

Reinforcement Learning Spring 2024

Abhishek Gupta

TAs: Patrick Yin, Qiuyu Chen

Logistics

- Paper reading teams should start getting together from next week
- Start finding project teams for final projects

Lecture outline

Recap: MDP formalism + why should we care?

Imitation learning: preliminaries and behavior cloning

Multimodality and Underfitting in Imitation

Compounding Error in Imitation

Framework for RL - Markov Decision Process

Augment Markov chain with rewards and actions

States: \mathcal{S} Initial state dist: $\rho_0(s)$

Actions: \mathcal{A} Discount: γ

Rewards: \mathcal{R}

Transition Dynamics - $p(s_{t+1}|s_t, a_t)$

Markov property $p(s_1,s_2,s_3) = p(s_3|s_2)p(s_2|s_1)p(s_1)$ Trajectory $au = (s_0,a_0,r_0,s_1,a_1,r_1,\ldots,s_T,a_T,r_T)$

Reinforcement Learning Formalism

Unpacking the Expectation

$$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

<u>Trajectory View - Ancestral sampling along MDP</u>

Initial state
$$\mathbb{E} \underset{\substack{s_0 \sim \rho_0(s) \\ \text{Policy} \\ \text{Dynamics}}}{\sup s_1 \sim p(.|s_0,a_0)} \left[\sum_{t=0}^T r(s_t,a_t) \right]$$
 Dynamics
$$\underset{\substack{s_1 \sim p(.|s_0,a_0) \\ a_1 \sim \pi_\theta(.|s_1) \\ \text{Dynamics}}}{\sup s_2 \sim p(.|s_1,a_1)}$$

Compact
$$\mathbb{E}_{\substack{s_0 \sim \rho_0(s) \\ a_t \sim \pi_{\theta}(.|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t,a_t)}} \left[\sum_{t=0}^T r(s_t,a_t)\right]$$
 γ subsumed into $\mathbb{E}_{(s,a) \sim \mu_{\gamma}^{\pi}(s,a)} \left[r(s,a)\right]$

$$\mathbb{E}_{\pi_{\theta}^t} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$

<u>Stationary View – sampling from stationary dist</u>

$$d_t^{\pi}(s, a) = \mathbb{P}(s_t = s, a_t = a \mid s_0 \sim \rho_0, \forall i < t, a_i \sim \pi_{\theta}(\cdot | s_i), s_{i+1} \sim p(\cdot | s_i, a_i))$$

(Likelihood of being at state s, action a at time step t)

$$\mu_{\pi}^{\gamma}(s, a) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} d_{t}^{\pi}(s, a)$$

(Likelihood of being at state s, action a across **all** steps)

$$\gamma$$
 subsumed into E

$$\mathbb{E}_{(s,a)\sim\mu_{\gamma}^{\pi}(s,a)}\left|r(s,a)\right|$$

No sequential sampling

No sum over rewards

Some notation: Q-functions and V-functions

Estimate of how "good" a policy is – estimate of future returns under a policy π

Q-function

Take one action and then follow policy from s

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi, p} \left[\sum_{t} r(s_t, a_t) \mid s_0 = s, a_0 = a \right]$$

0.94 0.95 0.97 0.94 0.96 0.95 0.98 1.00 0.93 0.95 0.90 0.76 0.93 0.93 0.93 0.89 0.62 -1.00 0.92 0.90 0.87 -0.64 0.91 0.90 0.91 0.89 0.90 0.81 0.69 0.61 0.91 0.90 0.91 0.88 0.80

V-function

Follow policy from s

$$V^{\pi}(s, a) = \mathbb{E}_{\pi, p} \left[\sum_{t} r(s_t, a_t) \mid s_0 = s \right]$$

$$V^{\pi}(s, a) = \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[Q^{\pi}(s, a) \right]$$

Will be useful soon!

$$J(\pi) = \mathbb{E}_{s \sim \rho_0(s)} \left[V^{\pi}(s) \right]$$

Average value over initial states

Ok so is this just supervised learning?

Supervised learning aims to maximize likelihood of observed data under the model

Supervised Learning

$$\max_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\log \hat{p}_{\theta}(y|x) \right]$$

Why is this not just supervised learning?

Supervised Learning

$$\max_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\log \hat{p}_{\theta}(y|x) \right]$$

Sampling from expert

$$D_{\mathrm{KL}}(p^*||p_{\theta})$$
 IID

Reinforcement Learning

$$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

Sampling from policy

$$D_{\mathrm{KL}}(p_{\theta}||p^*)$$
 Non-IID

Why is this not just supervised learning?

Supervised Learning

$$\max_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\log \hat{p}_{\theta}(y|x) \right]$$

Reinforcement Learning

$$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

The resulting paradigms are different in many ways:

- 1. Optimization and learning dynamics
- 2. Balancing exploration and exploitation

But many overlapping tools! In fact often we try to convert RL into a supervised problem

Ok so why should we care about RL?

Solves sequential decision making problems

Has black-box assumptions

Enables continual improvement

Reduces burden of human data collection

Applications of RL: Robotics/LLMs/Science/Games

RL can enable robotic learning of hard to specify/script behaviors in the presence of contact

Where is Reinforcement Learning not useful?

Not the right call for very safety-critical, repetitive applications

So is sequential decision making = RL?

We conflated sequential decision making and RL!

RL is sequential decision making under a particular set of assumptions:

- 1. Sampling access to the environment
- Access to reward
- 3. Goal-directed behavior

Trajectory optimization/planning

Imitation Learning

Unsupervised Decision Making

Trajectory Optimization

Sequential decision making with "known" models

Ramkumar Natarajan, Howie Choset and Maxim Likhachev

We combine RRT and local smoothing of contact dynamics to generate complex contact-rich manipulation plans.

May be hard to construct perfect, known models

Imitation Learning

Sequential decision making provided expert data

Often called learning from demonstrations

Self-Supervised Prediction of the World

Sequential decision making without reward – self-supervised prediction

Generate a playable world set in a futuristic city

Often called model-based RL

How should we think about designing effective RL algorithms?

Easy to specify **objectives**

Stable performant **optimization** algorithms

Efficient **data** collection

Class Structure

Lecture outline

Recap: MDP formalism + why should we care?

Imitation learning: preliminaries and behavior cloning

Multimodality and Underfitting in Imitation

Compounding Error in Imitation

Class Structure

Imitation Learning: Intuition

Given: Demonstrations of optimal behavior

$$\mathcal{D} = \{s_0^i, a_0^i, s_1^i, a_1^i, \dots, s_T^i, a_T^i\}_{i=1}^N$$

Goal: Train a policy to mimic the demonstrator

$$\pi_{\theta}(a|s)$$

Pros: No rewards, online experience needed (?)

Why would we do this?

Given: Demonstrations of optimal behavior

Goal: Train a policy to mimic the demonstrator

Pros:

- Avoids need for rewards, exploration
- Natural way to do task specification
- ⊕ Can work well in practice

Cons:

- ⊖ Struggles on long horizon tasks

Idea 1: Imitation Learning via Supervised Learning

Given: Demonstrations of optimal behavior

 $\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$

Behavior Cloning

Goal: Train a policy to mimic the demonstrator

Idea: Treat imitation learning as a supervised learning problem!

 $\mathbf{o}_{t} \qquad \mathbf{a}_{t} \qquad \mathbf{a}_{t}$

Idea 1: Imitation Learning via Supervised Learning

Given: Demonstrations of optimal behavior

Goal: Train a policy to mimic the demonstrator

 $\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$

Discrete vs continuous

Maximum likelihood

```
if isinstance(env.action_space, gym.spaces.Box):
    criterion = nn.MSELoss()
else:
    criterion = nn.CrossEntropyLoss()
# Extract initial policy
model = student.policy.to(device)
def train(model, device, train_loader, optimizer):
  model.train()
  for batch idx, (data, target) in enumerate(train loader):
      data, target = data.to(device), target.to(device)
      optimizer.zero_grad()
     if isinstance(env.action_space, gym.spaces.Box):
         if isinstance(student, (A2C, PPO)):
            action, _, _ = model(data)
         else:
            action = model(data)
         action_prediction = action.double()
      else:
         dist = model.get_distribution(data)
         action_prediction = dist.distribution.logits
         target = target.long()
      loss = criterion(action_prediction, target)
      loss.backward()
      optimizer.step()
```

Idea 1: Imitation Learning via Supervised Learning

Given: Demonstrations of optimal behavior

Goal: Train a policy to mimic the demonstrator

 $\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$

Tabular

Linear

$$\pi(a|s) = \langle \phi(s,a), w \rangle$$

Arbitrary function approx

In practice, amounts to simple gradient based training with backpropagation

The original deep imitation learning system

ALVINN: **A**utonomous **L**and **V**ehicle **I**n a **N**eural **N**etwork 1989

Where we are in 2024?

So does behavior cloning really work?

Imitation Learning ≠ Supervised Learning

Compounding error!

$$\arg\max_{\theta} \mathbb{E}_{(s^*,a^*)\sim\mathcal{D}} \left[\log \pi_{\theta}(a^*|s^*)\right] \qquad \qquad \mathbb{E}_{(s,a)\sim\rho(\pi)} \left[1(a=a^*)\right]$$
Not the same!

So does behavior cloning really work?

Fails in practice as well!

What do we actually want?

Imitation Learning can be formalized as matching the expert

(cost for generating an action different than the expert)

$$c(s_t, a_t) = \begin{cases} 0, & \text{if } a_t = \pi^*(s_t), \\ 1, & \text{otherwise} \end{cases}$$

Measure deviation from expert actions when the policy is rolled out

$$\mathbb{E}_{(s_t,a_t)\sim p_{\pi_{\theta}}(s_t,a_t)}\left[c(s_t,a_t)\right]$$

How bad is behavior cloning?

$$\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$$

How well does BC do?: Intuition

Behavior cloning has quadratically compounding error

$$\pi_{\theta}(a \neq \pi^*(s_t)|s_t) \leq \epsilon$$
Horizon H

If you fall off, assume the worst

$$\mathbb{E}\left[\sum_{t} c(s_{t}, a_{t})\right] \leq \epsilon H + \dots + \dots$$

$$O(\epsilon H^{2})$$
 Union bound

Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

Lecture outline

Recap: MDP formalism + why should we care?

Imitation learning: preliminaries and behavior cloning

Multimodality and Underfitting in Imitation

Compounding Error in Imitation

Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

But won't a bigger neural net just solve this?

Behavior cloning can underfit the data

$$\sum_{t} \mathbb{E}_{(s_t, a_t) \sim p_{\pi_{\theta}}(s_t, a_t)} \left[c(s_t, a_t) \right] \le O(\epsilon H^2)$$

$$\pi_{\theta}(a \neq \pi^*(s_t)|s_t) \leq \epsilon$$
for $s_t \sim p_{\text{train}}(s_t)$

May not be able to satisfy this

Q: won't a bigger model just solve the problem?

Kind of, but there's a fundamental problem!

Distributional Expressivity

 Policy expressivity is a combination of expressivity of the function approximator and of the distribution family

Tradeoff between expressivity and tractability

How does this reflect on imitation learning?

Let us consider a case with Gaussian policy

$$\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$$

A combination of distributional expressivity and objective lead to mode averaging

Let's take a closer look at the objective

One instance of a broader class of divergences – f diverences $D_f(p(x),q(x)) = \mathbb{E}_{q(x)}\left[f\left(\frac{p(x)}{q(x)}\right)\right]$

Effects of choice of f-divergence on behavior

Different divergences lead to different properties

$$\mathbb{E}_{s^* \sim p_{\pi_e}(.)} \left[D_{\text{KL}}(\pi_e(.|s^*) || \pi_{\theta}(.|s^*)) \right] \longrightarrow \mathbb{E}_{s^* \sim p_{\pi_e}(.)} \left[D_f(\pi_e(.|s^*), \pi_{\theta}(.|s^*)) \right]$$

Forward KL (behavior cloning)

More general class of divergences

$$D_f(p(x), q(x)) = \mathbb{E}_{q(x)} \left[f\left(\frac{p(x)}{q(x)}\right) \right]$$

– – – Forward KL (mode covering)
$$f(x) = x \log(x)$$

$$f(x) = -1$$
 Reverse KL (mode seeking) $f(x) = -\log(x)$

So how do we fix BC?

Use a different f-divergence! (Change f)

or Use a richer distribution class! (Change π_{θ})

Using alternative f-divergences: Reverse KL

- Reverse KL helps, is mode seeking $D_{\mathrm{RKL}}(\pi_e(.|s^*),\pi^{\theta}(.|s^*)) = \mathbb{E}_{\pi^{\theta}(.|s^*)} \left[\log \left(\frac{\pi^{\theta}(.|s^*)}{\pi_e(.|s^*)} \right) \right]$
- Challenge requires known expert likelihood
- We need a sample based estimate!

Imitation Learning as f-Divergence Minimization

Liyiming Ke¹, Sanjiban Choudhury¹, Matt Barnes¹, Wen Sun², Gilwoo Lee¹, and Siddhartha Srinivasa¹

Go read this!

$$\min_{\theta} \mathbb{E}_{\pi^{\theta}(.|s^{*})} \left[\log \left(\frac{\pi^{\theta}(.|s^{*})}{\pi_{e}(.|s^{*})} \right) \right] \qquad \qquad \min_{\theta} \max_{\phi} \mathbb{E}_{a \sim \pi^{\theta}(.|s^{*})} \left[\phi(a) \right] - \mathbb{E}_{a \sim \pi_{e}(.|s^{*})} \left[f^{*}(\phi(a)) \right]$$
(Intractable) (Tractable – GAN style optimization)

Effects of choice of f-divergence on behavior

Different divergences lead to different properties

$$\mathbb{E}_{s^* \sim p_{\pi_e}(.)} \left[D_{\text{KL}}(\pi_e(.|s^*) || \pi_{\theta}(.|s^*)) \right] \longrightarrow \mathbb{E}_{s^* \sim p_{\pi_e}(.)} \left[D_f(\pi_e(.|s^*), \pi_{\theta}(.|s^*)) \right]$$

Forward KL (behavior cloning)

More general class of divergences

$$D_f(p(x), q(x)) = \mathbb{E}_{q(x)} \left[f\left(\frac{p(x)}{q(x)}\right) \right]$$

- - - Forward KL (mode covering)
$$f(x) = x \log(x)$$

– – - Reverse KL (mode seeking)
$$f(x) = -\log(x)$$

So how do we fix BC?

Use a different f-divergence! (Change f)

<u>or</u>

Use a richer distribution class! (Change π_{θ})

Using Richer Policy Distribution Classes

Multimodal behavior \rightarrow use more <u>expressive</u> probability distributions, no mode averaging issues

- 1. Output mixture of Gaussians
- Latent variable models
- 3. Autoregressive discretization
- 4. Diffusion models
- 5. ...

Why might we fail to fit the expert?

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization
- 4. Diffusion models
- 5. ...

Why might we fail to fit the expert?

- 1. Output mixture of Gaussians
- 2. Latent variable models

- 3. Autoregressive discretization
- 4. Diffusion models
- 5. ...

Why does this work?

first step:
$$p(a_{t,0}|\mathbf{s}_t)$$

second step: $p(a_{t,1}|\mathbf{s}_t, a_{t,0})$
third step: $p(a_{t,2}|\mathbf{s}_t, a_{t,0}, a_{t,1})$
 $p(a_{t,2}|\mathbf{s}_t, a_{t,0}, a_{t,1})p(a_{t,1}|\mathbf{s}_t, a_{t,0})p(a_{t,0}|\mathbf{s}_t)$
 $= p(a_{t,0}, a_{t,1}, a_{t,2}|\mathbf{s}_t)$
 $= p(\mathbf{a}_t|\mathbf{s}_t)$

Why might we fail to fit the expert?

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

- 4. Diffusion models
- 5. ...

Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

Lecture outline

Recap: MDP formalism + why should we care?

Imitation learning: preliminaries and behavior cloning

Multimodality and Underfitting in Imitation

Compounding Error in Imitation

Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

 $\pi_{\theta}(a \neq \pi^*(s_t)|s_t) \leq \epsilon$

Compounding error

$$\leq O(\epsilon H^2)$$

Can we avoid compounding error in special cases?

Video: Bojarski et al. '16, NVIDIA

Why did that work?

What is the general principle?

Corrective labels that bring you back to the data

What might this mean mathematically?

Concrete Instantation: DAgger

```
can we make p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)?
idea: instead of being clever about p_{\pi_{\theta}}(\mathbf{o}_t), be clever about p_{\text{data}}(\mathbf{o}_t)!
```

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$

how? just run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$

but need labels \mathbf{a}_t !

- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

Ross et al. '13

What's the problem?

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
 - 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
 - 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

How might we fix this?

"Generate" corrective labels automatically 1. train
$$\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$$
 from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)$$
 \mathbf{o}_t
 \mathbf{a}_t

How might we fix this?

1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 2. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t Do at data collection time

$$\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)$$
 $\mathbf{o}_t \longrightarrow \mathbf{a}_t$

4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Noising the Data Collection Process

Key idea: force the human to correct for noise during training

Under noise during data collection

Noise Injection

Why might this not be enough?

Key idea: force the human to correct for noise **during** training

Assumes that the expert <u>can</u> actually perform behaviors under noise \rightarrow Not always possible!

How might we fix this?

"Generate"

1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

How can we find corrective labels?

Augment D with states (s_t), actions (a_t) that lead back to optimal states under dynamics

$$||s_{t+1}^* - f(s_t, a_t)|| \le \epsilon$$
 $s_{t+1} = f(s_t, a_t)$

Overall Learning Pipeline with Corrective Labels

Standard behavior cloning

Corrective labels

Lecture outline

Recap: MDP formalism + why should we care?

Imitation learning: preliminaries and behavior cloning

Multimodality and Underfitting in Imitation

Compounding Error in Imitation

Frontiers in Imitation Learning

Non-Markovian Demonstrators

Humanoid Transformer •• •• •• •• ••

Characterizing generalization

Action-Free Data

Frontiers in Imitation Learning

Data Curation and Quality

Teleoperation Interfaces

Embodiment Shift

Some cool imitation videos

1x and tesla humanoid robots

ALOHA and CherryBot Fine Manipulation

TRI Diffusion Policies

Perspectives on Imitation – don't believe everything you see online

Pros:

- Easy to use, no additional infra
- Can sometimes be unreasonably effective

Cons:

- Challenges of compounding error, multimodality
- Doesn't really generalize
- Very expensive in terms of data collection!

