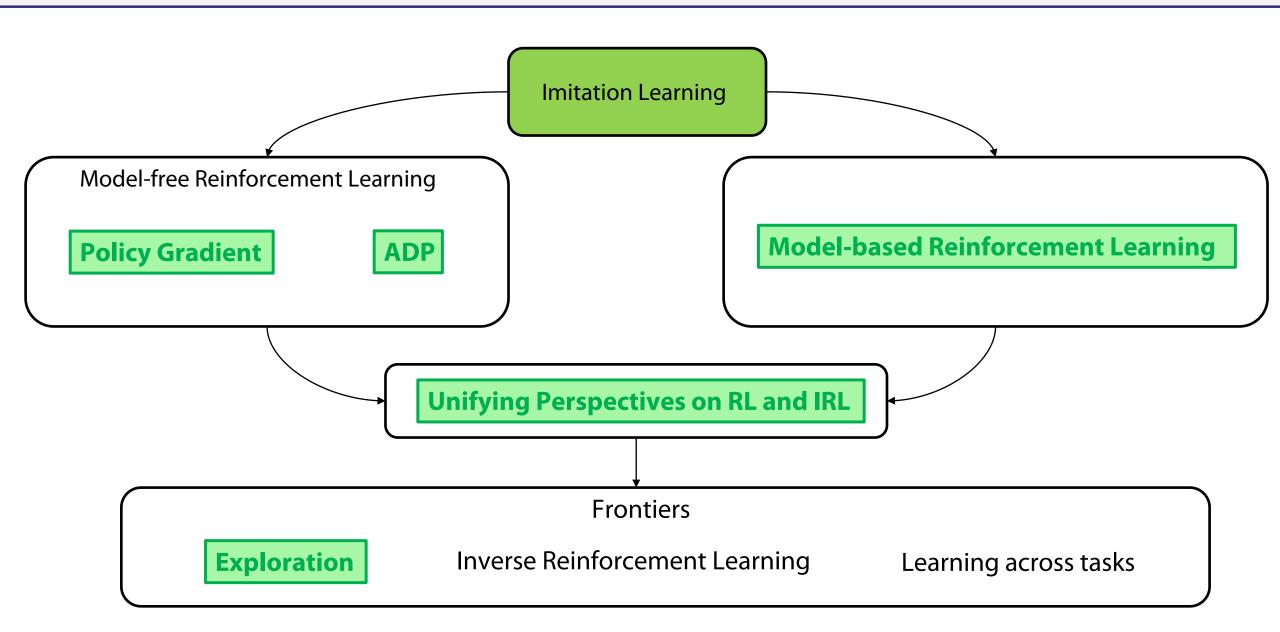


Reinforcement Learning Spring 2024

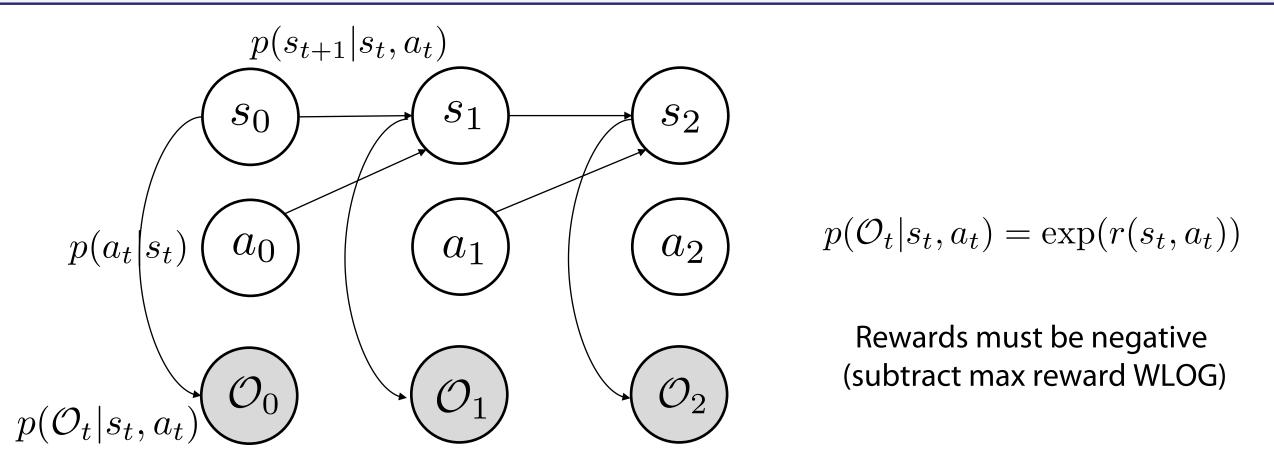
Abhishek Gupta

TAs: Patrick Yin, Qiuyu Chen

Class Structure



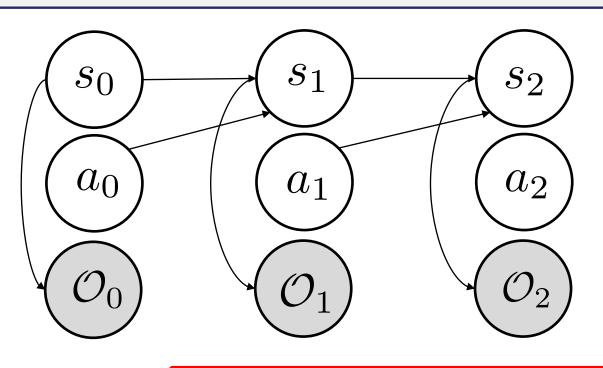
Using Probabilistic Graphical Models for Decision Making



Introduce binary "optimality" variables – optimal if O=1, suboptimal if O=0

Agents are observed to be **optimal**

Variational Inference +SGD gives us Policy Gradient



Find approximate posterior q(z|x) by optimizing the ELBO

$$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$$

$$x \qquad \qquad z$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

$$q(s_0, a_0, \dots, s_T, a_T | \mathcal{O}_0, \dots, \mathcal{O}_T) = p(s_0) \Pi_{t=0}^T p(s_{t+1} | s_t, a_t) q(a_t | s_t)$$

$$\mathbb{E} \underset{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}}{\mathbb{E} \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t)} = \mathbb{E} \underset{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}}{\mathbb{E} \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t)}$$

Maximize ELBO with SGD = policy gradient!

Variational Inference + DP gives us Q learning

Find approximate posterior q(z|x) by optimizing the ELBO using dynamic programming

$$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right] \\
\mathbb{E}_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_{t} \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t) \right] = \mathbb{E}_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_{t} r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$

Can derive a "soft" dynamic programming Q-learning update

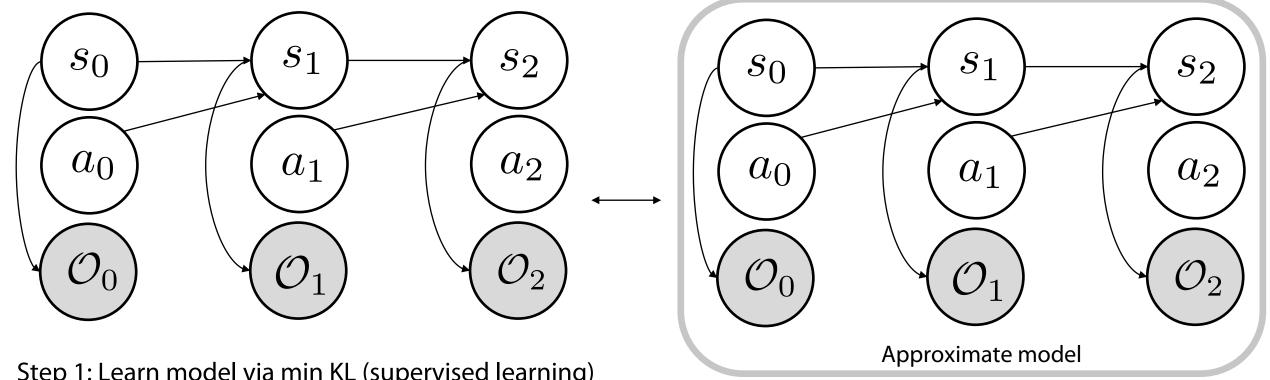
For t = T-1 to 1:

$$Q_t(s_t,a_t) = r(s_t,a_t) + \mathbb{E}_{s_{t+1} \sim p(s_{t+1}|s_t,a_t)} \left[V_{t+1}(s_{t+1}) \right] \tag{Bellman update}$$

$$V_t(s_t) = \log \int \exp(Q(s_t,a_t)) da_t \tag{Soft-max}$$

$$-q(a_t|s_t) = \exp(Q_t(s_t,a_t) - V_t(s_t)) \tag{Soft-max}$$

Max Likelihood + Sampling gives us MPPI



Step 1: Learn model via min KL (supervised learning)

$$\max_{\hat{p}} \mathbb{E}_{p(s_0,...,s_T,a_0,...,a_T,\mathcal{O}_0,...,\mathcal{O}_T)} \left[\log \hat{p}(s_0) + \sum_{t} \left[\log \hat{p}(s_{t+1}|s_t,a_t) + \log \hat{p}(\mathcal{O}_t|s_t,a_t) \right] \right]$$

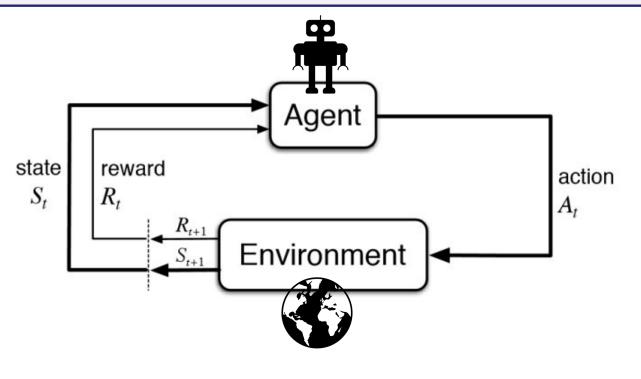
Step 2: Obtain posterior actions via Monte-Carlo approximation (approx MPPI)

$$\begin{array}{c}
 \times \mathbb{E} \\
s_0 \sim \hat{p}(s_0) \\
a_t \sim \hat{p}(a_t|s_t) \\
s_{t+1} \sim \hat{p}(s_{t+1}|s_t, a_t)
\end{array}
\left[\exp \left[\sum_t r(s_t, a_t) \right] \right]$$

Lecture Outline

```
Why Imitation? + Problem formulation
IRLv1 – max margin planning
IRLv2 – max entropy IRL
IRLv3 – partial policy optimization
IRLv4 – adversarial IRL
```

Let's revisit the premise of reinforcement learning



We studied a bunch of different algorithms to solve this

Model-based RL

Policy gradients

$$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

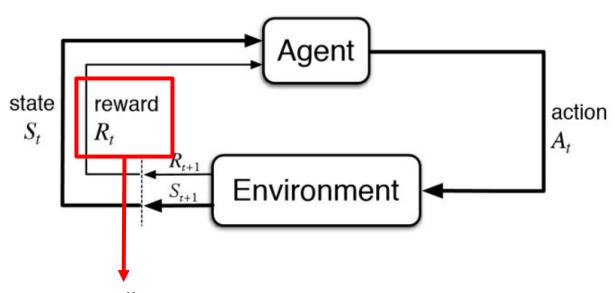
Actor-critic

or

$$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_t r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$

But they all operate under the same assumption: reward is known!

Reinforcement Learning requires Task Specification

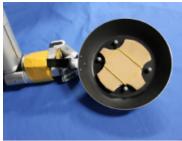


Does not magically appear in most settings

Has to be manually specified

 \rightarrow can we do better?

Manual state estimation/perception



Complex reward specification

Name	Reward	Heroes	Description
Win	5	Team	Description
Hero Death	-1	Solo	
Courier Death	-2	Team	
XP Gained	0.002	Solo	
Gold Gained	0.006	Solo	For each unit of gold gained. Reward is not lost
			when the gold is spent or lost.
Gold Spent	0.0006	Solo	Per unit of gold spent on items without using
			courier.
Health Changed	2	Solo	Measured as a fraction of hero's max health. [‡]
Mana Changed	0.75	Solo	Measured as a fraction of hero's max mana.
Killed Hero	-0.6	Solo	For killing an enemy hero. The gold and expe-
			rience reward is very high, so this reduces the
			total reward for killing enemies.
Last Hit	-0.16	Solo	The gold and experience reward is very high, so
			this reduces the total reward for last hit to ~ 0.4 .
Deny	0.15	Solo	
Gained Aegis	5	Team	
Ancient HP Change	5	Team	Measured as a fraction of ancient's max health.
Megas Unlocked	4	Team	
T1 Tower*	2.25	Team	
T2 Tower*	3	Team	
T3 Tower*	4.5	Team	
T4 Tower*	2.25	Team	
Shrine*	2.25	Team	
Barracks*	6	Team	
Lane Assign [†]	-0.15	Solo	Per second in wrong lane.

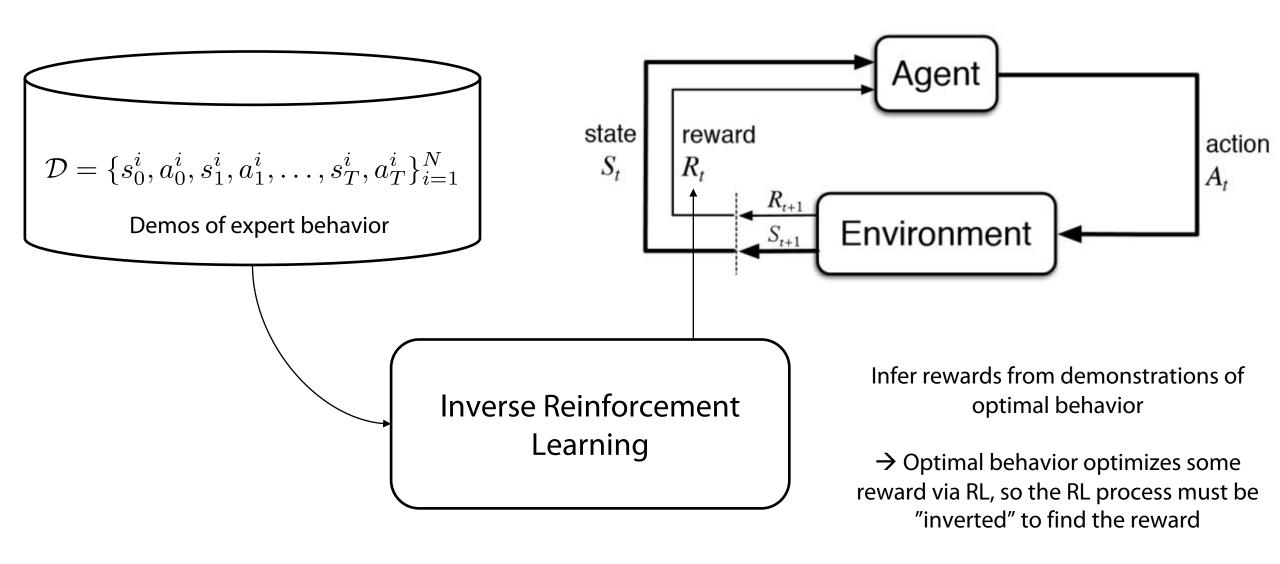
^{*} For buildings, two-thirds of the reward is earned linearly as the building loses health, and one-third is earned as a lump sum when it dies.

See item O.2.

 $^{^{\}ddagger}$ Hero's health is quartically interpolated between 0 (dead) and 1 (full health); health at fraction x of full health is worth $(x+1-(1-x)^4)/2$. This function was not tuned; it was set once and then untouched for the duration of the project.

Learning from Demonstrations

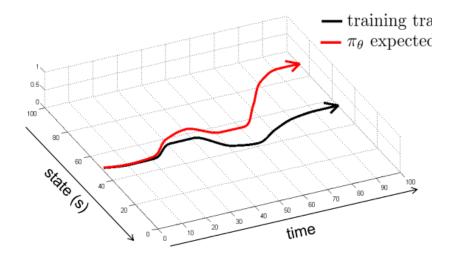
Avoid manual reward specification by learning from demos of optimal behavior



But haven't we already learned from demonstrations?

<u>Imitation learning via Behavior Cloning (L2)</u>

$$\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$$



Main difference between BC and IRL:

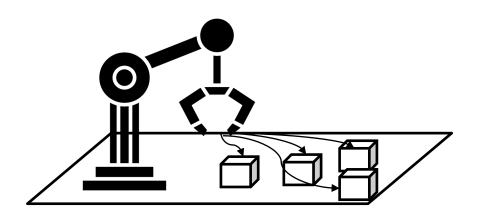
- 1. BC learns policies, IRL learns rewards
- 2. BC assumes no environment access, IRL typically assumes either known model or sampling access

Why does this matter?

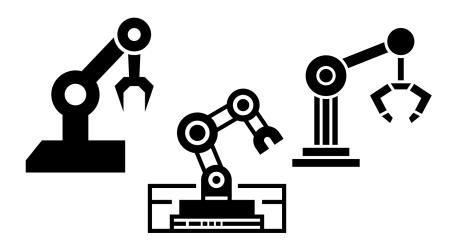
Zooming out – why do we care about imitation?

Imitation learning is all about generalization

Generalization across states



Generalization across dynamics

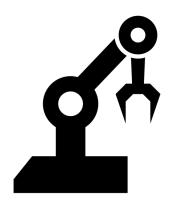


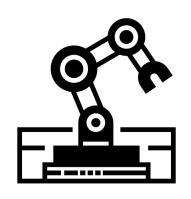
Covariate shift is just a manifestation of generalization

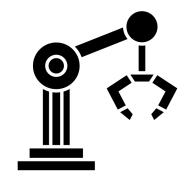
What if learning something else generalized better than policies?

Cross-Embodiment/Dynamics Transfer

Rewards may allow for cross dynamics transfer







Can all share the same reward, even with different dynamics!

Policies and Q/V functions entangle dynamics, rewards do not

Addressing Compounding Error

Reward can avoid covariate shift issues with forward KL

Imitation Learning via BC

Reinforcement Learning with Inferred Reward

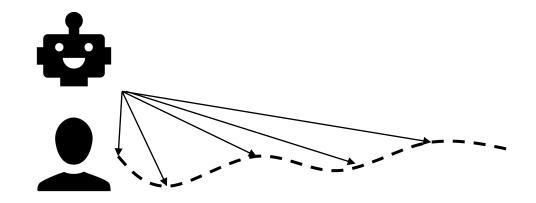
$$\max_{\theta} \mathbb{E}_{(x,y)\sim \mathcal{D}} \left[\log \hat{p}_{\theta}(y|x) \right]$$

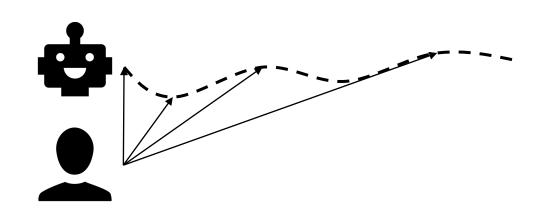
$$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

Sampling from expert

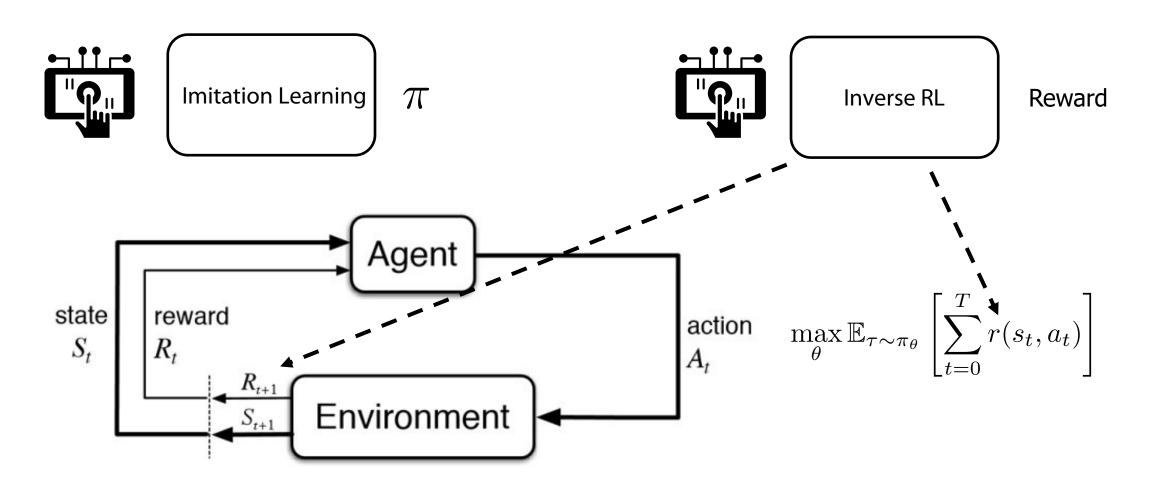
$$D_{\mathrm{KL}}(p^*||p_{\theta})$$

Sampling from policy What we care about $\longrightarrow D_{\mathrm{KL}}(p_{\theta}||p^{*})$





Learning Rewards from Human Data



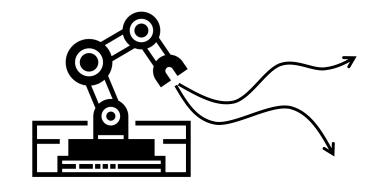
Is this even a well-defined problem?

How can we learn rewards?

We must make more assumptions on the expert provided data

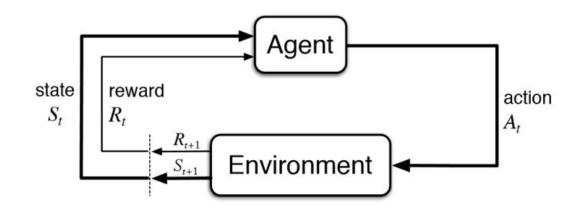
$$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_{t}, a_{t}) \right]$$

$$D_{\text{KL}}(\pi \mid\mid \pi^{*}) \leq \epsilon$$

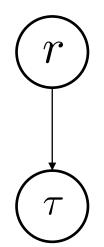


Experts are assumed to be "noisily" optimal

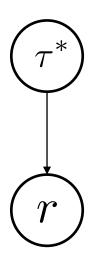
Why is this "inverse" reinforcement learning?



RL: Rewards generate trajectories



IRL: Expert trajectories generate rewards



Is this well defined?

IRL problem statement + assumptions

Reinforcement Learning

State: Known

Action: Known

Transition Dynamics: Unknown but can sample

Reward: Known

Expert policy: Unknown Expert traces: **Unknown**

Inverse Reinforcement Learning

State: Known

Action: Known

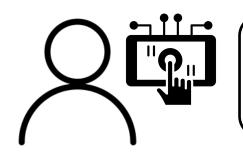
Transition Dynamics: Unknown but can sample

Reward: **Unknown**

Expert policy: Unknown

Expert traces: **Known**

Find r that **explains** the demonstrator behavior as noisily optimal



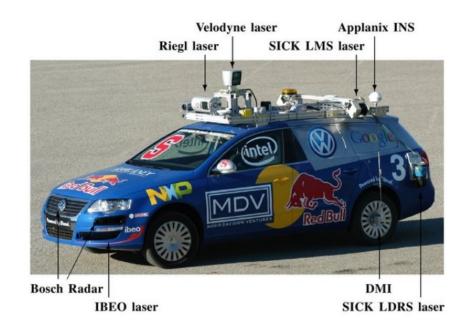
Inverse RL

Reward $r_{ heta}(s,a)$

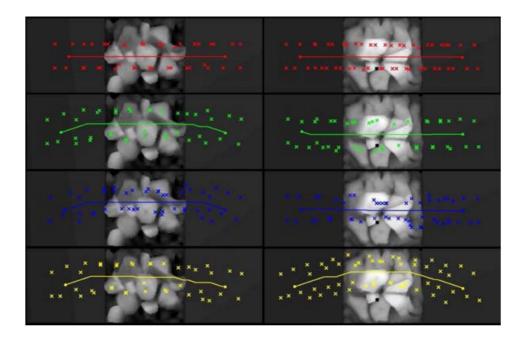
Reinforcement Learning Policy $\pi(a|s)$

New dynamics/state

Inverse RL Applications

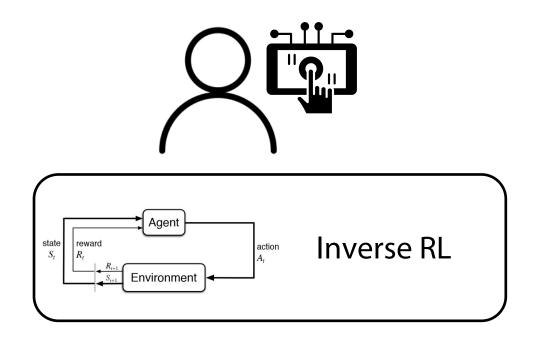


Inverse RL Applications



Why is this hard?

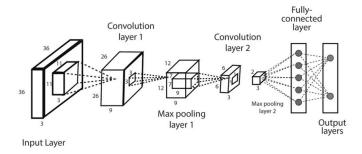
Find r that **explains** the demonstrator behavior as noisily optimal



Reward Function $r_{\theta}(s,a)$

Challenging for a variety of reasons:

- 1. Inherently underspecified
- 2. R and π both unknown
- 3. Difficult optimization with T unknown.
- 4. Distributions/comparison metrics unknown



Can be parameterized by arbitrary function approximator

Lecture Outline

Why Imitation? + Problem formulation

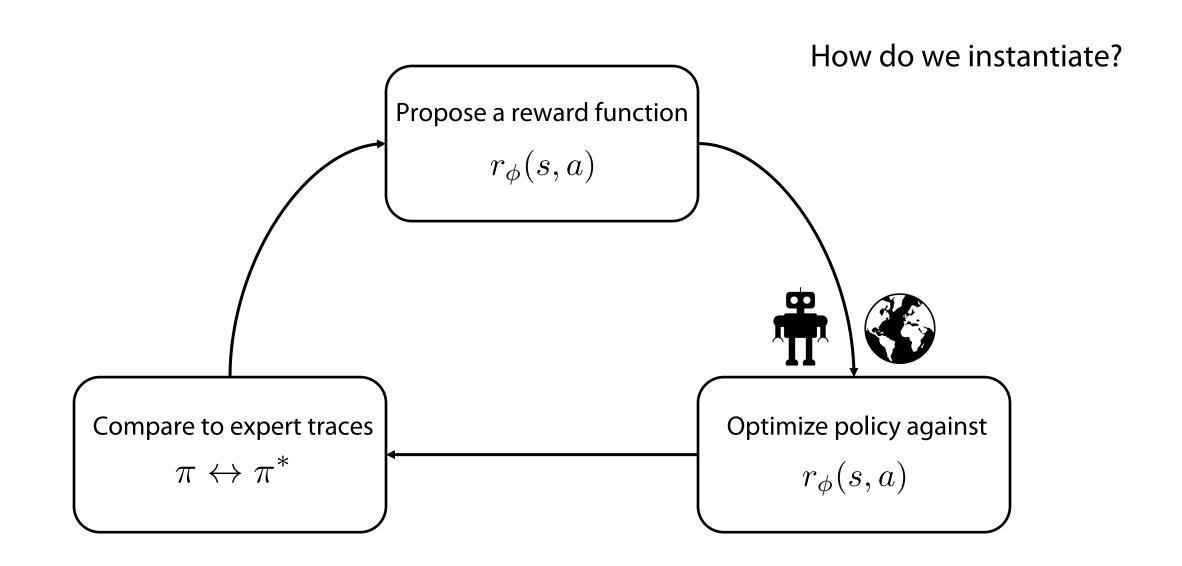
IRLv1 – max margin planning

IRLv2 – max entropy IRL

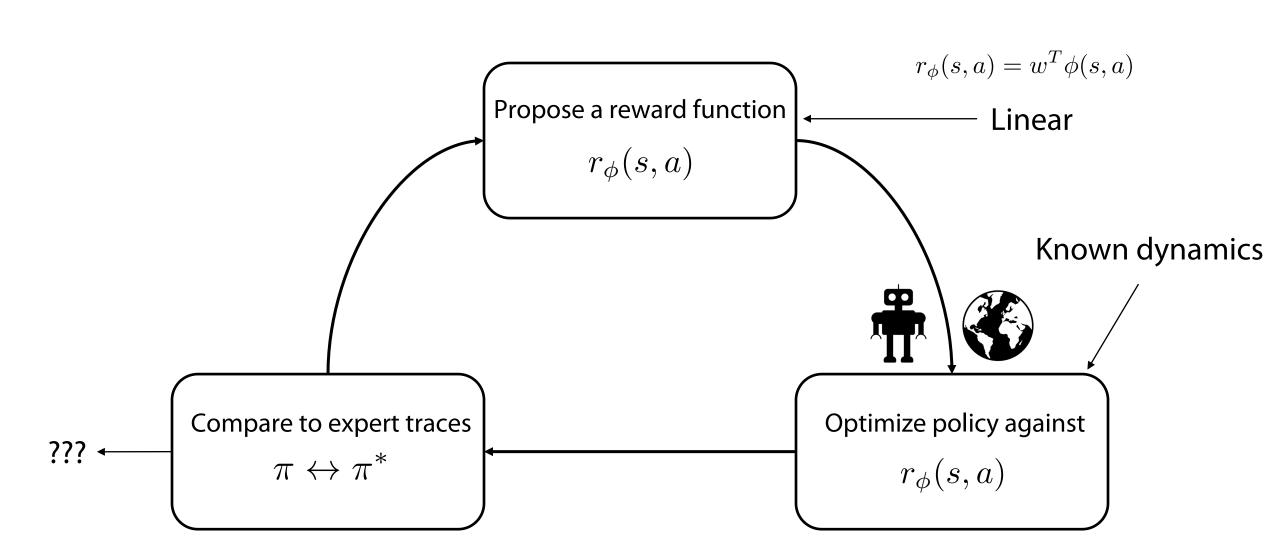
IRLv3 – partial policy optimization

IRLv4 – adversarial IRL

A Formula for Inverse Reinforcement Learning



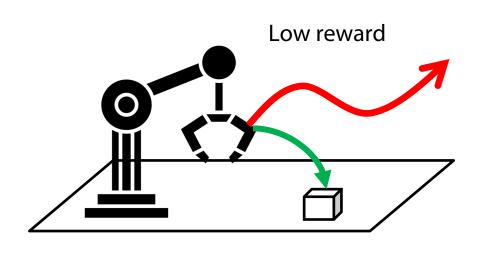
IRL v0 – Assumptions



IRL v0 – What is a good reward function?

A good reward would evaluate optimal data higher than all other data

$$V_r^{\pi^*}(s) \ge V_r^{\pi}(s) \ \forall \pi, \forall s$$



High reward

Find w* such that
$$r(s, a) = w^{*T} \phi(s, a)$$

$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t r(s_t, a_t) \right] \ge \mathbb{E}_{\pi} \left[\sum_{t} \gamma^t r(s_t, a_t) \right], \quad \forall \pi$$

$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t w^{*T} \phi(s_t, a_t) \right] \ge \mathbb{E}_{\pi} \left[\sum_{t} \gamma^t w^{*T} \phi(s_t, a_t) \right], \quad \forall \pi$$

$$w^{*T} \mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \phi(s_t, a_t) \right] \ge w^{*T} \mathbb{E}_{\pi} \left[\sum_{t} \gamma^t \phi(s_t, a_t) \right], \quad \forall \pi$$

Underdefined, $w^* = 0$ trivially satisfies!

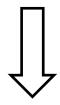
 $\mu(\pi,\phi)$

 $\mu(\pi^*,\phi)$

IRL v0 – What is a good reward function?

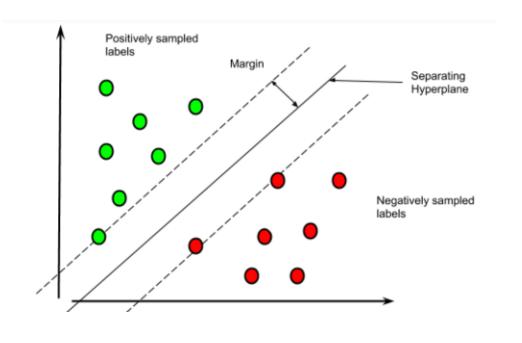
How do we tackle ambiguity?

$$w^{*T} \mathbb{E}_{\pi^*} \left[\phi(s, a) \right] \ge w^{*T} \mathbb{E}_{\pi^*} \left[\phi(s, a) \right] \quad \forall \pi, \forall s$$



 $\max_{w,m} m$

s.t
$$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + m, \forall \pi \in \Pi$$



Find rewards which maximize the gap between the expert and all other policies

IRL v1 – Max Margin Feature Matching

Choose w such that "margin" is maximized

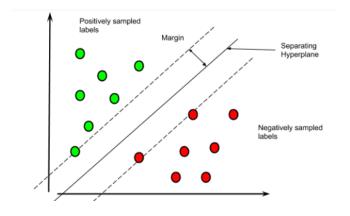
 $\max m$

s.t
$$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + m, \forall \pi \in \Pi$$

Looks a lot like an SVM!

$$\min \|w\|_2$$

s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + 1, \forall \pi \in \Pi$



What might the issues be \rightarrow

- 1. Uniform gap across all π , π^*
- 2. Noisily optimal may compromise the optimization

IRL v1 – (Fancy) Max Margin Feature Matching

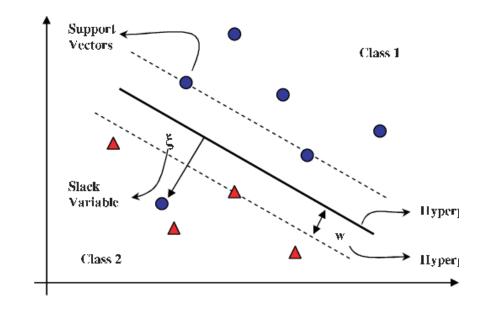
Maximum margin → Structured Max-Margin + Slack

$$\min \|w\|_2$$

s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + 1, \forall \pi \in \Pi$

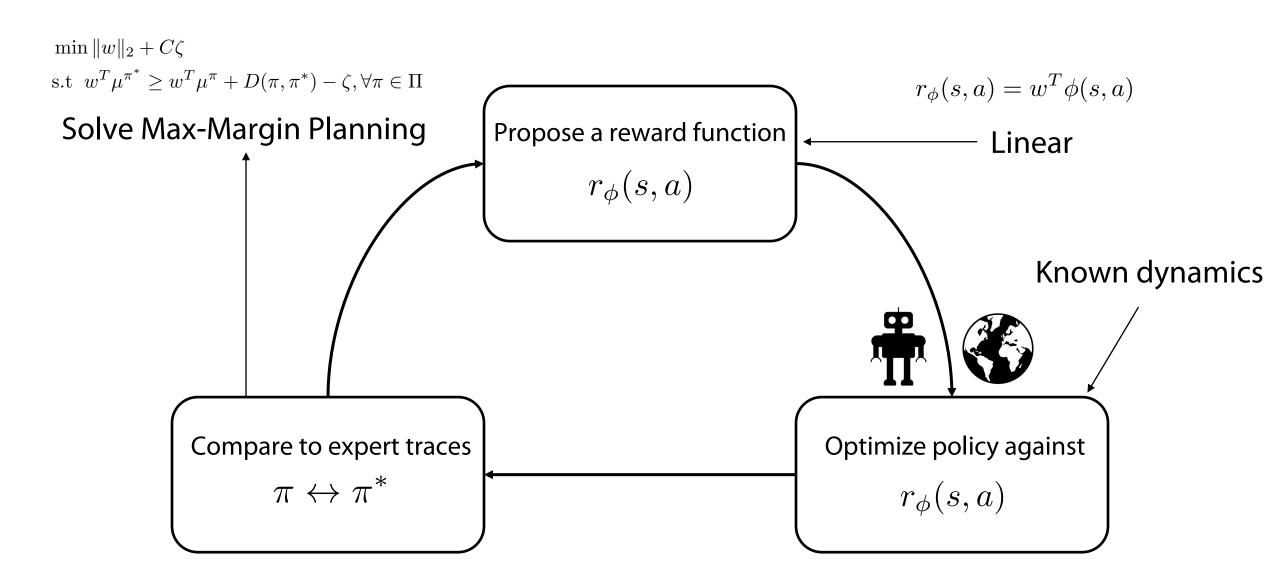
Bigger for more different policies

$$\min \|w\|_2 + C\zeta \qquad \downarrow$$
s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \Pi$



Slack allows for noisy optimality

IRL v1 – Max Margin Feature Matching



IRL v1 – Max Margin Feature Matching

- 1. Start with a random policy π_0
- 2. Find the w that optimizes

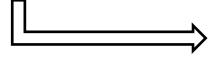
$$\min_{w,\zeta} \|w\|_2 + C\zeta$$

s.t
$$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \{\pi_0, \pi_1, \dots, \pi_i\}$$

3. Solve for the optimal policy against $r_{\phi}(s, a) = w^{(i)^T} \phi(s, a)$

$$\pi_{i+1} \to \operatorname{Opt}(r_{\phi}(s,a),T)$$

4. Add to constraint set and repeat



Output the optimal reward function w*

Max Margin Feature Matching in Action

Lecture Outline

Why Imitation? + Problem formulation IRLv1 – max margin planning IRLv2 – max entropy IRL IRLv3 – partial policy optimization IRLv4 – adversarial IRL

IRL v1 – Why this may not be enough?

min
$$||w||_2 + C\zeta$$

s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \Pi$

May not be able to deal with scenario where true margin is quite small for some policies

Not clear if this is a good way to deal with suboptimality

Constrained optimization is tough to optimize for non-linear functions

What if we had a "softer" notion of margin?

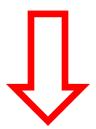
We have talked about "soft" optimality before!

We derived max-ent RL as maximum likelihood on optimality (lower bound) wrt policy

$$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$$

Control as inference

$$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t|a_t)}} \left[\sum_t \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t) \right]$$

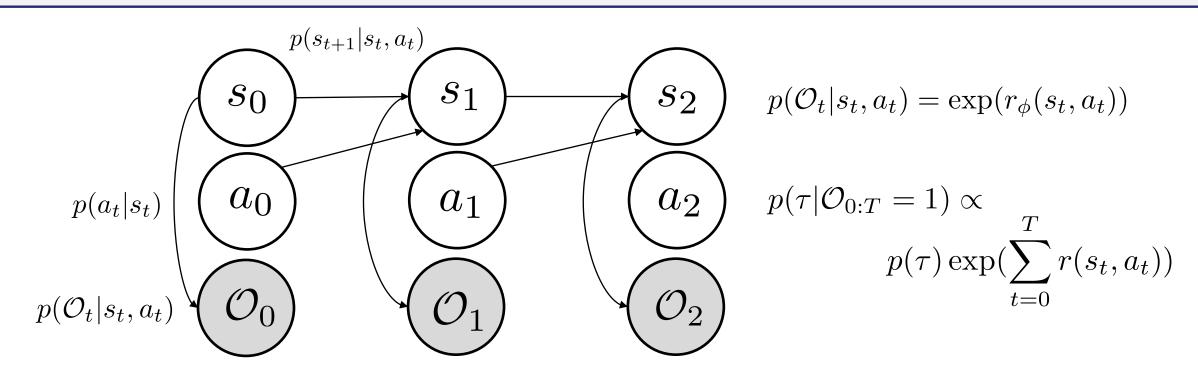


Li & Todorov '06

Ziebart '08

Can we invert this to do inverse RL with a softer notion of margin?

Let's revisit the graphical model



$$p(\tau)$$

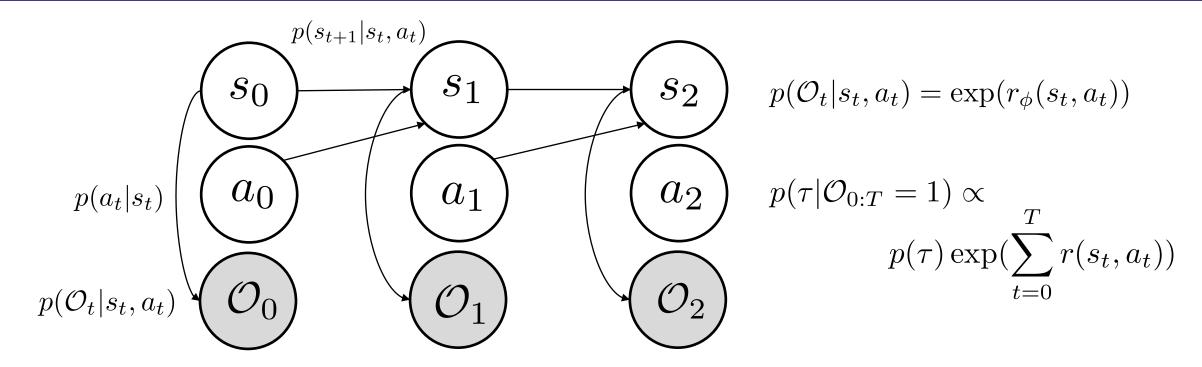
Uninformed behavior according to prior/dynamics

$$p(\tau|\mathcal{O}_{0:T}=1)$$

Soft optimal behavior conditioned on optimality

We were trying to find $p(a_t|s_t,\mathcal{O}_{t:T}=1)$ given reward

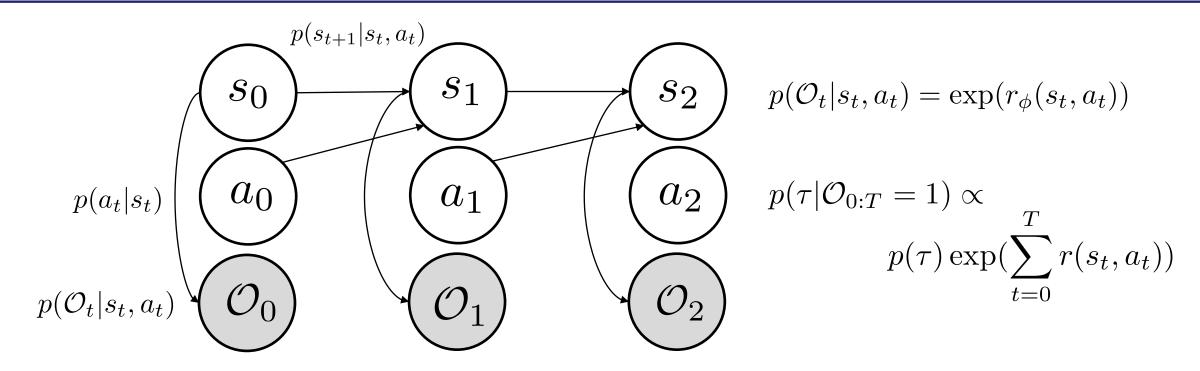
IRLv2 – Maximum Entropy Inverse RL



Now we are given (s, a) from optimal, we need to find the reward function that best explains the data

 \rightarrow Maximum likelihood estimation! (Find r, that maximizes the likelihood of (s, a) being produced on observed optimality

Inverse RL in CAI graphical model



 \rightarrow Maximum likelihood estimation! (Find r, that maximizes the likelihood of (s, a) being produced on observed optimality

$$\max_{\sigma}\mathbb{E}_{ au\sim\mathcal{D}^*}\left[\log p(au|\mathcal{O}_{0:T}=1)
ight]$$
 (Find optimality CPD that best explains observed data)

Maximum likelihood optimality estimation

$$p(\tau|\mathcal{O}_{0:T}=1) \propto p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t))$$

Independent of reward

$$= \frac{\exp(\sum_{t=0}^{T} r(s_t, a_t))}{\int \int p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t)) ds_{0:T} da_{0:T}}$$

Hard to estimate – partition function (Z)

$$\max_{\phi} \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log p(\tau | \mathcal{O}_{0:T} = 1) \right]$$

Difficult to compute analytically, but it's gradient has a nice form!

Maximum likelihood optimality estimation

$$p(\tau|\mathcal{O}_{0:T} = 1) = \frac{\exp(\sum_{t=0}^{T} r(s_t, a_t))}{\int \int p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t)) ds_{0:T} da_{0:T}}$$

$$\max_{\phi} \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log p(\tau | \mathcal{O}_{0:T} = 1) \right]$$

$$= \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log \left(\exp(\sum_{t=0}^T r_{\phi}(s_t, a_t)) \right) - \log Z \right]$$

$$= \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T r_{\phi}(s_t, a_t) \right] - \log Z$$

Easy to compute

Hard to compute

Let's take the gradient

$$\max_{\phi} \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log p(\tau | \mathcal{O}_{0:T} = 1) \right]$$

$$\mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T r_{\phi}(s_t, a_t) \right] - \log Z$$

$$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \nabla_{\phi} \log Z$$

$$\nabla_{\phi} \log Z = \frac{1}{Z} \nabla_{\phi} Z$$

$$Z = \int p(\tau) \exp(r(\tau)) d\tau$$

$$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \frac{1}{Z} \int p(\tau) \exp(r_{\phi}(\tau)) \nabla_{\phi} r_{\phi}(\tau) d\tau$$

Notice this is exactly the soft optimality posterior

$$p(\tau|\mathcal{O}_{0:T} = 1) \propto p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t))$$

Let's take the gradient

$$\mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T r_{\phi}(s_t, a_t) \right] - \log Z$$

$$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \frac{1}{Z} \int p(\tau) \exp(r_{\phi}(\tau)) \nabla_{\phi} r_{\phi}(\tau) d\tau$$

Notice this is exactly the soft optimality posterior

$$p(\tau|\mathcal{O}_{0:T} = 1) \propto p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t))$$

$$\nabla_{\phi}\mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \mathbb{E}_{\tau \sim p(\tau \mid \mathcal{O}_{0:T} = 1)} \left[\sum_{t=0}^T \nabla_{\phi} r_{\phi}(s_t, a_t) \right]$$
Push up gradients along experts
Push down gradients along soft optimal policy under current reward

Computable, with RL in the inner loop

IRLv2 – Maximum Entropy Inverse RL

$$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \frac{1}{Z} \int p(\tau) \exp(r_{\phi}(\tau)) \nabla_{\phi} r_{\phi}(\tau) d\tau$$

$$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \mathbb{E}_{\tau \sim p(\tau \mid \mathcal{O}_{0:T} = 1)} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right]$$

Push up gradients along experts

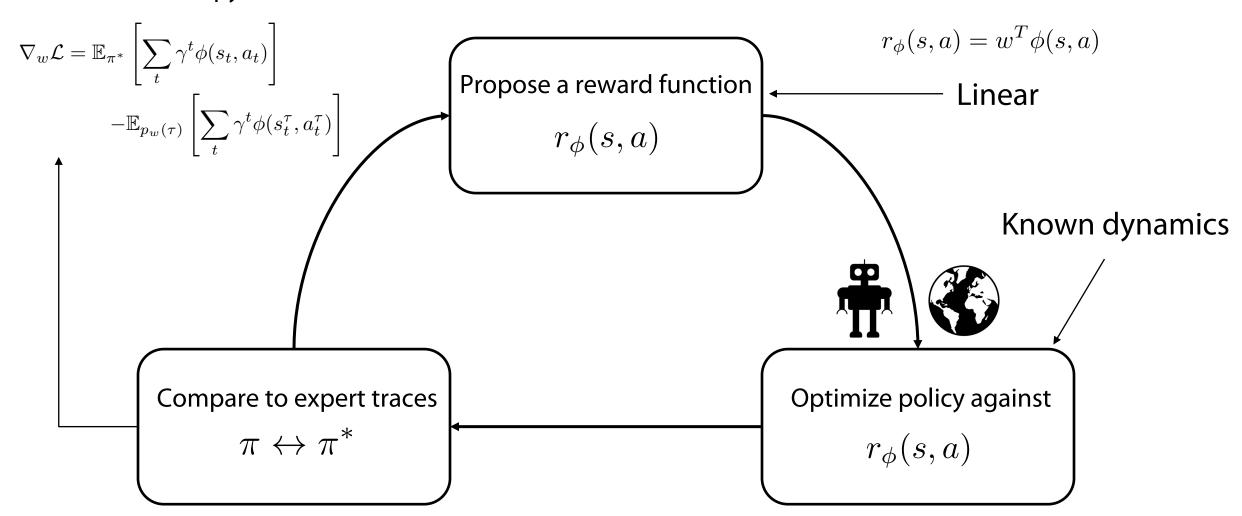
Push down gradients along soft optimal policy under current reward

Update on φ

Update π to optimal using current r_{Φ}

IRL v2 – Max-Ent IRL – Put it together

Maximum Entropy

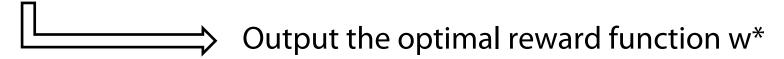


IRL v2 – Max-Entropy Inverse RL (Pseudocode)

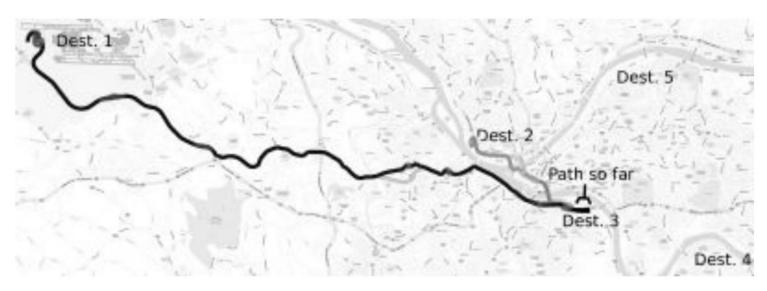
- 1. Start with a random policy π_0 and weight vector w
- → 2. Find the "soft" optimal policy under w $p_w(au)$
 - 3. Take a gradient step on w

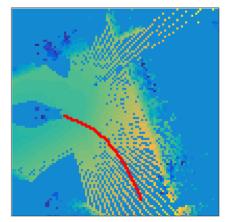
$$\nabla_w \mathcal{L} = \mathbb{E}_{\pi^*} \left[\sum_t \gamma^t \phi(s_t, a_t) \right] - \mathbb{E}_{p_w(\tau)} \left[\sum_t \gamma^t \phi(s_t^{\tau}, a_t^{\tau}) \right]$$

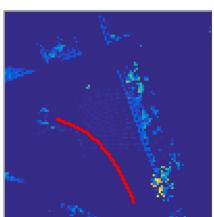
4. Repeat

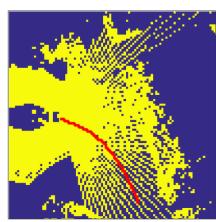


Max-Ent IRL in Action





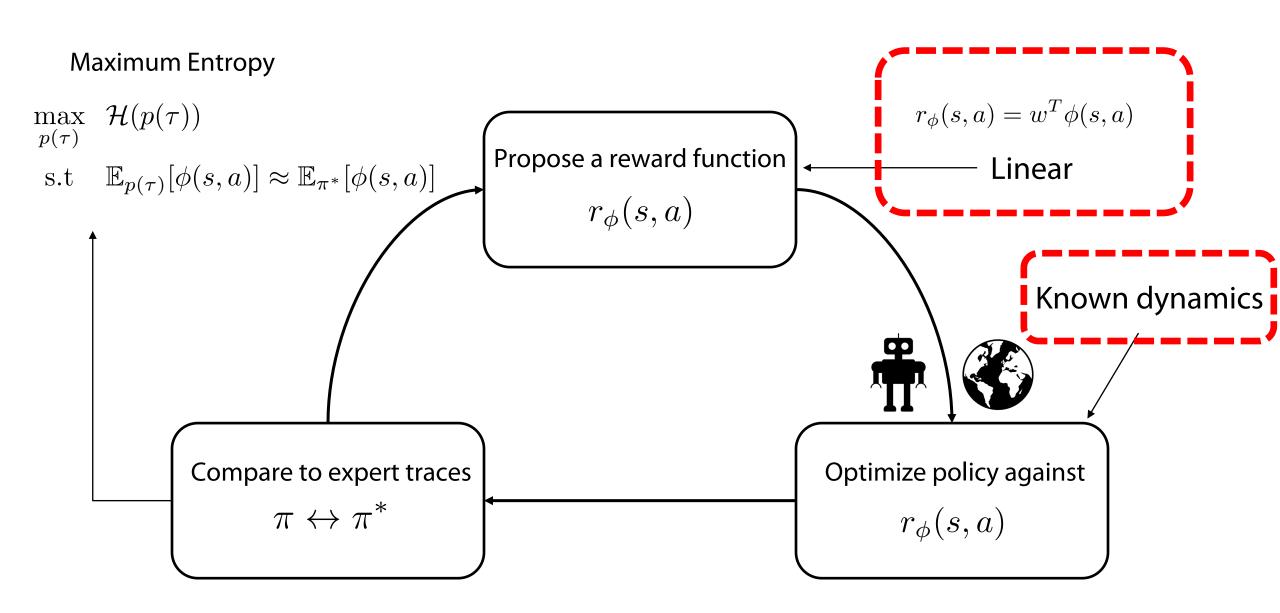




Lecture Outline

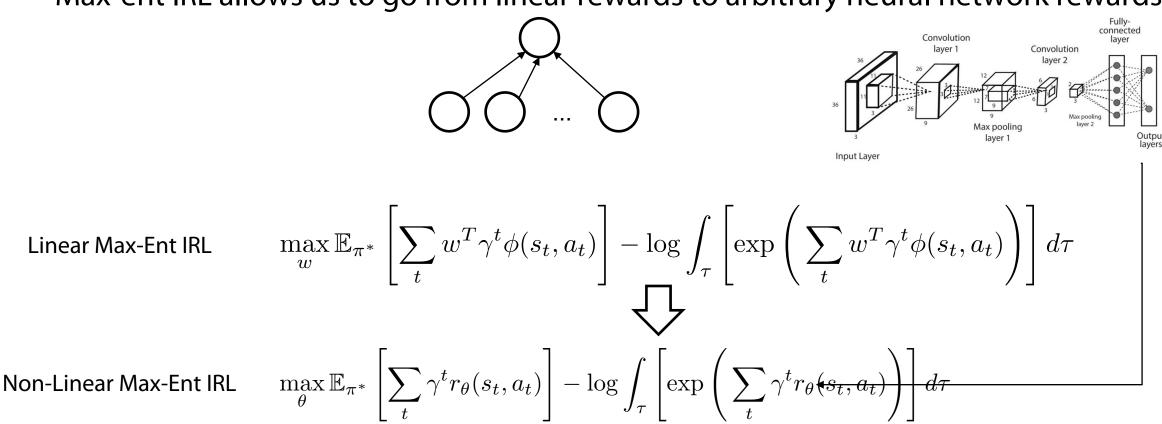
```
Why Imitation? + Problem formulation
IRLv1 – max margin planning
IRLv2 - max entropy IRL
IRLv3 – partial policy optimization
IRLv4 – adversarial IRL
```

Ok but no way this could work?



Linear Rewards -> Neural Net Rewards

Max-ent IRL allows us to go from linear rewards to arbitrary neural network rewards



Can simply replace, w with arbitrary θ and use autodiff!

Avoiding Complete Policy Optimization

Optimize policy against $r_{\phi}(s,a)$

$$r_{\phi}(s,a)$$

Assumes dynamics are known so we can just do (fast) planning

What happens when dynamics are unknown!

$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] \qquad \qquad \text{What if we only } \underline{\text{improved}} \text{ the policy a little bit} \\ -\mathbb{E}_{p_w(\underline{\tau})} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] \qquad \qquad \qquad \text{Biased!}$$

Requires complete "soft" policy optimization

Avoiding Complete Policy Optimization

Importance sampling to the rescue!

$$\mathbb{E}_{p(x)}\left[f(x)\right] = \mathbb{E}_{q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$
$$-\mathbb{E}_{p_w(\tau)} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

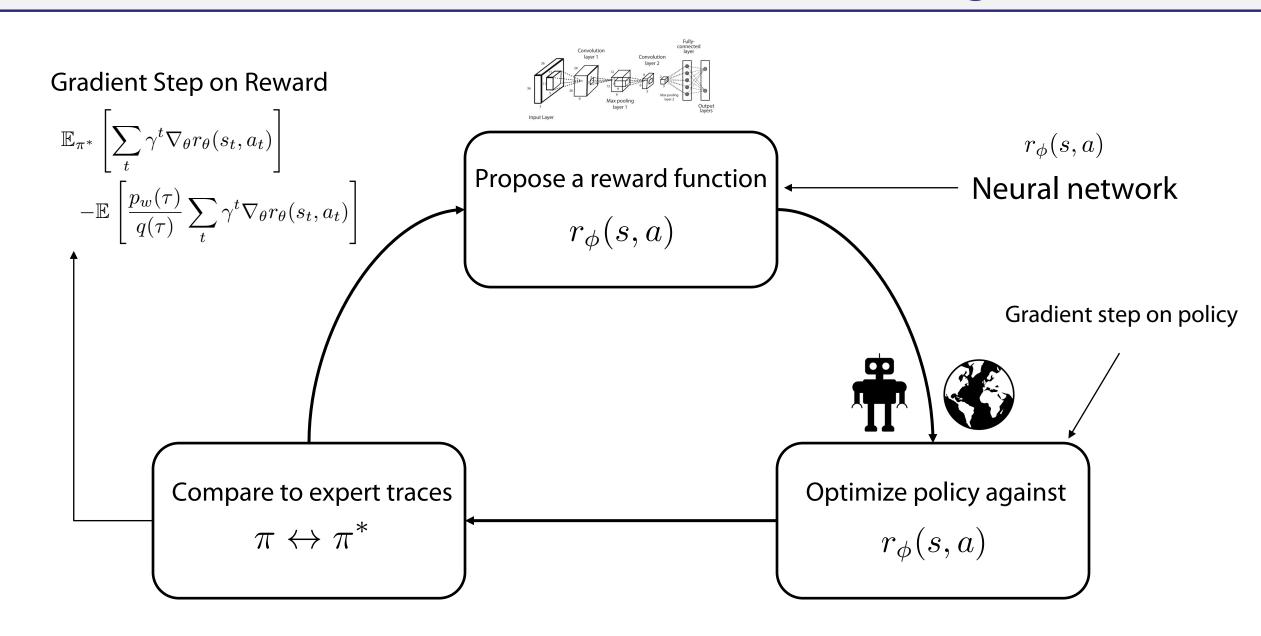
$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

$$-\mathbb{E}_{q} \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

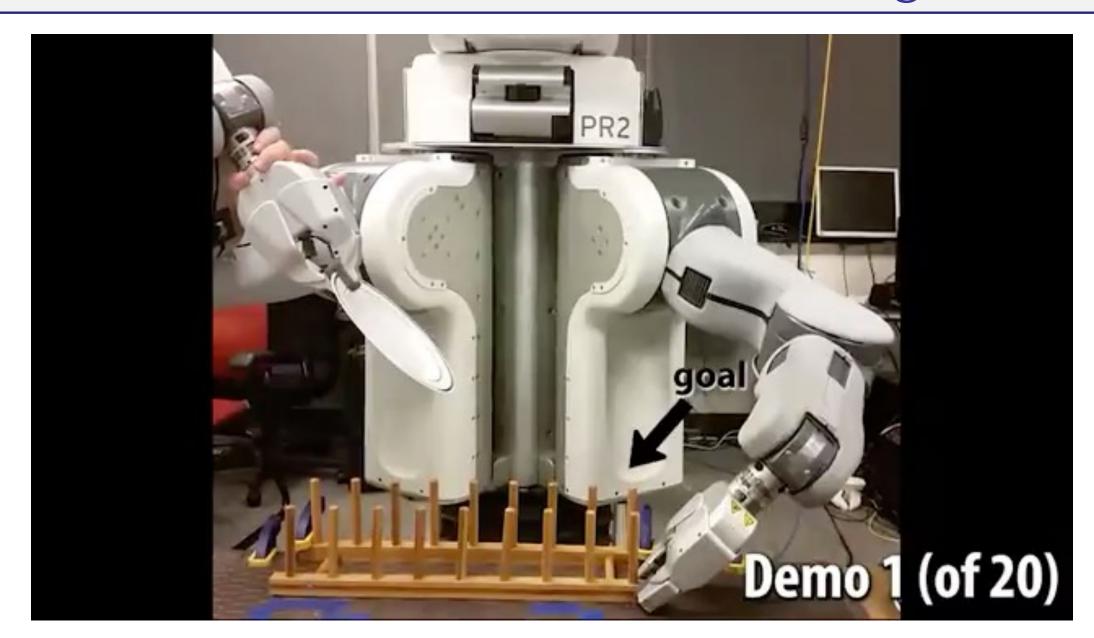
$$\xrightarrow{\exp(\sum_{t} r_{\theta}(s_t, a_t))} \frac{\exp(\sum_{t} r_{\theta}(s_t, a_t))}{\prod_{t} \pi_{\theta}(a_t | s_t)}$$

Can transfer significantly more from iteration to iteration rather than doing full nested optimization

IRLv4 – Guided Cost Learning



IRLv4 – Guided Cost Learning

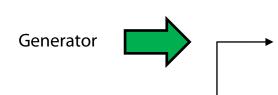


Lecture Outline

```
Why Imitation? + Problem formulation
IRLv1 – max margin planning
IRLv2 – max entropy IRL
IRLv3 – partial policy optimization
 IRLv4 – adversarial IRL
```

Connecting Maximum-Entropy RL to GANs

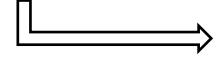
Looks like a game



- 1. Start with a random policy π_0 and weight vector w
- ightarrow 2. Take a step on "soft" optimal policy under w $p_w(au)$
 - 3. Take a gradient step on w

$$\nabla_{\theta} \mathcal{L} = \mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] - \mathbb{E}_q \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

4. Repeat



Output the optimal reward function w*

Recasting GAIL as an IRL method

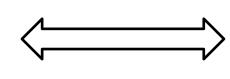
For a particular parameterization of the discriminator, GAIL recovers a reward

Max-Ent Inverse RL

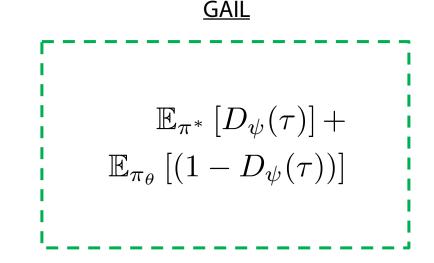
$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

$$-\mathbb{E}_q \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

Push up demos, push down policy



With some massaging



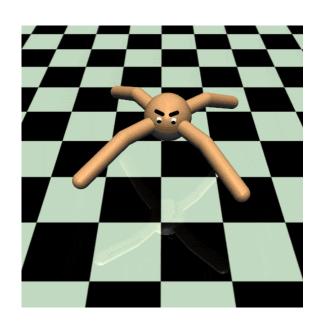
Push up real data, push down generated

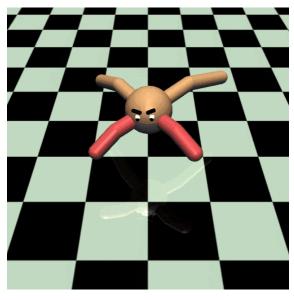
$$D_{\theta}(\tau) = \frac{\frac{1}{Z} \exp(r_{\theta}(\tau))}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + \Pi_{t} \pi_{\theta}(a_{t}|s_{t})}$$

GAIL (which is just a GAN), recovers Max-Ent IRL

In practice, often use GAIL and just log D as reward

Adversarial IRL in Action





Lecture Outline

```
Why Imitation? + Problem formulation
IRLv1 – max margin planning
IRLv2 – max entropy IRL
IRLv3 – partial policy optimization
IRLv4 – adversarial IRL
```

Class Structure

