Reinforcement Learning Spring 2024 Abhishek Gupta TAs: Patrick Yin, Qiuyu Chen #### Class Structure #### Using Probabilistic Graphical Models for Decision Making Introduce binary "optimality" variables – optimal if O=1, suboptimal if O=0 Agents are observed to be **optimal** #### Variational Inference +SGD gives us Policy Gradient Find approximate posterior q(z|x) by optimizing the ELBO $$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$$ $$x \qquad \qquad z$$ $$\downarrow \qquad \qquad \downarrow \qquad$$ $$q(s_0, a_0, \dots, s_T, a_T | \mathcal{O}_0, \dots, \mathcal{O}_T) = p(s_0) \Pi_{t=0}^T p(s_{t+1} | s_t, a_t) q(a_t | s_t)$$ $$\mathbb{E} \underset{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}}{\mathbb{E} \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t)} = \mathbb{E} \underset{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}}{\mathbb{E} \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t)}$$ Maximize ELBO with SGD = policy gradient! ### Variational Inference + DP gives us Q learning Find approximate posterior q(z|x) by optimizing the ELBO using dynamic programming $$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right] \\ \mathbb{E}_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_{t} \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t) \right] = \mathbb{E}_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_{t} r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ Can derive a "soft" dynamic programming Q-learning update #### For t = T-1 to 1: $$Q_t(s_t,a_t) = r(s_t,a_t) + \mathbb{E}_{s_{t+1} \sim p(s_{t+1}|s_t,a_t)} \left[V_{t+1}(s_{t+1}) \right] \tag{Bellman update}$$ $$V_t(s_t) = \log \int \exp(Q(s_t,a_t)) da_t \tag{Soft-max}$$ $$-q(a_t|s_t) = \exp(Q_t(s_t,a_t) - V_t(s_t)) \tag{Soft-max}$$ ### Max Likelihood + Sampling gives us MPPI Step 1: Learn model via min KL (supervised learning) $$\max_{\hat{p}} \mathbb{E}_{p(s_0,...,s_T,a_0,...,a_T,\mathcal{O}_0,...,\mathcal{O}_T)} \left[\log \hat{p}(s_0) + \sum_{t} \left[\log \hat{p}(s_{t+1}|s_t,a_t) + \log \hat{p}(\mathcal{O}_t|s_t,a_t) \right] \right]$$ Step 2: Obtain posterior actions via Monte-Carlo approximation (approx MPPI) $$\begin{array}{c} \times \mathbb{E} \\ s_0 \sim \hat{p}(s_0) \\ a_t \sim \hat{p}(a_t|s_t) \\ s_{t+1} \sim \hat{p}(s_{t+1}|s_t, a_t) \end{array} \left[\exp \left[\sum_t r(s_t, a_t) \right] \right]$$ #### Lecture Outline ``` Why Imitation? + Problem formulation IRLv1 – max margin planning IRLv2 – max entropy IRL IRLv3 – partial policy optimization IRLv4 – adversarial IRL ``` #### Let's revisit the premise of reinforcement learning We studied a bunch of different algorithms to solve this **Model-based RL** **Policy gradients** $$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$ Actor-critic or $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_t r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ But they all operate under the same assumption: reward is known! #### Reinforcement Learning requires Task Specification Does not magically appear in most settings Has to be manually specified \rightarrow can we do better? #### Manual state estimation/perception #### Complex reward specification | Name | Reward | Heroes | Description | |--------------------------|--------|--------|------------------------------------------------------------| | Win | 5 | Team | Description | | Hero Death | -1 | Solo | | | Courier Death | -2 | Team | | | XP Gained | 0.002 | Solo | | | Gold Gained | 0.006 | Solo | For each unit of gold gained. Reward is not lost | | | | | when the gold is spent or lost. | | Gold Spent | 0.0006 | Solo | Per unit of gold spent on items without using | | | | | courier. | | Health Changed | 2 | Solo | Measured as a fraction of hero's max health. [‡] | | Mana Changed | 0.75 | Solo | Measured as a fraction of hero's max mana. | | Killed Hero | -0.6 | Solo | For killing an enemy hero. The gold and expe- | | | | | rience reward is very high, so this reduces the | | | | | total reward for killing enemies. | | Last Hit | -0.16 | Solo | The gold and experience reward is very high, so | | | | | this reduces the total reward for last hit to ~ 0.4 . | | Deny | 0.15 | Solo | | | Gained Aegis | 5 | Team | | | Ancient HP Change | 5 | Team | Measured as a fraction of ancient's max health. | | Megas Unlocked | 4 | Team | | | T1 Tower* | 2.25 | Team | | | T2 Tower* | 3 | Team | | | T3 Tower* | 4.5 | Team | | | T4 Tower* | 2.25 | Team | | | Shrine* | 2.25 | Team | | | Barracks* | 6 | Team | | | Lane Assign [†] | -0.15 | Solo | Per second in wrong lane. | ^{*} For buildings, two-thirds of the reward is earned linearly as the building loses health, and one-third is earned as a lump sum when it dies. See item O.2. $^{^{\}ddagger}$ Hero's health is quartically interpolated between 0 (dead) and 1 (full health); health at fraction x of full health is worth $(x+1-(1-x)^4)/2$. This function was not tuned; it was set once and then untouched for the duration of the project. #### Learning from Demonstrations Avoid manual reward specification by learning from demos of optimal behavior #### But haven't we already learned from demonstrations? #### <u>Imitation learning via Behavior Cloning (L2)</u> $$\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$$ #### Main difference between BC and IRL: - 1. BC learns policies, IRL learns rewards - 2. BC assumes no environment access, IRL typically assumes either known model or sampling access Why does this matter? ### Zooming out – why do we care about imitation? Imitation learning is all about generalization Generalization across states **Generalization across dynamics** Covariate shift is just a manifestation of generalization What if learning something else generalized better than policies? #### Cross-Embodiment/Dynamics Transfer Rewards may allow for cross dynamics transfer Can all share the same reward, even with different dynamics! Policies and Q/V functions entangle dynamics, rewards do not # Addressing Compounding Error Reward can avoid covariate shift issues with forward KL **Imitation Learning via BC** Reinforcement Learning with Inferred Reward $$\max_{\theta} \mathbb{E}_{(x,y)\sim \mathcal{D}} \left[\log \hat{p}_{\theta}(y|x) \right]$$ $$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$ Sampling from expert $$D_{\mathrm{KL}}(p^*||p_{\theta})$$ Sampling from policy What we care about $\longrightarrow D_{\mathrm{KL}}(p_{\theta}||p^{*})$ # Learning Rewards from Human Data Is this even a well-defined problem? #### How can we learn rewards? We must make more assumptions on the expert provided data $$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_{t}, a_{t}) \right]$$ $$D_{\text{KL}}(\pi \mid\mid \pi^{*}) \leq \epsilon$$ Experts are assumed to be "noisily" optimal ### Why is this "inverse" reinforcement learning? RL: Rewards generate trajectories IRL: Expert trajectories generate rewards Is this well defined? #### IRL problem statement + assumptions #### Reinforcement Learning State: Known **Action: Known** Transition Dynamics: Unknown but can sample Reward: Known Expert policy: Unknown Expert traces: **Unknown** #### **Inverse Reinforcement Learning** State: Known Action: Known Transition Dynamics: Unknown but can sample Reward: **Unknown** Expert policy: Unknown Expert traces: **Known** Find r that **explains** the demonstrator behavior as noisily optimal Inverse RL Reward $r_{ heta}(s,a)$ Reinforcement Learning Policy $\pi(a|s)$ New dynamics/state # Inverse RL Applications # Inverse RL Applications ### Why is this hard? Find r that **explains** the demonstrator behavior as noisily optimal Reward Function $r_{\theta}(s,a)$ Challenging for a variety of reasons: - 1. Inherently underspecified - 2. R and π both unknown - 3. Difficult optimization with T unknown. - 4. Distributions/comparison metrics unknown Can be parameterized by arbitrary function approximator #### Lecture Outline #### **Why Imitation? + Problem formulation** IRLv1 – max margin planning IRLv2 – max entropy IRL IRLv3 – partial policy optimization IRLv4 – adversarial IRL #### A Formula for Inverse Reinforcement Learning #### IRL v0 – Assumptions ### IRL v0 – What is a good reward function? A good reward would evaluate optimal data higher than all other data $$V_r^{\pi^*}(s) \ge V_r^{\pi}(s) \ \forall \pi, \forall s$$ High reward Find w* such that $$r(s, a) = w^{*T} \phi(s, a)$$ $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t r(s_t, a_t) \right] \ge \mathbb{E}_{\pi} \left[\sum_{t} \gamma^t r(s_t, a_t) \right], \quad \forall \pi$$ $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t w^{*T} \phi(s_t, a_t) \right] \ge \mathbb{E}_{\pi} \left[\sum_{t} \gamma^t w^{*T} \phi(s_t, a_t) \right], \quad \forall \pi$$ $$w^{*T} \mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \phi(s_t, a_t) \right] \ge w^{*T} \mathbb{E}_{\pi} \left[\sum_{t} \gamma^t \phi(s_t, a_t) \right], \quad \forall \pi$$ Underdefined, $w^* = 0$ trivially satisfies! $\mu(\pi,\phi)$ $\mu(\pi^*,\phi)$ ### IRL v0 – What is a good reward function? #### How do we tackle ambiguity? $$w^{*T} \mathbb{E}_{\pi^*} \left[\phi(s, a) \right] \ge w^{*T} \mathbb{E}_{\pi^*} \left[\phi(s, a) \right] \quad \forall \pi, \forall s$$ $\max_{w,m} m$ s.t $$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + m, \forall \pi \in \Pi$$ Find rewards which maximize the gap between the expert and all other policies ### IRL v1 – Max Margin Feature Matching #### Choose w such that "margin" is maximized $\max m$ s.t $$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + m, \forall \pi \in \Pi$$ Looks a lot like an SVM! $$\min \|w\|_2$$ s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + 1, \forall \pi \in \Pi$ What might the issues be \rightarrow - 1. Uniform gap across all π , π^* - 2. Noisily optimal may compromise the optimization # IRL v1 – (Fancy) Max Margin Feature Matching #### Maximum margin → Structured Max-Margin + Slack $$\min \|w\|_2$$ s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + 1, \forall \pi \in \Pi$ Bigger for more different policies $$\min \|w\|_2 + C\zeta \qquad \downarrow$$ s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \Pi$ Slack allows for noisy optimality ### IRL v1 – Max Margin Feature Matching ### IRL v1 – Max Margin Feature Matching - 1. Start with a random policy π_0 - 2. Find the w that optimizes $$\min_{w,\zeta} \|w\|_2 + C\zeta$$ s.t $$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \{\pi_0, \pi_1, \dots, \pi_i\}$$ 3. Solve for the optimal policy against $r_{\phi}(s, a) = w^{(i)^T} \phi(s, a)$ $$\pi_{i+1} \to \operatorname{Opt}(r_{\phi}(s,a),T)$$ 4. Add to constraint set and repeat Output the optimal reward function w* # Max Margin Feature Matching in Action #### Lecture Outline **Why Imitation? + Problem formulation** IRLv1 – max margin planning IRLv2 – max entropy IRL IRLv3 – partial policy optimization IRLv4 – adversarial IRL # IRL v1 – Why this may not be enough? min $$||w||_2 + C\zeta$$ s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \Pi$ May not be able to deal with scenario where true margin is quite small for some policies Not clear if this is a good way to deal with suboptimality Constrained optimization is tough to optimize for non-linear functions What if we had a "softer" notion of margin? ### We have talked about "soft" optimality before! We derived max-ent RL as maximum likelihood on optimality (lower bound) wrt policy $$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$$ Control as inference $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t|a_t)}} \left[\sum_t \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t) \right]$$ Li & Todorov '06 Ziebart '08 Can we invert this to do inverse RL with a softer notion of margin? ### Let's revisit the graphical model $$p(\tau)$$ Uninformed behavior according to prior/dynamics $$p(\tau|\mathcal{O}_{0:T}=1)$$ Soft optimal behavior conditioned on optimality We were trying to find $p(a_t|s_t,\mathcal{O}_{t:T}=1)$ given reward #### IRLv2 – Maximum Entropy Inverse RL Now we are given (s, a) from optimal, we need to find the reward function that best explains the data \rightarrow Maximum likelihood estimation! (Find r, that maximizes the likelihood of (s, a) being produced on observed optimality # Inverse RL in CAI graphical model \rightarrow Maximum likelihood estimation! (Find r, that maximizes the likelihood of (s, a) being produced on observed optimality $$\max_{\sigma}\mathbb{E}_{ au\sim\mathcal{D}^*}\left[\log p(au|\mathcal{O}_{0:T}=1) ight]$$ (Find optimality CPD that best explains observed data) # Maximum likelihood optimality estimation $$p(\tau|\mathcal{O}_{0:T}=1) \propto p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t))$$ Independent of reward $$= \frac{\exp(\sum_{t=0}^{T} r(s_t, a_t))}{\int \int p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t)) ds_{0:T} da_{0:T}}$$ Hard to estimate – partition function (Z) $$\max_{\phi} \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log p(\tau | \mathcal{O}_{0:T} = 1) \right]$$ Difficult to compute analytically, but it's gradient has a nice form! # Maximum likelihood optimality estimation $$p(\tau|\mathcal{O}_{0:T} = 1) = \frac{\exp(\sum_{t=0}^{T} r(s_t, a_t))}{\int \int p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t)) ds_{0:T} da_{0:T}}$$ $$\max_{\phi} \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log p(\tau | \mathcal{O}_{0:T} = 1) \right]$$ $$= \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log \left(\exp(\sum_{t=0}^T r_{\phi}(s_t, a_t)) \right) - \log Z \right]$$ $$= \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T r_{\phi}(s_t, a_t) \right] - \log Z$$ Easy to compute Hard to compute # Let's take the gradient $$\max_{\phi} \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log p(\tau | \mathcal{O}_{0:T} = 1) \right]$$ $$\mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T r_{\phi}(s_t, a_t) \right] - \log Z$$ $$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \nabla_{\phi} \log Z$$ $$\nabla_{\phi} \log Z = \frac{1}{Z} \nabla_{\phi} Z$$ $$Z = \int p(\tau) \exp(r(\tau)) d\tau$$ $$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \frac{1}{Z} \int p(\tau) \exp(r_{\phi}(\tau)) \nabla_{\phi} r_{\phi}(\tau) d\tau$$ Notice this is exactly the soft optimality posterior $$p(\tau|\mathcal{O}_{0:T} = 1) \propto p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t))$$ # Let's take the gradient $$\mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T r_{\phi}(s_t, a_t) \right] - \log Z$$ $$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \frac{1}{Z} \int p(\tau) \exp(r_{\phi}(\tau)) \nabla_{\phi} r_{\phi}(\tau) d\tau$$ Notice this is exactly the soft optimality posterior $$p(\tau|\mathcal{O}_{0:T} = 1) \propto p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t))$$ $$\nabla_{\phi}\mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \mathbb{E}_{\tau \sim p(\tau \mid \mathcal{O}_{0:T} = 1)} \left[\sum_{t=0}^T \nabla_{\phi} r_{\phi}(s_t, a_t) \right]$$ Push up gradients along experts Push down gradients along soft optimal policy under current reward Computable, with RL in the inner loop # IRLv2 – Maximum Entropy Inverse RL $$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \frac{1}{Z} \int p(\tau) \exp(r_{\phi}(\tau)) \nabla_{\phi} r_{\phi}(\tau) d\tau$$ $$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \mathbb{E}_{\tau \sim p(\tau \mid \mathcal{O}_{0:T} = 1)} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right]$$ Push up gradients along experts Push down gradients along soft optimal policy under current reward Update on φ Update π to optimal using current r_{Φ} ### IRL v2 – Max-Ent IRL – Put it together #### **Maximum Entropy** ## IRL v2 – Max-Entropy Inverse RL (Pseudocode) - 1. Start with a random policy π_0 and weight vector w - → 2. Find the "soft" optimal policy under w $p_w(au)$ - 3. Take a gradient step on w $$\nabla_w \mathcal{L} = \mathbb{E}_{\pi^*} \left[\sum_t \gamma^t \phi(s_t, a_t) \right] - \mathbb{E}_{p_w(\tau)} \left[\sum_t \gamma^t \phi(s_t^{\tau}, a_t^{\tau}) \right]$$ 4. Repeat ### Max-Ent IRL in Action #### Lecture Outline ``` Why Imitation? + Problem formulation IRLv1 – max margin planning IRLv2 - max entropy IRL IRLv3 – partial policy optimization IRLv4 – adversarial IRL ``` # Ok but no way this could work? ### Linear Rewards -> Neural Net Rewards Max-ent IRL allows us to go from linear rewards to arbitrary neural network rewards Can simply replace, w with arbitrary θ and use autodiff! # Avoiding Complete Policy Optimization Optimize policy against $r_{\phi}(s,a)$ $$r_{\phi}(s,a)$$ Assumes dynamics are known so we can just do (fast) planning What happens when dynamics are unknown! $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] \qquad \qquad \text{What if we only } \underline{\text{improved}} \text{ the policy a little bit} \\ -\mathbb{E}_{p_w(\underline{\tau})} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] \qquad \qquad \qquad \text{Biased!}$$ Requires complete "soft" policy optimization # Avoiding Complete Policy Optimization Importance sampling to the rescue! $$\mathbb{E}_{p(x)}\left[f(x)\right] = \mathbb{E}_{q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$ $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ $$-\mathbb{E}_{p_w(\tau)} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ $$-\mathbb{E}_{q} \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ $$\xrightarrow{\exp(\sum_{t} r_{\theta}(s_t, a_t))} \frac{\exp(\sum_{t} r_{\theta}(s_t, a_t))}{\prod_{t} \pi_{\theta}(a_t | s_t)}$$ Can transfer significantly more from iteration to iteration rather than doing full nested optimization ## IRLv4 – Guided Cost Learning # IRLv4 – Guided Cost Learning #### Lecture Outline ``` Why Imitation? + Problem formulation IRLv1 – max margin planning IRLv2 – max entropy IRL IRLv3 – partial policy optimization IRLv4 – adversarial IRL ``` ## Connecting Maximum-Entropy RL to GANs #### Looks like a game - 1. Start with a random policy π_0 and weight vector w - ightarrow 2. Take a step on "soft" optimal policy under w $p_w(au)$ - 3. Take a gradient step on w $$\nabla_{\theta} \mathcal{L} = \mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] - \mathbb{E}_q \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ 4. Repeat Output the optimal reward function w* ## Recasting GAIL as an IRL method For a particular parameterization of the discriminator, GAIL recovers a reward #### Max-Ent Inverse RL $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ $$-\mathbb{E}_q \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ Push up demos, push down policy With some massaging Push up real data, push down generated $$D_{\theta}(\tau) = \frac{\frac{1}{Z} \exp(r_{\theta}(\tau))}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + \Pi_{t} \pi_{\theta}(a_{t}|s_{t})}$$ GAIL (which is just a GAN), recovers Max-Ent IRL In practice, often use GAIL and just log D as reward ## Adversarial IRL in Action #### Lecture Outline ``` Why Imitation? + Problem formulation IRLv1 – max margin planning IRLv2 – max entropy IRL IRLv3 – partial policy optimization IRLv4 – adversarial IRL ``` #### Class Structure