIM by layer
2. Represent each block diagonal as a Kronecker product (easy inversion)

vec(uv?) = u® v

s=Wa
(a®b)(c®d) = (ac® bd)

VWL — (VSL)G,T

Weight defs
Matrix
|ldentities

Fy = Elvec{VwL}vec{VwL}T| =E[aa™ ® VsL(V,L)T]
~ Elaa’]| @ E[V,L(V,L)T]:= A® S := F,

K-FAC reparam

Easy to compute and invert (order of

magnitude smaller matrices)
ACKTR, Wu 17

How much does this help?

All layers in AlexNet
60,000,000 parameters

Fisher information matrix =1
Fg € [R 60,000,000 60,000,000

Final layer of AlexNet

Input dimension: 4,096 @
Output dimension: 1,000

4,096,000 parameters

Fisher block
Fi =]R4’096’OOOX4’096’000

Kronecker factors @

Ai_l c R4’096X4’096 -1 -1

G. e R1,000x1,000
)

ACKTR, Wu ‘17

L ecture outline

Kronecker Factorization (K-FAQ)

|

Frontiers of Policy Gradients

Going from Monte Carlo Returns to Critic Estimation

|

Going from Monte Carlo Returns to Critic Estimation

Pros/Cons of Policy Gradient Methods

Pros Cons

= Conceptually simple, easy to implement = Sample inefficient

= Stable, good asymptotic performance * Unable to reuse prior data effectively =
* Compatible with deep models on-policy

» Require minimal modeling = Blackbox, can be hard to debug

Frontiers of Policy Gradient Research

Major open challenges in policy gradient research:

[Convergence guarantees] [Asynchronous/ParaIIeI MethodsJ [Better Variance Reduction J

Learning from high- Bootstrapping from Multi-agent Policy
dimensional inputs prior data Gradient

Frontiers of Policy Gradient Research

Convergence guarantees and empirical investigations

Globally Convergent in LQR/LQG Case

o Gradient descent case: For an appropriate (constant) setting of the stepsize 1,

Womin(Q) 1 1 1)
))) 3 minR
C(Ko) * TAT 13T T&] o)

n = poly (

and for

N 31l CUD) = O™
n €
C(Ko) 1)
x poly | ——=, |A]|, || Bll, |R||, —=< | ,
poly (0), |81, IR, —
then, with high probability, gradient descent (Equation 8) enjoys the following performance bound:

C(Kn) - C(K") <e.

Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator, Fazel et al ‘19
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies, Zhang et al, ‘19
Globally convergent policy search over dynamic filters for output estimation, Umenberger ‘21

Practical Algorithms Deviate from Theory

Few state-action pairs (2,000) Many state-action pairs (10)
Surrogate True reward Surrogate True reward

Step 0

Step 300

Is the Policy Gradient a Gradient?, Nota et al, "19

A Closer Look at Deep Policy Gradients, llyas et al "19

An Empirical Analysis of Proximal Policy Optimization with Kronecker-factored Natural
Gradients, Song et al ‘18

What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study,
Andrychowicz et al ‘20

Frontiers of Policy Gradient Research

Asynchronous methods for large scale speedup

Environment Stepping NN Inference

Observations

CcPU GPU
Worker Processes (cPU) (GPU)
Learner Simulator-0 [envy][env}][envl]_\J/
Observations .
Parameters | . : .
Simulator-1 envy [3 @
) ¥ 3 5
di g. 3 e oo
Q Gradients Simulator-n '{ env? J[][envl } S S -
Master Action-Server getmxn
| actions
Learner
Q Q " Observations time >

IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures, Espeholt ‘18 Accelerated Methods for Deep Reinforcement Learning, Stooke et al ‘19

Frontiers of Policy Gradient Research

Better Variance Reduction Methods

Action dependent baselines Alternative Estimators

o (at |3t) = H;n:1 T (a% | St) JLAX GREINFORCE|f] JREINFORCE|[Co) Greparam|[Cg)

Von(me) =E,, =

ive logﬂ—e(aﬂst) (Q(st, a) — bi(St,at_i))]

i=1 -) *
Forfactorl.zed spaces, base.llnes can i i iy e (ISR o0 i
depend on independent action factors unbiased unbiased biased biased

low variance high variance high variance low variance

The Mirage of Action-Dependent Baselines in Reinforcement Learning, Tucker et Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic, Gu et al ‘16

al18 Backpropagation through the Void: Optimizing control variates for black-box gradient estimation,
Variance Reduction for Policy Gradient with Action-Dependent Factorized Grathwohl et al ‘17

Baselines, Wu et al 18 Categorical Reparameterization with Gumbel-Softmax, Jang et al ‘16

Frontiers of Policy Gradient Research

Learning from High Dimensional Observations

1. Teacher policy training

Environment
Command
Proprioception

A
Height scan = l

Joint difference
phase difference

Train with PPO

2. Student policy training
Student Policy

Drift for each foot Command o —
’ \“ Proprioception ’*’ MLP > ;‘ctd-on t
ke 4 encoder
Learning Quadrupedal Locomotion over Challenging Terrain, Lee et al 20 A System for General In-Hand Reorientation, Chen et al 21 A ' AL t
Outliers o hidden

v

Drift for each area

behavior loss

reconstruction loss

Challenging to provide guarantees in partially observed settings! f ' e
ging to p g P y g = =

|

—t—| Policy
Bl AR

E i i i 3. Deployment controllel
P Rollout under trainee Trainee imitates expert Expert policy i T _@
i ¥

DAgger ‘ ; A Locomotion control
L T T T T e ee———————————— TSI T IO TTTETIT OO I I m T m T I , [c
Refine expert using rollouts : e Brpiece o
.. . = . — D o |
e PR Sampled height scan ‘ b

MLP

e
hidden

Robust Asymmetric Learning in POMDPs, Warrington et al 20 F AL _ Student Policy

AR

Learning robust perceptive locomotion for quadrupedal robots in the wild, Miki et al 22

Frontiers of Policy Gradient Research

Bootstrapping from Prior/Off-Policy Data

Off-policy policy gradient

my(als)
E [Q" (s,a)Vylnmy as]
o[ialy @ (o) Vo lnma(als)
Behavior] i Greedy-GQ
.2 L,i_v:;{ ?

Softmax-GQ

Off-PAC

= b

A

1

Off-Policy Actor-Critic, Degris et al “13

Learning from Prior Data

—— AWAC (Ours) ABM [40] - AWR [32]

Advantage Weighted Actor Critic, Nair et al ‘20
DDPGfD, Vecerik ‘17
DAPG, Rajeswaran ‘17

Frontiers of Policy Gradient Research

Multi-agent policy gradient

oo _____execution
— 1 4 : m . ce ITN :
(e)— j (v?, 7*)—+| COMA | E * + * + :
A A 1 !
h? {Q(u*=1, u?,.),.[,Q(u*=[U], u?,.)} :

(°)| GrU t|—>(h*‘t) NS
) SR IR ey mt T <y et} P
CJ CJ

Environment (0?,a,u?) (u?,s,0%,a,u_) (! (l
)y 4 1) O] 1 e o o
t t: t ot t t 1 N

Counterfactual Multi-Agent Policy Gradients, Foerster et al ‘17 Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments, Lowe et al ‘17

Primary challenges:
1. Non-stationarity
2. Data-efficiency

3. Communication

How is this useful for robotics?

Can be used to train robots in the real world but only in limited settings

How is this useful for robotics?

Largely useful for pretraining in simulation

L ecture outline

Kronecker Factorization (K-FAQ)

|

Frontiers of Policy Gradients

|

Going from Monte Carlo Returns to Critic Estimation

|

Going from Monte Carlo Returns to Critic Estimation

What can we do to make PG suitable for robots?

Why is Policy Gradient sample inefficient?

VoJ(6) = / po(7) Vg log po(7)dr

T
—ZZVglogmg at\st Z st,at
/=t

N

On-policy, unable to

effectively use past data High Variance Estimator

Can we develop a low variance off-policy RL algorithm that can bootstrap from prior data?

What can we do to lower variance?

VoJ(6) = / po(7) Vg log po(7)dr

N T

1 0| o0 i i
~N Z Z Vg log mp(ay|st) Z r(s,ap)
i=1 t t=t

|dea: bundle this across many (s, a) with a function approximator

=
PN

Function approximator bundles return estimates across states

What we do

s it

Single sample estimate

What we actually want

Averaged return estimate

¢ = e e e = = -

Notation: Q functions 3
!
1 a . i Average
N YVH log 7y at‘st) Zr(s%,ai) |
1=1 ¢ t' =t v
Sum

Expected sum of rewards in the future, starting from (s, a) on first step, then
- _

QW(Sty Clt) = K., Z ’I“(S;, a;) |St, Q¢ Bundles estimates across (s, a)

\ t' =t _

Use the magic of (deep) function approximation

Attempt 0: Monte-Carlo Estimation of Q-Functions

Vo log mg(a;|s)Q" (sy:, ay)

]~

|
N 2

1=0 t=0
T
/ / . .
Q" (s¢,a:) = EL, E r(sy, ay)|st, a; |+—— Monte-carlo approximation
t'=t

ldea: Regression from (s, a) to Monte-Carlo estimate

Fully-

ted
Convolution cor;:;gr i
layer 1 Convolution
| layer 2 le ol
State \\\ 34.0.. p . 5 2 ';‘:',-"' —.:') o . . I
Act - [Gifsd T I o o Return to Go Unbiased, but high variance!
ction - / 12| 6 3 3 ~.1:~.‘\; C‘b
9 Max pooling @[
Max pooling ayer2
layer 1 Output
layers

Input Layer

Can we do better?

N

T

A, . o
2> Velogm(ailsy) Y r(si ap

1=1 t t'=t

! ‘ Much lower variance if estimated well

Can be learned off-policy!

N T
1 i AINAVT (G
N Sj;jvé 10g7T9(CLt\St)Q (Staat)

Has special structure we can exploit!!

Attempt 1: Using Recursive Structure

N T -

1 . .) . / /

N S:S:vg 10gﬂ6(a;|S;)QW(S;7a/;) QT‘-(St,axt) :]Eﬂ'e ZT(St7a/t)|Staat:|
1=0 t=0 o

T

> r(seap)|s:

t'=t

Note the definition of a value function V™(s;) =E,, = Ko, momo(-]se) [Q (S5 at)]

Average Q-function over actions sampled from policy

T
Value functions are recursive VT(st) = Er, |T(s¢,0¢) + Z (S, ap st}
t'=t+1
T
V™(st) = Erp |7(S¢,0a¢) + Ep, Z T(St/,at/)|8t+1]% VF!
t'=t+1

V™(st) = Eg, [7(s¢,at) + VW(SjH_l)]

Attempt 1: Using Recursive Structure

N T
1
NZZV log 7y a’t‘st)QW(Stvat) Q" (s¢,ay)

1=0 t=0

Value functions are recursive Vﬁ(St) = Er,

r(se, ae) + V”(stﬂ)]

e '%‘ Recipe for policy gradient
- [J

P ch . T 2
W=w- mgbm K s, a5 yom [(V¢ (8¢) — i) }
yi = 1(si,a;) + V(s;) Value Bellman equation
N T
Vod(6) = 30 Vologm(aflsi)r(se, a0) + Visia) — V(s,)
1=0 t=0

Better estimate of future return

Attempt 1: Using Recursive Structure

N T T
1 o o
TODO replace this ~ — g E Vg log mg(ay|s})Q™ (s}, al) Q7 (s,a;) = Ey, E r(sy, ai)|se, at}
i=0 t=0 t—t

mgbiﬂ E(Si,ai,si/)’\’w [(V(;T(Sz) o yz)ﬂ

Fit a value function on on-policy data ,
pPOTCY y; = r(si,a;) + V(s;)

N T
Compute the policy gradient Vs J(0) = %ZZW log o (ay|sy)(r(se, ar) + V(set1) = V(st))

=0 t=0

Collect more data

+ lowers variance - Still on-policy

Revisit: Generalized Advantage Estimation

Sum up all the estimators in a geometric sum

A?V(Slaal) =Ty +yrg + -
A?\f—1(817a1) =ri+yre+---

A5(s1,a1) = r1 +yra + -

Al(s1,a1) =71 + vV (s2)

+ VPV (sno1)

-+ ’YQV(Sg) — V(Sl)

— V(s1)

+ ’YN_lTN — V(Sl)
—V(s1)

—_—

Geometric sum

AH (s1,a1) Z)\JAH s, a)

)\ controls bias-variance tradeoff

Best of both worlds — very similar idea to eligibility traces

Attempt 2: Recursive structure in Q functions directly

Q functions have special recursive structure themselves!
-7 _

QW(Shat) — EW@ ZT(S;,CL;NSt,at

|t/ =1 i

— T(St, at) + EW Z T(St/, at/)‘SH_l, Agy1 ™~ 7T(.|8t_|_1)
[t/ =t+1 _

Bellman equation QW(St, at) — "“(St, Cbt) +E ser1~p(.|se,ae) [QW(St—Ha at+1)]

at4+1~7o (. |St41) /
6LO0-6 B

Decompose temporally via dynamic programming Off-policy!

Can be from
different policies

Learning Q-functions via Dynamic Programming

Policy Evaluation: Try to minimize Bellman Error (almost)

Bellman equation = Q" (s¢,a¢) =r(st,ar) + E ser1~p(.|st,a+) Q7 (St41, a1
at4+1~7o (. |St41)

Same function approximator

How can we convert this recursion into an off-policy learning objective?

Why is this not just the gradient of the Bellman Error?

| 2
mggnE(St,at,St—i—l)N,D (Qg(sta at) T (T(Sta at) T IEOLt-H’WTe(CLt+1|3t+1) [Qg(st‘H’ at_l_l)}))

Approximate using stochastic optimization

minE(,, a, 5.,)~ (Qg(st,at) — (r(s¢,a¢) + Qg(stﬂ, atH)))Q ary1 ~ m(+|St41)

¢ \
| L LT g §XE_E "Target” moves too much

Structural Condition

Often tough empirically with Expectation inside the square,
function approximators hard to be unbiased

Note: this may look like gradient descent on Bellman error, it is not!

Improving Policies with Learned Q-functions

Policy Improvement: Improve policy with policy gradient

I1N1axX {"SND,QNWQ (CL|S) [Qﬂ-e (87 a’)]

g

Replace Monte-Carlo sum of rewards with learned Q function

Lowers variance compared to policy gradient! /\AQ

+ off-policy

Policy Updates — REINFORCE or Reparameterization

Let’s look a little deeper into the policy update

mgax J(@) — m@ax ESNDEaNWQ(.|S) [QW(S, CL)]

Likelihood Ratio/Score Function Pathwise derivative/Reparameterization

VQJ<‘9> — ESNDEaNﬂ'Q(.|8) [VO log g (a‘S)QW(S, a)] VQJ(H) = ESND]Esz(z) [VQQW(S, a)|a=,u9+209 Vi (MQ + 209)]

Easier to Apply to Broad Policy Class Lower variance (empirically)

Remember Lecture 2 and discussion of when gradients can be moved inside

Actor-Critic: Policy Gradient in terms of Q functions

Critic: learned via the Bellman update (Policy Evaluation)

min s, a,,5,41)~D (Q;Z(st, ar) — (r(st,ar) + Qg(stﬂa Clt+1)))2 aty1 ~ m(+|Se41)

@
—
Learn Q function
via Bellman

[Collect] } Lowers variance and is off-policy!
Data

Take Gradient
\ Steponm
Actor: updated using learned critic (Policy Improvement)

m?JX ESNDEQNW(.|S) [Qﬂ- (87 a)}

Actor-Critic in Action

Approach B.|: Natural Actor-Critic

s

Peters & Schaal (2003). Reinforcement Learning for Humanoid Robotics, HUMANOI

L ecture outline

Kronecker Factorization (K-FAQ)

|

Frontiers of Policy Gradients

|

Going from Monte Carlo Returns to Critic Estimation

|

Getting Actor Critic to Work in Practice

What can we do to make off-policy algorithms work
in practice’

Going from Batch Updates to Online Updates

This algorithm can go from full batch mode to fully online updates

Collect W _| Learn Q function Critic: 1 gradient step on
1 sample - - Bellman
Data Via be Bellman error
Target 1 (Take Gradient Actor: 1 gradient step
Update J L Step on pi on policy gradient

Allows for much more immediate updates

Challenges of doing online updates

1 sample Collect W .| Learn Q function Critic: 1 gradient step on
P Data via Bellman Bellman error
Target 1 (Take Gradient Actor: 1 gradient step
Update J L Step on pi on policy gradient

When updates are performed online, two issues persist:
1. Correlated updates since samples are correlated
2. Optimization objective changes constantly, unstable

Decorrelating updates with replay buffers

7

Updates can be decorrelated by storing and shuffling data in a replay buffer

%mon Instead of doing updates in order,
sample batches from replay buffer

D |

/ ~— How?

Sampled from replay buffer 1 Sample uniformly
minE, Q5 (51, 1) 2. Prioritize by TD-error
St,Qt,St41) Y . o . o
? aepa~m(lsi) 3. Prioritize by target error
max EeBEqr(|s) [Q7 (5, 0)] 4, ... open area of research!

((st,a0) + QF (5041, 0:41)))°)

Slowing moving targets with target networks

7

Continuous updates can be unstable since there is a churn of projection and backup

minE(Staat,StH)Np {(Qg(styat) — (T(Staat) + Qg(st—l—l? at+1)))2}

? att1~T(-[Se41)

If we set ¢ to ¢ every update, the update becomes very unstable

U

Move & to ¢ slowly!

¢ — (1 — 7-)¢ + T& Polyak averaging

A Practical Off-Policy RL Algorithm

Add to
Buffer Sample batch from buffer
Learn Q function Critic: 1 gradient step on
1 sample Collect i g P
Data Via beliman Bellman error

) 4
Polyak Target |, Take Gradient Actor: 1 gradient step
Averaging Update Step on pi on policy gradient

Practical Actor-Critic in Action

‘ i \ 7] P
g - . N A 14
"""")) i e | ¥ e ,-'A\/ / 4
p———] - —,, .) V. l g 4
—— = 4wy - A% o f | g 5
B f ‘, s Y . : 7 /.
- -l an ’ RN Y ‘D : " 4
Jet—— ! ! AR by e 20
e B B, B A0V § : g ‘
i ' . o 1 :
- ' Y B AL 2 .
- 4 ! T W ks -
F PR 3 : " S -
" B) w .
v - | 'S
" » .

aninc . \ oad >
\ S
oS

Trained using QT-Opt

Practical Actor-Critic in Action

Trained using DDPG

What can we do to make them match on-policy
algorithms in asymptotic performance?

Where does this fail?

Performance Double Q-Learning vs Q-Learning

Some issues remain:
. 1. Overestimation bias
2. Insufficient exploration

Let’s try and understand these!

Overestimation Bias in Actor-Critic

Average Value

¢

M CDQ - True CDQ
DDPG -e- True DDPG

Optimized Q’s are often overly optimistic

500
400
300
200

100

ol «

minE(St,at,StH)ND [(Qg(st, Clt) — (T(Sta at) + Qg(st—‘rl? at+1)))2}

aty1~7(-[set1)

Q is meant to be an expectation
—> actually a random variable because of limited data/stochasticity

0.0

0.2 0.4 0.6 0.8 1.0
Time steps (1€6)

(a) Hopper-vl

0.0

0.2 0.4 0.6 0.8
Time steps (1€6)

(b) Walker2d-vl

1.0

E(max) > max(E), so values are optimistic

Overestimation Bias in Actor-Critic
4
max(X)
1
B S B > E(X;) 1
IR Rt > max(E(X;) E(Xy))
<
p max(X,)
S e R > E(max(X;) max(Xy))
5
ST N R et > E(Xy)
Q-learning can overestimate when values are imperfect
(even when unbiased)

Overestimation Bias in Actor-Critic — Ensemble Q

Learn two (or N) independent measures of Q, take the minimum
—> pessimistic on random variable

- | Dy
y; =r(s,a)+y min Qg (s m(s"))

S minE(s,a,S/)ND [(quj (37 a) — yj)Q]

Independent b J
updates

- B

g 11N ax ESNDEaNWQ. [qug (87 a’)]

< 95 ’

J

Significantly improves overestimation and in turn sample efficiency!

Overestimation Bias in Actor-Critic

Significantly improves overestimation and in turn sample efficiency!

m TD3 m DDPG m our DDPG m PPO m TRPO mm ACKTR mm SAC
5000
4000
4000
3000
3000
2000
2000
1000
1000 0
0 _
00 02 04 06 08 10 10065602 04 06 08 10
Time steps (1e6) Time steps (1€6)

(¢) Walker2d-v1l (d) Ant-v1

Double Actor Critic in Action

Double Actor Critic in Action

Where does this fail?

Some issues remain:
1. Overestimation bias
2. Insufficient exploration

Let’s try and understand these!

Collapse of Exploration in Off-Policy RL

Deep RL policies will often converge prematurely or explore insufficiently

2500

U-shaped maze

2000
1500

1000

500

0 50 100 15y 200

Very unstable learning

Addressing Policy Collapse in Off-Policy RL

Adding entropy to the RL objective can help significantly

Z /Vtr(stv at):|

t=0

U

> (st ar) + a%(wcst))}

t=0

max [
T

max [
7T

Simple change in on-policy RL

+ anH(WG(-St))] (via chain rule)

Max-Ent Off-Policy RL

T

D A (r(seya0) + aH(m(]se))

t=0

max K
7T

Work through the recursion, same as with the regular Bellman
Critic — Policy Evaluation

m(gn E(s,,a1,5011)~D {(Qg(st, a;) — (r(sg, ar) + Qg(st—l—la at+1)) — alog W(at+1!8t+1))2}
at+1~7(-|St41)

Actor — Policy Improvement

IIl?JXESND [anw(-b) [Qg(S, a) — alogﬁ(a\s)ﬂ

Soft Bellman Equation from Max-Ent RL

Optimize a "soft” Bellman equation

Q(st,at) < ¢ + 7E8t+1~ps [V (st41)] Qsoft(5t7 at) T 7E8t+1Nps [‘/SOft(St-l-l)]
V(st) + max Q(s¢, a) Vot (8¢) alog/ exp <;Qsoft(3t,a’)>da/
a A

1
m(alsy) < arg max Q(s¢,a) Tsoft (@]St) = exp (a(Qsoft(Sta a) — Vsoft(St))>

N _—

Go from max to “softmax” (imagine if a goes to 0, it becomes a max)

Prevents premature collapse of exploration while smoothing out optimization landscape!

Maximum Entropy Actor-Critic Algorithms in Action

N AG
6000 - __ pppg
—— PPO
<
é SQL ;
® 4000 _ p3 (concufrent)
80
©
g M MH
2 2000 e
KAy L
iy 00 il
0 2 4 6 8 10

million steps

(f) Humanoid (rllab)

L ecture outline

Kronecker Factorization (K-FAQ)

|

Frontiers of Policy Gradients

Going from Monte Carlo Returns to Critic Estimation

|

Getting Actor Critic to Work in Practice

Ok, so are off-policy algorithms perfect?

What makes off-policy RL hard?

Deadly triad:

1. Function Approximation
2. Bootstrapping —
3. Off-policy learning

) 2

m(gn E(S’Q’S/)ND Qg(st, ar) — (r(s¢, ar) + Igl?;?f [Q(E(SH—M at+1)})

These in combination lead to many of the difficulties in stabilizing off-
policy RL with function approximation

/00oming out — what makes off-policy RL hard?

Deadly triad:
1. Function Approximation
2. Bootstrapping 61% of runs show divergence of Q-values

3. Off-policy learning

100000 - Q -
o 1220061% 14%] 33% 0%] Diverges even with linear
a8 100-) function approximation,
S 10 <|> when off-policy +
< _
g 1- bootstrapping
0.1-
0.01 - -

I | I I
Q Target Q Inverse Double Q
Double Q

/00oming out — what makes off-policy RL hard?

12
]l -¢ 1o
108

19°
104
102
10°

500 1000 1500 2000

(b) v(s) = we(s) diverges.

Let’s go to the whiteboard!

What should | work on?

Where does the frontier of off-policy RL lie?

Off-policy is an extremely promising tool, but not quite plug and play like PG
methods

- Low variance, off-policy, avoids reconstruction, performs dynamic programming
- Has the potential to be performant and sample efficient

But in practice is often unstable, inefficient with high dimensional observations

Sampling Theory Exploration

o HQ
!
Pr[’j@J Pr()j:I,

Q

/

V% -
Qu*

Prioritizing Experience

Performing uniform buffer TD updates can be catastrophically bad

“wee. @OO0O00O

Intermediate values of error

(high (L) to low (R) error)

Iteration 6 Iteration 7 Iteration 8

Iteration 9

Intermediate values of error

(high (L) to low (R) error)

“waess @OOO0CO0O

Iteration 0 Iteration 1 Iteration 2

Iteration 3

Iteration 10

Suboptimal Convergence

------------------- 1.00 =

S

Ei

0.75 3

= 101 \ym==mmmmmmmm e =1
-] 1 =1
& | — Optimal - |50 3
E ‘l —— On-Policy é
& 51 025 %
i E

! £

1)

z

(a) Sub-optimal convergence for on-
policy distributions: return (dashed) and
value error (solid). Note that value error
decreases rapidly at the start and finally
converges to a nonzero value, leading to
sub-optimal return.

Instability in Learning

S © o =
= o Y o
Normalized Return (Dashed)

e
S

e
o

0 100 200

w
=]
=]

(b) Instability for replay buffer distribu-
tions: return (dashed) and value error
(solid) over training iterations. Note the
rapid increase in value error at multiple
points, which co-occurs with instabilities
in returns.

Need to prioritize updates to propagate good values

Sparse Reward

""" e gl [0

10.0 R =

Replay Buffer 0.8 ;\

= =
= 75

3 0.6 &

o g

£ 50 o~

g 0.4.8

2.5 0.275'

) 5

e — T L

0 100 200 300

(c) Error (left) and returns (right) for
sparse reward MDP with replay buffer
distributions. Note the inability to learn,
low return, and highly unstable value
error &, often increasing sharply, desta-
bilizing the learning process.

Theory/Convergence with Function Approximation

Significant body of work on learning dynamics with function approximation

Delusional Bias

a; prob. 1 —¢
R(s1,a1)

Figure 1: A simple MDP that illustrates delusional bias (see text for details).

Implicit regularization
Bilinear classes

— Framework B-Rank | B-Complete | W-Rank | Bilinear Class (this work)
Rexp (0) = Z ¢(Si7 ai)Tqb(S'li) a;,) B-Rank v X v v
€D B-Complete X v X v
W-Rank X X v v
Bilinear Class (this work) X X X v

Exploration in Off-Policy RL

Better exploration methods

Uncertainty based methods Count-based methods Information gain methods

Shared network

Often critical for getting algorithms to work!

Image-based Off-Policy RL

Learning from high dimensional observations is unstable — images/point clouds

Data augmentations Pre-trained representations Student-teacher

Environment

Critic

f

State &) Obs
Observation PVR Model Policy Goal @Goal-ObS

Cutout-color Random conv

Still very unstable, lot of open research problems!

Partial Observability in Off-Policy RL

Off-policy methods critically depend on the Markov assumption

Q-Values

%
/ LSTM / 512

Conv3
64-filters 64
3x3
Stride 1
7 7
[

Conv2 =

64-filters
4x4 64
Stride 2

100" 120 < 100% 120 C

,F_J.'-

o

Convl

20

'C7 32-filters ’C7 32
\\ 8 x8 \\
- Stride 4 - 20

84

Learning history conditioned/recurrent Q-functions is an open area!

84

ifested in robotics?

iIcy RL man

ole]

Small changes - larger number of ensembles

How has off-

INS

20m

ining in <

ibatch steps allow for trai

N

more mi

7

How has off-policy RL manifested in robotics?

How has off-policy RL manifested in robotics?

Uses MPO - a variant of actor critic with a supervised learning style actor update

)

Ir'd §ped object used to reorient the DUROIRODECE

|
|
.

Triplet 2

e

How has off-policy RL manifested in robotics?

Bootstrapped with a few demonstrations

How has off-policy RL manifested in robotics?

untrained

12 min later 30 min later

1 hour later

8 P
2 hours later

Pros/Cons of Off-Policy Methods in Robotics

Pros: Cons

1. Sample-efficient enough for real world 1. Often unstable

2. Can learn from images with suitable 2. Can achieve lower asymptotic
design choices performance

3. Off-policy, can incorporate prior data 3. Requires significant storage

