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Logistics

= Paperreading teams should start getting together from next week

= Start finding project teams for final projects
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|

Compounding Error in Imitation



Framework for RL - Markov Decision Process

Augment Markov chain with rewards and actions

States: S Initial state dist: po($)

Actions: A Discount:fy

Rewards: R

Transition Dynamics - p(s¢i1|Se, a)

Markov property p(Sl, S92, 83) — p(83|82)p(82|81)p(81)
Trajectory T = (So, aop,To,S1,d1,71,-..,5T,dT, 7QT)



Reinforcement Learning Formalism

* Rules for choosing actions

——————————————————————— A
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state | | reward action Policy
X R A, 9
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Needs to be learned
Trajectory sampled using policy



Unpacking the Expectation

0

Trajectory View - Ancestral sampling along MDP

T
max K, g

| =0

T St,a,t

Initial state E

Policy
Dynamics
Policy
Dynamics

Compact E
representation

so~po(s)
aogo~v7me (.|80)

- T

s1~p(.|s0,a0)

CLlNT('Q(.‘Sl)

SQNP(-!Sbal)

s0~po(s)
ar~1e(.|st)

st+1~p(st+1]st,at)

Zr(st, a)

Z /yt'r(stv a’t)
t=0

Stationary View — sampling from stationary dist

di (s,a) =P(st = s,ar = a | so ~ po,Vi <t,a; ~ m(:[8i), Si+1 ~ p(*]si, a;))

(Likelihood of being at state s, action a at time step t)

(s, a) nytd7T s, a)

(Likelihood of being at state S, actlon a across all steps)

y subsumed into E E(s,a)wug(s,a) 7"(8, a)

No sequential sampling No sum over rewards



Some notation: Q-functions and V-functions

7

Estimate of how “good” a policy is — estimate of future returns under a policy @

Q-function V-function
Take one action and then follow policy from s Follow policy from s
Q" (s,a) =E, Z’r’(st,at) | s = s,a0 = a] VT(s,a) =E;, Zr(st,at) | so = s]
t t

Will be useful soon!

J(ﬂ-) — IEEsrvpo (s) [Vw(s)]

Average value over initial states




Ok so is this just supervised learning?

Supervised learning aims to maximize likelihood of observed data under the model

maxE, ,)~p [logpe(y|x)]




Why is this not just supervised learning?

Supervised Learning

max E(z,y)~D [10g Po(y|T)]

Sampling from expert

Dx1,(p*||po) IID

Reinforcement Learning

M'ﬂ

max K-,

; r St7at

| t=0

Sampling from policy

Dx1,(pol|p™) Non-IID
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Why is this not just supervised learning?

Supervised Learning

0

Reinforcement Learning

max K, )~ |log pg(y|T)]

max K-,
0

t

[ T

0

r(st, at)

The resulting paradigms are different in many ways:

1. Optimization and learning dynamics
2. Balancing exploration and exploitation

N

But many overlapping tools! In fact often we
try to convert RL into a supervised problem



Ok so why should we care about RL?

Solves sequential decision Enables continual
making problems improvement

SR el

Has black-box assumptions

Reduces burden of human
data collection




) Applications of RL: Robotics/LLMs/Science/Games

RL can enable robotic learning of hard to specify/script behaviors in the presence of contact

=

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

'

®

Some people went
to the moon.

Step 2

Collect comparison da

and train a reward mog

A prompt and
several model
outputs are
sampled.

Alabeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

»

Write a story
about frogs

\J

PPO

=7

\J

Once upon atime.




Where is Reinforcement Learning not useful?

Position z [m]

Not the right call for very safety-critical, repetitive applications

3D Trajectory

Paosition y [m]

Position x [m] '




50 is sequential decision making = RL?

’_l Agent I

state reward : . . . . .
g 2 ZCUO” RL is sequential decision making under a
! | ! . .
R ' particular set of assumptions:
s Environment J«— 1. Sampling access to the environment

§¢r+l
? 2. Access to reward
3. Goal-directed behavior

\,

We conflated sequential decision making and RL!

Trajectory optimization/planning Imitation Learning Unsupervised Decision Making

Interleaving Graph Search and Trajectory Optimization

for Aggressive Quadrotor Flight

Ramkumar Natarajan, Howie Choset and Maxim Likhachev




Trajectory Optimization

14

Sequential decision making with "known” models

Interleaving Graph Search and Trajectory Optimization
for Aggressive Quadrotor Flight

Ramkumar Natarajan, Howie Choset and Maxim Likhachev

May be hard to construct perfect, known models



Imitation Learning

14

Sequential decision making provided expert data

J\

5]“

® 1X END-TO-END AUTONOMY
UPDATE, JAN 2024

Cook Shrimp

(autonomous)

Ly et (!

6x speed rd | 4

Often called learning from demonstrations




Self-Supervised Prediction of the World

14

Sequential decision making without reward - self-supervised prediction

Generate a playable world

set in a futuristic city

Often called model-based RL



How should we think about designing effective RL algorithms?

14

Stable performant
optimization algorithms

Easy to specify
objectives

-

Efficient data collection

4




Class Structure

14

/—[ Imitation Learning ]\
/

4 Model-free Reinforcement Learning

Policy Gradient ADP

~

Model-based Reinforcement Learning

J

\—[ Unifying Perspectives on RL and IRL ]—/

Exploration

Frontiers

Learning from Prior Data

Learning across tasks
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Class Structure

14

/—[ Imitation Learning ]\
/

4 Model-free Reinforcement Learning

Policy Gradient ADP

~

Model-based Reinforcement Learning

J

\—[ Unifying Perspectives on RL and IRL ]—/

Exploration

Frontiers

Learning from Prior Data

Learning across tasks




Source: The Guardian

“How Psy taught me Gangnam style”




Imitation Learning: Intuition

Given: Demonstrations of optimal behavior D = {sb,al,s,a’, ..., s5h an Y,

Goal: Train a policy to mimic the demonstrator mo(als)

Pros: No rewards, online experience needed (?)



Why would we do this?

Given: Demonstrations of optimal behavior

Goal: Train a policy to mimic the demonstrator

Pros: Cons:
b Avoids need for rewards, exploration © Requires expert data, can be expensive
® Natural way to do task specification © Cannot get better on deployment

b Can work well in practice © Struggles on long horizon tasks



[dea 1: Imitation Learning via Supervised Learning

Given: Demonstrations of optimal behavior o
arg max E(s+,a*)~D [log mg(a™|s™)]
Goal: Train a policy to mimic the demonstrator

|dea: Treat imitation learning as a supervised learning problem! —— Behavior Cloning

supervised
[ learning ] ﬂg(atlot)




[dea 1: Imitation Learning via Supervised Learning

Given: Demonstrations of optimal behavior

arg max K

Goal: Train a policy to mimic the demonstrator 0

Discrete vs continuous

Maximum likelihood

if isinstance(env.action_space, gym.spaces.Box):
criterion = nn.MSELoss ()

else:
criterion = nn.CrossEntropylLoss()

# Extract initial policy

model = student.policy.to(device)

def train(model, device, train_loader, optimizer):

model.train()

(s*,a*)~D [lOg o (CL* ‘S*)]

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)
optimizer.zero_grad()
if isinstance(env.action_space, gym.spaces.Box):
if isinstance(student, (A2C, PPO)):
action, _, _ = model(data)
else:
action = model(data)
action_prediction = action.double()
else:
dist = model.get_distribution(data)
action_prediction = dist.distribution.logits
target = target.long()
loss = criterion(action_prediction, target)
loss.backward()
optimizer.step()



[dea 1: Imitation Learning via Supervised Learning

Given: Demonstrations of optimal behavior

arg max E(s+,a*)~D [log mg(a™|s™)]
Goal: Train a policy to mimic the demonstrator

Linear Arbitrary function approx

||||||||||

m(als) = (&(s, a), w)

In practice, amounts to simple gradient based training with backpropagation



The original deep imitation learning system

ALVINN: Autonomous Land Vehicle In a Neural Network
1989

t

30 Output
) Units

R 30x32 Video
p |  Input Retina




Where we are in 20247




So does behavior cloning really work?

= Imitation Learning # Supervised Learning

Compounding error!

argmg“XE(s*,a*)ND [lOgﬂ'Q(CL*‘S*)] <1:"(S,a,)f'\J,O(T(') []‘(a’ — a*)]
T |

Not the same!




So does behavior cloning really work?

_"_
::_ _
___________.____ _ _._._._._.—- il -
i ____________— -

,, ______

Fails in practice as well!




What do we actually want?

= Imitation Learning can be formalized as matching the expert

(cost for generating an action
different than the expert)

0, ifa; = T*(S¢t),

1, otherwise

\

c(s,at) = <

—___—
—
”
-

How bad is behavior cloning?

Measure deviation from expert
actions when the policy is rolled out

]E(St aat)prg (St 7a’t> [C(St7 a't)]

-
-
—-—
—-—
—
———————___—

arg max E(s*.a*)~p [log mg(a™|s™)]



How well does BC do?: Intuition

Behavior cloning has quadratically compounding error

iy mo(a # 7 (s¢)]se) < €

|t

O(cH?)

Horizon H

If you fall off,
assume the worst EEEEEEEE

E Zc(st, at)

<eHH+. ---+...

Union bound



Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

ZE(St at)~pr,(st, at) St at < O €H2

— ng tr
—_— T oxpecte(
1
107N
™
zn."“ N :
\y \ —
(é, o . S - o 100
e N e &
/\9 . N .v,.w—w"’/: 0 o
207\ e Ny @
. 30
0, 10 “me

Underfitting Compounding error

2
mo(a # 7 (s1)]5) < e < O(eH")
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Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

ZE(Staat)pre(St,at) lc(se,a4)] <O 6H2)
¢

Underfitting Compounding error

ro(a # 7 (s1)]s0) < € < O(cH")




But won't a bigger neural net just solve this?

= Behavior cloning can underfit the data

mo(a # 7 (s1)]se) < e
for St ™~ ptrain(st)

May not be able to satisfy this

ZE(St7a’t)Npﬂ'9(3t,at) [C(Sta at)] < O(EHz)
t

Q: won't a bigger model just solve the problem?

7 4.2
6 —— L=(D/5.4-1013)700% | 5.6 — L={(N/8:8"101%)=0.078
g 3.9 _
g 3.6 - A
# 4.0 g
5 3.3 s B Lk :
= 3 a e :
3.0 : , :
2.4
L = (Cin/2.3 - 108)~0.050
2 : : : : 2.7 . . — v T
10 1077 10> 103 10! 10! 108 10° 10° 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Kind of, but there’s a fundamental problem!



Distributional Expressivity

= Policy expressivity is a combination of expressivity of the
function approximator and of the distribution family

Categorical

Gaussian

Diffusion policy

ST T T T/~ > % a2 . v v s
=]

0.41

0.3

K s a am a T\ dTTa T T

0.2

0.1

Tradeoff between expressivity and tractability
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How does this reflect on imitation learning?

Let us consider a case with Gaussian policy

arg max E(s+.a%)~D [log mg(a™|s™)]

A combination of distributional expressivity and objective lead to mode averaging




Let’s take a closer look at the objective

arg max E(s+ a*y~p [log mg(a®|s™)]

O max gy, () [Bar o, (fs) log mo(a[s") — logme (a”|s")]]

me(a”|s")
mo(a*|s*)

min]ES*Npﬂe(.) [Ea*wﬂe(.|s*) [log ]] = ]ES*NPwe(-) [DKL(T‘-e(-‘S*H|7T(9(-|5*))]

Lo

Leads to mode averaging Forward KL divergence

One instance of a broader class of divergences - f diverences Ds(p(2),q(2)) = Eq(a)

https://timvieira.github.io/blog/post/2014/10/06/kl-divergence-as-an-objective-function/



Fffects of choice of f-divergence on behavior

Different divergences lead to different properties

By opr, () [DrL(T(|87)] |70 (-[57))] " Eoenp, () [Dr(me(]s7), mo(-]s"))]

Forward KL (behavior cloning) More general class of divergences

p()
f(q@ﬂ

Forward KL (mode covering) f(af) = X log(a?)
— — = = Reverse KL (mode seeking) f(:C) = — log(:c)

So how do we fix BC? or Use aricher distribution class!
| (Change my)

Df(p(CC), Q(w)) — Eq(ac)




Using alternative f-divergences: Reverse KL

0 *
m Reverse KL helps, is mode seeking DRKL(We(.‘S*),WQ(,‘S*)) — Ew9(.|s*) [log <7T (|S ))]

me(-|5*)

= Challenge - requires known expert likelihood

= We need a sample based estimate!

Imitation Learning as f-Divergence Minimization

Go read this!
Liyiming Ke!, Sanjiban Choudhury!, Matt Barnes!, Wen Sun?, Gilwoo Lee!,
and Siddhartha Srinivasal
0 *
. TT\.|S . *
e o8 (555 )| o MRS Ear ) (0]~ Banr, 1o [ (00)
el

(Intractable) (Tractable — GAN style optimization)



Fffects of choice of f-divergence on behavior

Different divergences lead to different properties

By opr, () [DrL(T(|87)] |70 (-[57))] " Eoenp, () [Dr(me(]s7), mo(-]s"))]

Forward KL (behavior cloning) More general class of divergences

p()
f(q@ﬂ

Forward KL (mode covering) f(af) = X log(a?)
— — = = Reverse KL (mode seeking) f(:C) = — log(:c)

Df(p(CC), Q(w)) — Eq(ac)

or | Use aricher distribution class!

: Y,
So how do we fix BC: (Change my)



Using Richer Policy Distribution Classes

Multimodal behavior = use more expressive probability
distributions, no mode averaging issues

1. Output mixture of Gaussians
2. Latent variable models

3. Autoregressive discretization
4. Diffusion models

5.

| w4 e

Y

¢

N A
> 1

e



Why might we fail to fit the expert?

Output mixture of Gaussians
Latent variable models
Autoregressive discretization

Diffusion models

4
0(0101610)0)®
\‘i‘\\ﬁn\;‘g\t\‘&w}n ;/‘ %
INANAS S

\ A
20
)\

N




Why might we fail to fit the expert?

2
)3
4

Output mixture of Gaussians
Latent variable models
Autoregressive discretization
Diffusion models

Why does this work?

first step: p(atolst)
second step: p(a1|st,atp)

third step: p(a¢2|st, at0,ai1)

p(at,2|St, a0, at,l)p(at,l |St, at,o)p(at,0|st)

= p(at,0>at,1a at,2|St)

= p(ay[st)

At =

use LSTM or
Transformer

-0.3

0.1 at,0
1.2 a1
at 2

Ll

azi,o a?,l —\ G?J
sequence sequence sequence
model block model block model block

conv net
encoder




Why might we fail to fit the expert?

1. Output mixture of Gaussians

2. Latent variable models

3. Autoregressive discretization fﬁ

- 4. Diffusion models

5. ..

egrm === == 0 Energy 1 Gradient Field
(gt 4 Action ! | Q
\ Representation 1 1.0 10 ;;';; 14
hp(a 1 L LA R
Q : i ; !gg A“:g
: ot . Diffusion Policy 05{yV Y A aly
| Scalar (Regression) ! Implicit Policy 0.5 ~ffAAAs_ "V
A 1 A ‘ ______ vfrh-,
pT(XT)NN(O,I Explicit Policy || A ] arg min(E) VE,‘(a) : i M ~v"¥$¥¥§v
G ! 2 Q00— | | L ! .0 ——t—
1 TGN " Beeieian 7 i Al AAAAAAAAAL-
Fg(o) ! Mixture of Gaussians 1 2E0(0, a); \ 569(07 a)z :ﬁ A"AAA“AA"'
1
Pure \ U | et osHEN\. T /B || i -05 JYYvVVVYYY
. . ' L T ! : 14444
noise | : @ @ i i ﬁ
1
O O Thoi=-05 00 05 10 @ 90 o5 00 05 10

(a) Explicit Policy (b) Implicit Policy 0 (c) Diffusion Policy 9



Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

ZE(Staat)Npﬂe(St,at) lc(se,a4)] <O €H2)
¢

Underfitting Compounding error

mo(a # 7 (st)]st) < € < O(eH")

Richer policy class Alternative Divergence
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Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

ZE(Staat)pre(St,at) lc(se,a4)] <O 6H2)
¢

1
1007
N .
50:‘\ N
\y
(é PN

Underfitting Compounding error

— tl“dilli]lg tre
— T eXI)ecte(
o 77“‘—7"‘7-‘-:;7‘_‘ 100

o a 70 =1

2 A\. B s En :u

\ s :
.‘.\ ->-<-——\->-‘- ‘ 20 30 :
o fme

ro(a # 7 (s1)]s0) < € < O(cH")




Can we avoid compounding error in special cases?

Video: Bojarski et al. ‘16, NVIDIA



Why did that work?

Recorded
steering
wheel angle

Adjust for shift

Desired steering command

and rotation

> Random shift
Center camera]—: and rotation CNN

\ 4

I

Right camera A

weight adjustment

Network
computed
steering
command

Back propagation |

.

/( i D7
| 4
: B a

Bojarski et al. ‘16, NVIDIA



What is the general principle?

— training trajectory
— g expected trajectory

stability

100

Corrective labels that bring you
back to the data

Ta

x Z3 T f(.
= = 2 —'»' see -—».t_f_(_)'
¢ --.0\ @
0 T1 “
§32 o %f()
Tt
61\37.2_ L3 T
’__-...—-— = e m R
0 T ‘
.
T



What might this mean mathematically?

= training trajectory

can we make pgata(0t) = pr, (0¢)7



Concrete Instantation: DAgger

can we make pqata(0t) = D, (04)7?

idea: instead of being clever about p;,(0:), be clever about pgata(0¢)!

DAgger: Dataset Aggregation

goal: collect training data from p;,(0;) instead of pgata(0¢)
how? just run mg(a;|o;)

but need labels a;!

1. train mg(a;|os) from human data D = {07,a1,...,0n,ayN}
2. run my(as|o;) to get dataset D, = {01,...,0p/}

3. Ask human to label D, with actions ay

4. Aggregate: D < DU D,

Ross et al. ‘11



DAgger Example

Ross et al. ‘13



What's the problem?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
2. run mg(az|oy) to get dataset D, = {01,...,05}

3. Ask human to label D, with actions a;

4. Aggregate: D < DU D,




How might we fix this?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
) Do at data
"Generate” 2. run 7y (as|o;) to get dataset D = {01,...,0n/} < collection time
corrective labels 3. Ask human to label D, with actions a;
automatically 4. Aggregate: D <+ DU D,




How might we fix this?

Ross et al. ‘11

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
2. run mg(az|os) to get dataset D = {01,...,05/} +

3. Ask human to label D, with actions a;
4. Aggregate: D < DU D,

Do at data
collection time



Noising the Data Collection Process

Key idea: force the human to correct for noise during training

Under noise during data collection

Maximize likelihood

. Supervisor - l
A Robot Yusa = argmin By, ) — 3 log [my (mg (xe ) xt, )
t=0

V'S
.

Noise Injection

DART: Noise Injection for Robust Imitation Learning, Laskey et al CoRL ‘17



Why might this not be enough?

Key idea: force the human to correct for noise during training

Supervisor

Robot

®

Noise Injection

Assumes that the expert can actually perform behaviors under noise
- Not always possible!

DART: Noise Injection for Robust Imitation Learning, Laskey et al CoRL ‘17



How might we fix this?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
"Generate” 2. run mg(az|oy) to get dataset D, = {01,...,05}
corrective labels 3. Ask human to label D, with actions a;
automatically 4. Aggregate: D «+ DUD,

Ross et al. ‘11



How can we find corrective labels?

state reward

R

action

~ /
\ 1
Q. :
1
' S R,
\
~O---
-

<
<%

S
<

How might we obtain these corrections?

(Learned) Dynamics model can help find corrective labels

Augment D with states (s,), actions (a,) that lead

back to optimal states under dynamics

Isiir = fsnadll e s = fsnan

CCIL: Continuity-based Data Augmentation for Corrective Imitation Learning, Ke et al ‘24

*with caveats



Overall Learning Pipeline with Corrective Labels

Standard behavior cloning Corrective labels
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So does this solve all the issues in imitation?



Frontiers in Imitation Learning

Non-Markovian Demonstrators Characterizing generalization

Humanoid Transformer }

Action-Free Data

N

-

=, el 2 'y (&
; ) ! | gy — P L ¢
pltiscoteh €gg o
5 A -
SS9 putidewn SRONges 5
i y LY i
<
2 B { b -

placeipacketioficumin seeds,on shelf



Frontiers in Imitation Learning

Human

Data Curation and Quality Embodiment Shift

State Action
Coverage ‘ consistency

Teleoperation Interfaces




Some cool imitation videos



1x and tesla humanoid robots

® 1X END-TO-END AUTONOMY
UPDATE, JAN 2024




ALOHA and CherryBot Fine Manipulation

Cook Shrimp

(autonomous)

6x speed



TRI Diffusion Policies




Perspectives on Imitation — don’t believe everything you see online

training
data

supervised We(at |0t>
learning

= Pros: o A
o P <
= Easy to use, no additional infra \ e A4

= Can sometimes be unreasonably effective

m Cons:

= Challenges of compounding error, multimodality

= Doesn’t really generalize

= Very expensive in terms of data collection!



