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Course Logistics

Where: BAG 261
When: Tue/Thu 11:30-12:50

Who:
= Abhishek Gupta (Instructor)
s Patrick Yin (TA)
s Zoey Chen (TA)

Office hours:
= Abhishek: Gates 215, Wed 2-3pm
= Patrick:

= Zoey:



Course Logistics

Grading: Seminar style
= 40 % final project
= 10% paper discussions/readings
= 45 % for HWs — 15% for each of 3 HWs
= 5% participation

Communications through EdStem/e-mail
Mix of lectures and paper readings:

Final projects will be presented in a poster session.
=« Intermediate project proposals and milestone check ins.

Please participate, otherwise it will be boring for all of us!



Course Logistics - Project

Final project (40% of grade):
= Project proposal (1 page) [Due 4/10]
=« Milestone report (3-4 pages) [Due 5/2 (subject to change)]
« Final report (6-8 pages) [Due 6/5 (subject to change)]

Project can be investigating any question related to reinforcement learning,
imitation learning or sequential decision making

= New algorithm

=« Performant/stable implementation
« Empirical investigation

= New application or domain

Can be done in groups of 1-2 students.



Course Logistics — Discussions

= We will try out a new discussion style (many to many role playing)
= Stolen from Alec Jacobson (Toronto), Colin Raffel (UNC), etc

= Ideais that for every paper, we will have people fulfilling many roles:

= Discussion leader: Presents the overall premise of the paper, quickly goes over the key ideas in the
paper and presents the basic results

= Paper reviewer 1 (pro): Argues why the paper should be accepted

= Paper reviewer 2 (con): Argues why the paper should NOT be accepted

= Archaeologist: Identifies where this paper fits into the literature

= Academicresearcher: Identifies future projects that can build on this work

= Industry practitioner: Identifies where exactly this work can see application and discuss the societal
impact of such an application

= Hacker: Implements the algorithm/tries out the code if published
= Everyone else posts commentaries about the paper on EdStem!

= For nondiscussion lectures, everyone is expected to post a commentary on at least one of the
readings.



Course Logistics — Homework

3 HW assignments, each Python programming of different algorithms

HW 1 — Imitation Learning
= Implement and test out simple imitation learning algorithms in simulation

HW 2 — Model-free RL

= Implement and test out policy gradient and actor critic methods

HW 3 — Model-based RL

= Implement and test out model-based RL algorithms

Submit through canvas with a small written report.



Who am |7

= Assistant professor in CSE
= Grew up in Oregon/India, last 10 years in Berkeley

= Undergrad Berkeley, Ph.D. Berkeley, Postdoc MIT.

= Interests: RL/robotics/optimization and
control/robustness and generalization

= Outside of work: Tennis/soccer/sketching/dog
enthusiast




Who is Patrick?

First-year PhD in Robotics/ML

Life Trajectory: Grew up in the bay area, did my
undergrad at Berkeley

Research Interests: Robot Learning,
Reinforcement Learning, Manipulation

Outside work: baking, guitar, tennis/pickleball,
hiking, gyming, reading




Who is Zoey?

Final Year PhD in Robotics

Life Trajectory: grow up in China, last 10 years: Seattle-
>Japan->Switzerland->Seattle

Academic Trajectory: Optics & Lasers -> Medical Image
Analysis -> Robotics

Research Interest: Imitation Learning, Robot
Perception, Manipulation

Outside work: piano, painting, board game, hiking,
dog owner in 3 weeks!
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What is this course about?

= The design and practice of reinforcement learning a
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What is this course about?

= Building RL algorithms that are practical for real applications

state

:{Agent}

reward

R,
E Rt+1
-—
E Sr+1
e

| Environment

= Sample efficient
» Operates from high-dimensional
:C“O” observations
’ = Continually improving

& RL algorithms were not conceived to operate under
practical assumptions, needs some extra work



What is this course about?

= Practice implementing and tuning sequential decision making algorithms

Imitation learning Model-Free RL

O’j

of

Model-Based RL

= Most RL algorithms require tips and tricks, we will study them




What is this course not about?

= Not a pure theory course, more an applied-RL course

= For pure theory classes, recommend CSE 541 or Simon's CSE 542

= RL theory book (https://rltheorybook.github.io/rltheorybook_AJKS.pdf)

Lemma 2.10. Let § > 0. With probability greater than 1 — 9,

21og(2]S[|Al/5) 1 2log(2]S]|.Al/5)

_ P\YV*| < * )
|(P P)V|_\/ N Varp(V*) T IN 1

Theorem 4.3 (FQI guarantee). Fix K € N*. Fitted Q Iteration guarantees that with probability 1 — 6,

- 2 2
pr_prs < 1 \/2zc*vmax In(|F|2K/5)
(1 —5)* n

’YK Vmax
(1-=1)

+ \/zoceappro:c,u) ¥+

= Only cover the theory needed to derive algorithms



What should we be able to do post CSE 5427

Prompts Dataset

Sample many prompts

Initial Language Model

Train on

{sample, reward} pairs

Lorem ipsum dolor|
sit amet, consecte!
adipiscing elit. Aen|
Donec quam felis
vulputate eget, arc|
Nam quam nunc
eros faucibus tinci

luctus pulvinar, her

Human Scoring

Generated text

Reward (Preference)
Model

£ o To

Outputs are ranked
(relative, ELO, etc.)

def update_critic(self, obs, action, reward, next_obs, not_done, logger,
step):
dist = self.actor(next_obs)
next_action = dist.rsample()
log_prob = dist.log_prob(next_action).sum(-1, keepdim=True)
target_Q1, target_Q2 = self.critic_target(next_obs, next_action)
target_V = torch.min(target_Q1,
target_Q2) - self.alpha.detach() * log_prob
target_Q = reward + (not_done * self.discount * target_V)
target_Q = target_Q.detach()

# get current Q estimates

current_Q1, current_Q2 = self.critic(obs, action)

critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(
current_Q2, target_Q)

logger.log('train_critic/loss', critic_loss, step)

# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()

self.critic.log(logger, step)

DQN
— DDQN
— Prioritized DDQN

Dueling DDQN
200%F  a3C

Distributional DQN
— Noisy DQN
Rainbow

100%

Median human-normalized score

0, I |
0% 7 44 100
Millions of frames

|
200
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Ok so let's try and define Reinforcement Learning

Go from expert label 2

Can learn in arbitrary settings
scalar measure of success

No expert corpus needed Can generalize to new states J

l | l

Using trial and error in an environment to learn a strategy to maximize some notion of “reward”

4 )

. . AgentA'_
g2 R
T 3 ~ N £
A D <

oc A |

Environment )
\_ Y,

Easy (?) way for agents to continue improving their own behavior on deployment



Why reinforcement learning?: Philosophical

Hypothesis: By designing algorithms that can improve themselves, we can reach fully intelligent systems

“Instead of trying to produce a programme to
simulate the adult mind, why not rather try to
produce one which simulates the child's? If this were
then subjected to an appropriate course of education
one would obtain the adult brain” — Alan Turing

U

Rather than try to directly replicate behaviors, try
to replicate adaptative learning mechanisms




Why reinforcement learning?: Practical

A useful tool for building continually improving robots!

Robot learning is different for several reasons:

1. Sequential decision making problem (Non IID) =~

2. Large amounts of expert robot data may be expensive ——— Robots that collect their
3. Naturally multi-task and continual ~__ ____—"  own datatoimprove!

4. Behaviors may be hard to pre—program\/




A Little History on Reinforcement Learning

Two distinct threads converged to give rise to modern RL

/ S

Animal Psychology Optimal Control

T

X
min/ L(t,x(t),u(t)).dx

w.r.t

ldeas from temporal difference learning/dynamic programming united these fields!

Sutton and Barto



A Little History on Reinforcement Learning

Klopf/Sutton/Barto brought together ideas from psych/neuro and computational TD learning

Harry Klopf

Sutton Barto

Introduced the ideas of
“generalized reinforcement”
— linked together TD
learning and trial and error
learning from psychology

N
™ J

ADA101476
Brain Function and Adaptive Systems -
A Heterostatic Theory

AFWAL-TR-81-1070
A. HARRY KLOPF

GOAL SEEKING COMPONENTS FOR ADAPTIVE INTELLIGENCE: AN INITIAL ASSESSMENT

Also had major contributions from Watkins, Shannon, Minsky, Tesauro, Michie, Sutton, Samuel, etc!

Sutton and Barto



A Little History on Reinforcement Learning

Some evidence about RL in the brain

Reinforcement learning in the brain

Yael Niv

Psychology Department & Princeton Neuroscience Institute, Princeton University

Shows the importance of temporal difference reward prediction error in processes in the brain

Dopamine !=reward, rather dopamine corresponds strongly to errors in long term reward prediction (aka TD
errors) (Montague ‘96, Schultz '97). Some inconsistencies, e.g. Dealing with aversive events like pain

Likely much more research needed, since decisions can be made in the absence of dopamine = multiple
different RL processes in the brain

Sutton and Barto



A Little History on Modern Reinforcement Learning (my view)

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih  Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller

DeepMind Technologies




A Little History on Modern Reinforcement Learning (my view)

Trust Region Policy Optimization

John Schulman JOSCHU @EECS.BERKELEY.EDU
Sergey Levine SLEVINE @EECS.BERKELEY.EDU
Philipp Moritz PCMORITZ@EECS.BERKELEY.EDU
Michael Jordan JORDAN @ CS.BERKELEY.EDU
Pieter Abbeel PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences




A Little History on Modern Reinforcement Learning (my view)

Since then, we have gotten RL now to power a variety of high-impact applications
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L et’'s define a formalism

Action (a)

4 )
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Preliminaries: Markov Chains

Initial state distribution Transition Kernel (T)

Future is independent of past, conditioned on the present p(sl, S9, 83) = p(33‘82)p(82 |81)p(81)

Goal of Markov chain: running the Markov chain leads to sampling from stationary distribution d™

, o s Useful in sampling based
Balance equation Td T d inference e% ngCNIC

How can we make this useful for decision making?



Framework for RL - Markov Decision Process

Augment Markov chain with rewards and actions

States: S Initial state dist: po($)

Actions: A Discount:fy

Rewards: R

Transition Dynamics - p(s¢i1|Se, a)

Markov property p(Sl, S92, 83) — p(83|82)p(82|81)p(81)
Trajectory T = (So, aop,To,S1,d1,71,-..,5T,dT, 7QT)



Mapping MDPs to the Real World

Task: Place kettle in sink

| State: Camera Images / Joint Encoders

Action: Joint torques/velocities

)

: ) Reward: Distance from kettle to sink

M
n
W

3

Transition: World physics




Aside: Partially Observed MDPs

Not every environment is an MDP, in-fact most are POMDPs

Y : Y
time step -1 time step ¢

POMDPs are hard, we will try to avoid them!



Reinforcement Learning Formalism

state reward
S, R,

. () —

Maximize the sum of expected rewards under policy

54 Rt+l (

\)

t+1

Environment ]4
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action
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Rules for choosing actions

At
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Policy
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St é

Needs to be learned




Reinforcement Learning Formalism

* Rules for choosing actions

——————————————————————— A
f

:[AgentJ— - “

state | | reward action Policy
X R A, 9

< 1 g .

| . _S.. | Environment -~ \_ : J
| :
& i

T
m@ax S E r(s¢, at)
T | t=0

Needs to be learned
Trajectory sampled using policy



Main thing to learn - Policies

Policies are mappings from states to distributions over actions
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Main thing to learn - Policies

Policies are mappings from states to distributions over actions

Gaussian Cateqorical Mixture of Gaussians Diffusion Models
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Let's revisit policies: stochastic vs deterministic

~| Agent Lemma 1: Every MDP has atleast one optimal *deterministic* policy

state| |reward action
: R, A Theorem 1.7. Let I1 be the set of all non-stationary and randomized policies. Define:
| Rt+1 ("
S.. | Environment ]<— V*(s) := sup V7 (s)

\ mell
@ Q*(s,a) := sup Q" (s, a).
mell

which is finite since V™ (s) and Q7 (s, a) are bounded between 0 and 1/(1 — 7).

There exists a stationary and deterministic policy 7 such that for all s € S and a € A,
[ T V™ (s) = V*(s)

max ETNW@ Z r(S¢, CLt Q"(s,a) = Q*(s,a).

| t=0 We refer to such a w as an optimal policy.

Intuition: pick the best possible action at every state

Stochastic policies will help in the search/optimization process for finding (close to) deterministic policies



Let’s take a closer look at the objective: horizon 7

’_l Agent l
T state | | reward action
maX Erer, Z’r St, Q) S| R A,
i R (
t=0 E< S.. | Environment ]4—
Finite horizon Infinite horizon discounted
E?Tg T(Sh at) Eﬂ‘@ Z /ytr(sh CLt)
T | t=0 Time-dependent policy t=0

(not stationary)

A
1 Time-independent (stationary) policy
t
e Z vr(st, at)} - Need discount to prevent blow up

Lemma: there always exists a stationary optimal policy



Unpacking the Expectation

0

Trajectory View - Ancestral sampling along MDP

T
max K, g

| =0

T St,a,t

Initial state E

Policy
Dynamics
Policy
Dynamics

Compact E
representation

so~po(s)
aogo~v7me (.|80)

- T

s1~p(.|s0,a0)

CLlNT('Q(.‘Sl)

SQNP(-!Sbal)

s0~po(s)
ar~1e(.|st)

st+1~p(st+1]st,at)

Zr(st, a)

Z /yt'r(stv a’t)
t=0

Stationary View — sampling from stationary dist

di (s,a) =P(st = s,ar = a | so ~ po,Vi <t,a; ~ m(:[8i), Si+1 ~ p(*]si, a;))

(Likelihood of being at state s, action a at time step t)

(s, a) nytd7T s, a)

(Likelihood of being at state S, actlon a across all steps)

y subsumed into E E(s,a)wug(s,a) 7"(8, a)

No sequential sampling No sum over rewards



Some notation: Q-functions and V-functions

7

Estimate of how “good” a policy is — estimate of future returns under a policy @

Q-function V-function
Take one action and then follow policy from s Follow policy from s
Q" (s,a) =E, Z’r’(st,at) | s = s,a0 = a] VT(s,a) =E;, Zr(st,at) | so = s]
t t

Will be useful soon!

J(ﬂ-) — IEEsrvpo (s) [Vw(s)]

Average value over initial states




Ok so where does deep learning fit in?

Avoids expensive hand-design for adaptive agents, learn end-to-end: sensors = actions

State

___________________________________________________________________________________________________

Convolutional Neural ‘ Dueling
Network ; Network

16 x 20@32

Policies/Q-values/model are
represented as deep neural
networks

Leads to non-trivial challenges in learning and optimization!



Why is deep RL important now?

Deep models have enabled the huge advances in modern Al

Output

VGG-19 i
vOL-1Y Probabilities

[ 3x3 conv, 64 | [ 7x7 conv, 64 |

3x3 conv, 64
3x3 copv, 128 | 3x3 copv,

,m%m’ | 3x3 cohy, 6

3x3 cohv, 6.
3x3 copv, 256 3 Add & Norm

[(3x3 copv, 256 | E . N i
== _ Algorithms | &2 We are betting that the

T = | same holds for RL

J

(Add & Norm ]

Add & Norm

Multi-Head
Attention

i

& "_.-u N

BELT

b -

152 layers

Positional N Positional
Encoding 5 Encoding

u Outpu
A I 3x3 cdhv, 5 I Emlk:fd(;mg I I Ehbebing I
s 3x3 conv, 51 i i
N7 3x3 cO v, 5]2 Inputs Outputs
v

(shifted right)

I fC'6 ] I fc 6 l Figure 1: The Transformer - model architecture.




Ok so is this just supervised learning?

Supervised learning aims to maximize likelihood of observed data under the model

maxE, ,)~p [logpe(y|x)]




Why is this not just supervised learning?

Supervised Learning

max E(z,y)~D [10g Po(y|T)]

Sampling from expert

Dx1,(p*||po) IID

Reinforcement Learning

M'ﬂ

max K-,

; r St7at

| t=0

Sampling from policy

Dx1,(pol|p™) Non-IID

——~~
- ‘\
- —
\ - —
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Why is this not just supervised learning?

Supervised Learning

0

Reinforcement Learning

max K, )~ |log pg(y|T)]

max K-,
0

t

[ T

0

r(st, at)

The resulting paradigms are different in many ways:

1. Optimization and learning dynamics
2. Balancing exploration and exploitation

N

But many overlapping tools! In fact often we
try to convert RL into a supervised problem
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Ok so why should we care about RL?

Solves sequential decision Enables continual
making problems improvement

SR el

Has black-box assumptions

Reduces burden of human
data collection




Applications of RL: Robotics

RL can enable robotic learning of hard to specify/script behaviors in the presence of contact




Applications of RL: Large Language Models

Systematically finds and reduces model hallucinations using RLHF

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our e
Explain the moon

prompt dataset. landing to a 6 year old

|

y
Alabeler
demonstrates the @
desired output y;
behavior. -

Some people went
to the moon..

\J
This data is used SFT
to fine-tune GPT-3 2o
. . ./)?.sk\.
with supervised W
learning. Y

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model e
Explain the moon
outputs are landing to a 6 year old
sampled. o o
Explangravty.  Explainwar

Moonis natural Poopla went to
satelite o the moon.

Alabeler ranks

the outputs from @
best to worst.

This data is used Y

to train our M
reward model. %7

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

; ™
is sampled from e
the dataset. about frogs
|
\J
The policy -
enerates 2o
° ./)?j\\.
an output. \}SX./
|
\J

The reward model -
Calculda;es a ./o)?:{\.
reward for N
the output.

Y
The reward is
used to update I

the policy
using PPO.




Applications of RL: Games

Both single and multi-agent RL has proven transformative for game Al
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Rerun vs OpenAlI Five

Particularly well suited to RL assumptions



Applications of RL: Science and Engineering

RL has started to become a useful tool for engineering design
Chip Design Weather balloon navigation

Crystal design

Q Q Qi Q
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Zooming out — why this matters for the study of intelligence?

Hypothesis: Intelligence with and without embodiment looks drastically different

/// _ N T
yw\*’ \ g ! PeEs '
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Elephants don't play chess!




Why must we study RL in the real world?

Hypothesis: Agents that learn with embodiment will have emergent
complexity in complex, dynamic environments

Increasingly interesting behavior



Where is Reinforcement Learning not useful?

Position z [m]

Not the right call for very safety-critical, repetitive applications

3D Trajectory

Paosition y [m]

Position x [m] '




Where is Reinforcement Learning "potentially” useful?

Domains which have high diversity, yet relatively cheap autonomous data collection

But these domains are not as simple as just running RL algorithms!



L ecture Outline

Course logistics and scope

What is RL, a formal definition

Why should we care?

Going beyond RL



50 is sequential decision making = RL?

’_l Agent I

state reward : . . . . .
g 2 ZCUO” RL is sequential decision making under a
! | ! . .
R ' particular set of assumptions:
s Environment J«— 1. Sampling access to the environment

§¢r+l
? 2. Access to reward
3. Goal-directed behavior

\,

We conflated sequential decision making and RL!

Trajectory optimization/planning Imitation Learning Unsupervised Decision Making

Interleaving Graph Search and Trajectory Optimization

for Aggressive Quadrotor Flight

Ramkumar Natarajan, Howie Choset and Maxim Likhachev




Trajectory Optimization

14

Sequential decision making with "known” models

Interleaving Graph Search and Trajectory Optimization
for Aggressive Quadrotor Flight

Ramkumar Natarajan, Howie Choset and Maxim Likhachev

May be hard to construct perfect, known models



Imitation Learning

14

Sequential decision making provided expert data

J\

5]“

® 1X END-TO-END AUTONOMY
UPDATE, JAN 2024

Cook Shrimp

(autonomous)

Ly et (!

6x speed rd | 4

Often called learning from demonstrations




Self-Supervised Prediction of the World

14

Sequential decision making without reward - self-supervised prediction

Generate a playable world

set in a futuristic city

Often called model-based RL



How should we think about designing effective RL algorithms?

14

Stable performant
optimization algorithms

Easy to specify
objectives

-

Efficient data collection

4




Class Structure

14

/—[ Imitation Learning ]\
/

4 Model-free Reinforcement Learning

Policy Gradient ADP

~

Model-based Reinforcement Learning

J

\—[ Unifying Perspectives on RL and IRL ]—/

Exploration

Frontiers

Learning from Prior Data

Learning across tasks




