Reinforcement Learning
Spring 2024

Abhishek Gupta
TAs: Patrick Yin, Qiuyu Chen

Preferred route Longer route

!\

Ope‘n gate

R N e

Class Structure

14

/—[Imitation Learning]\
(

4 Model-free Reinforcement Learning

Policy Gradient

ADP

Model-based Reinforcement Learning

J _

<

Unifying Perspectives on RL and IRL]/

Exploration

Frontiers

Inverse Reinforcement Learning Learning across tasks

Using Probabilistic Graphical Models for Decision Making

p(O¢|s¢,a:) = exp(r(sg, at))

Rewards must be negative
(subtract max reward WLOG)

Introduce binary “optimality” variables — optimal if O=1, suboptimal if O=0

Agents are observed to be optimal

Variational Inference +5GD gives us Policy Gradient

Find approximate posterior q(z|x) by
optimizing the ELBO

man Ea:wp(x) [Ezwq(zh:) [logp(zc]z)] T DKL (q(z\x)Hp(Z)ﬂ

=
I
=

so~p(so) Z’r(staat) +H(Q(|St))

ar~q(at|st) ¢
St+1NP(St+1 \St,at)

so~p(so) [ZlOgP(Ot’St,at) — log Q(atfst)]
t

CLtNCI(at |3t)
St+1~p(St+1]st,at)

Maximize ELBO with SGD = policy gradient!

Variational Inference + DP gives us Q learning

Find approximate posterior q(z|x) by optimizing the ELBO using dynamic programming

B somp(so) [Zlogp(@\st;at) —logQ(at\St)] = B snptn [ZT(Sta at) + H(Q('St))]
at~q(at|st) n ar~q(at|st) t
3t+1Np(5t+1|Staat) St_|_1fvp(8t+1|8t,at)

Can derive a “soft” dynamic programming Q-learning update

— Fort=T-1to1:

Qt(St, CLt) — ’I“(St, a{;) + E3t+1NP(St+1 |5¢,a4) [‘/t—l—l (St_|_1)] (Bellman update)

Vi(ss) = 1Og/eXp(Q(St,at))dat (Soft-max)

q(at|s:) = exp(Qe(se, ar) — Vi(st)) (Soft-max)

Max Likelihood + Sampling gives us MPPJ

51
(%) | (a5
(@) o) (o

Step 1: Learn model via min KL (supervised learning)

Approximate model

mpAa’X Ep(SO ST A0y aT,O() OT) []‘Ogﬁ(SO) + Z []'Ogﬁ<8t+1 ‘St7 a’t) _|_ logﬁ(Ot‘St, at)]]
t

Step 2: Obtain posterior actions via Monte-Carlo approximation (approx MPPI)

SONﬁ(So) [eXp [Z T(St7 a’t)]
ar~p(at|st)

t

- x E

St41~P(St+1]|8t,a+

L ecture Outline

Why Imitation? + Problem formulation

l

IRLv1 — max margin planning

l

IRLv2 — max entropy IRL

|

IRLv3 — partial policy optimization

|

IRLv4 — adversarial IRL

Let’s revisit the premise of reinforcement learning

¥

:[Agent}
state| |reward action We studied a bunch of different
S R, A, algorithms to solve this
E Rt+l 4
- :
< Environment

Model-based RL Policy gradients

Actor-critic

E [Zr@t,at) + H(q<.|st)>] But they all operate under the same assumption:

reward is known!

so~p(so)
atNQ(Gt |8t)
St+1 Np(8t+1 \St ,at)

Reinforcement Learning requires Task Specification

state reward action

Manual state estimation/perception
:[Agent
-

. | Environment
\ Complex reward specification

v Name Reward | Heroes | Description
Win 5 Team
. . . Hero Death -1 Solo
Does not magically appear in most settings Cogirbutn | 2| T
XP Gained 0.002 Solo
Gold Gained 0.006 Solo | For each unit of gold gained. Reward is not lost
when the gold is spent or lost.
Gold Spent 0.0006 Solo | Per unit of gold spent on items without using
courier.
Health Changed 2 Solo | Measured as a fraction of hero’s max health.
Mana Changed 0.75 Solo | Measured as a fraction of hero’s max mana.
Killed Hero -0.6 Solo | For killing an enemy hero. The gold and expe-

rience reward is very high, so this reduces the
total reward for killing enemies.

Last Hit -0.16 Solo | The gold and experience reward is very high, so
this reduces the total reward for last hit to ~ 0.4.

. ° Deny 0.15 Solo

Has to be manually specified e (=
u y p Ancient HP Change 5 Team | Measured as a fraction of ancient’s max health.

Megas Unlocked 4 Team

T1 Tower™ 2.25 Team

T2 Tower" 3 Team

T3 Tower™ 4.5 Team

T4 Tower” 2.25 Team

Shrine” 2.25 Team

Barracks” 6 Team

9 Ca n We d O b ett e r? Lane Assign' -0.15 | Solo | Per second in wrong lane.

* For buildings, two-thirds of the reward is earned linearly as the building loses health, and
one-third is earned as a lump sum when it dies.

1 See item 0.2.

 Hero’s health is quartically interpolated between 0 (dead) and 1 (full health); health at
fraction @ of full health is worth (z + 1 — (1 —z)*) /2. This function was not tuned; it was
set once and then untouched for the duration of the project.

Table 6: Shaped Reward Weights

Learning from Demonstrations

Avoid manual reward specification by learning from demos of optimal behavior

- > " Agent ———
o A state reward action
1 1 \
D = {807a07317a17'"9ST7aT}7j:1 S’ R’ Ar
1 i Rt+1 (
Demos of expert behavior = S i
— U < l Environment]<
4)
Infer rewards from demonstrations of
Inverse Reinforcement optimal behavior
Leammg -> Optimal behavior optimizes some
_) reward via RL, so the RL process must be

"inverted” to find the reward

But haven't we already learned from demonstrations?

Imitation learning via Behavior Cloning (L2)

arg max E (s« a*)~p log mo(a™|s™)] Main difference between BC and IRL:

— froining tr 1. BClearns policies, IRL learns rewards
2. BC assumes no environment access, IRL
typically assumes either known model or
sampling access

Why does this matter?

Zooming out — why do we care about imitation?

Imitation learning is all about generalization

Generalization across states Generalization across dynamics

,.
e

([
’I
© \ O 4

[

Covariate shift is just a manifestation of generalization

What if learning something else generalized better than policies?

Cross-Embodiment/Dynamics Transtfer

Rewards may allow for cross dynamics transfer

o

o gl
) 4

” S

Can all share the same reward, even with different dynamics!

4

Policies and Q/V functions entangle dynamics, rewards do not

Addressing Compounding Error

Reward can avoid covariate shift issues with forward KL

Imitation Learning via BC Reinforcement Learning with Inferred Reward
- _
L t=0 _
Sampling from expert Sampling from policy

Dx1,(p™||ps) What we care about >»Dxr(pol|lp™)

Learning Rewards from Human Data

4)

Imitation Learning | 7T

\ J
-
- - -
:{Agent)ﬁ
-
reward - -
-
K, ” -
i

| R,
- ,
L S l Environment]4

Is this even a well-defined problem?

-
-
-

action
A

-

Inverse RL

\

maX Erer, [

t=0

Mﬂ -
-

Reward

Staat]

How can we learn rewards?

We must make more assumptions on the expert provided data

4)
T

maxETNm [Zr St, Q)
t=0

g J

Din(r || 77) <e Og

Experts are assumed to be “noisily” optimal

Why is this “inverse” reinforcement learning?

’_l Agent l
state | |reward action
S, | IR A

E Rt+1 (

& :

<] Environment }47
\

RL: Rewards generate trajectories |IRL: Expert trajectories generate rewards

G G
G G

Is this well defined?

IRL problem statement + assumptions

Reinforcement Learning

State: Known
Action: Known

Transition Dynamics: Unknown but can sample

Reward: Known

Expert policy: Unknown
Expert traces: Unknown

Inverse Reinforcement Learning

State: Known

Action: Known

Transition Dynamics: Unknown but can sample
Reward: Unknown

Expert policy: Unknown

Expert traces: Known

Find r that explains the demonstrator behavior as noisily optimal

&.

Inverse RL

Reward
ro(s,a)

4)

Reinforcement Policy

-

Learning W(G‘S)
\ J

New dynamics/state

Inverse RL Applications

Velodyne laser Applanix INS
Riegl laser SICK LMS laser

:-.».H-*ﬂ u kb

g odbdd T U Wi
aBm::i
&+

Bosch Radar

DMI)
IBEO laser SICK LDRS laser

Inverse RL Applications

Why is this hard?

Find r that explains the demonstrator behavior as noisily optimal

‘fm.

Challenging for a variety of reasons:

r ~N 1. Inherently underspecified
2. Rand m both unknown
R, @ Inverse RL 3. Difficult optimization with T unknown.
L G y 4. Distributions/comparison metrics unknown

Reward Function
ro(s,a)

Can be parameterized by arbitrary function approximator

L ecture Outline

Why Imitation? + Problem formulation

l

IRLv1 — max margin planning

l

IRLv2 — max entropy IRL

|

IRLv3 — partial policy optimization

|

IRLv4 — adversarial IRL

A Formula for Inverse Reinforcement Learning

How do we instantiate?

4)
Propose a reward function
re(s,a)
- J
4) 4)
Compare to expert traces Optimize policy against
T re(s,a)

- J - J

IRL vO — Assumptions

4 ™ re(s,a) = w' ¢(s, a)
Propose a reward function | Linear
re(s,a)
_ J

Known dynamics

— L B

Compare to expert traces Optimize policy against
T T r¢(37 a)
- / - /

777 ——

IRL vO — What is a good reward function?

A good reward would evaluate optimal data higher than all other data

V™ (s) > V7™ (s) Vr,Vs

Low reward

a

High reward

Find

E,-

E,-

T
w* " E -

Z ’Vt/r(stv at)
t

Z ’ytw*Tgb(Sta at) Z ET(‘
t i

w* such that (s, a) = w** ¢(s, a)
thr(st, at)] , Vm
'

Z ’th*Tqb(Stv at)]) v
t

> Ky

Z /Vt(b(sh G,t) Z w*TEW
t i

Z Vt(b(sta at)]) v
t

pw(m*, @) pu(m, @)

Underdefined, w* = 0 trivially satisfies!

IRL vO — What is a good reward function?

How do we tackle ambiguity?

W Ere [6(s,0)] > w Exe [6(s,a)] ¥, Vs

4

st wiy™ >wly™ +m,Vrell

max m
w,m

A

Positively sampled
labels

Separating
Hyperplane

Negatively sampled
labels

|

Find rewards which maximize the gap between the expert and all other policies

IRL v1 — Max Margin Feature Matching

Choose w such that “margin” is maximized

maxim

st wly™ >wly™ +m,Vr ell

Looks a lot like an SVM! ﬂ

min [|uw];

s.t ’wTu”* > wl ™ +1,¥r e 11

What might the issues be =
1. Uniform gap across all i, m*
2. Noisily optimal may compromise the optimization

IRL v1 = (Fancy) Max Margin Feature Matching

Maximum margin > Structured Max-Margin + Slack

min ||w||2

st wly™ >wly™+1,Vr ell

Bigger for more different policies
min |||z + C¢ |
st wly™ >wly™ + D(m, 7)) — ¢, Vr eIl

Slack allows for noisy optimality

IRL v1 — Max Margin Feature Matching

min [|w||2 + C¢

st wly™ >wly™ + D(r,n*) — ¢, Vr el

Solve Max-Margin Planning

-

_

\

Com pare to expert traces

T Tt

s ~N
Propose a reward function |
re(s,a)
_ Y

re(s,a) = w! ¢ (s, a)

Linear

Known dynamics

B

Optimize policy against

J

re(s,a)

- J

IRL v1 — Max Margin Feature Matching

1. Start with a random policy m,
— 2. Find the w that optimizes

mi?Hsz + C(¢
st wl ™ >wly™ + D(m,7*) = (,Vm € {mg,71,...,7;}

3. Solve for the optimal policy against 7(s,a) = w®" ¢(s, a)
Ti+1 — Opt(re(s,a),T)

—— 4. Add to constraint set and repeat

ﬂ > Output the optimal reward function w*

Max Margin Feature Matching in Action

L ecture Outline

Why Imitation? + Problem formulation

l

IRLv1 - max margin planning

l

IRLv2 — max entropy IRL

|

IRLv3 — partial policy optimization

|

IRLv4 — adversarial IRL

IRL v1 — Why this may not be

enough?

min ||wl|o + C¢

st wly™ >wl'y™ + D(n,n*) — (,¥r el

May not be able to deal with scenario where
true margin is quite small for some policies

Not clear if this is a good way
to deal with suboptimality

Constrained optimization is tough to optimize
for non-linear functions

What if we had a "softer” notion of margin?

We have talked about “soft” optimality before!

We derived max-ent RL as maximum likelihood on optimality (lower bound) wrt policy

m?XEpr(x) [EZNq(z|x) logp(z|z)] — DKL(Q(ZM)HP(Z))}

Control as inference
E s0~p(s0) Zlogp((')tfst, at) — log g(a|st)
t

atNCI(at |3t)
St+1 NP(St+1 |St ,at)

< 2 Nz 2
Li & Todorov ‘06 Ziebart ‘08

Can we invert this to do inverse RL with a softer notion of margin?

Let's revisit the graphical model

p(8t+1 |3t> at)

S0 /8—1\ ~
plat|st) @ @ @ p(7|Op:r =1) -
p(7) exp(z r(se, at))
)

t=0

p(T) p(T|OO:T —)
Uninformed behavior according to :> Soft optimal behavior conditioned on
prior/dynamics optimality

We were trying to find p(at ‘St, Ot:T — 1) given reward

IRLV2 — Maximum Entropy Inverse RL

p(3t+1 |3t7 at)

S0 /5—1\ > P(O¢lst, ar) = exp(rg(se, ar))
p(ag|st) @ (7|0 = 1) -
p(7) exp(z r(se, at))
@ @ @

Now we are given (s, a) from optimal, we need to find the reward function that best
explains the data

- Maximum likelihood estimation!
(Find r, that maximizes the likelihood of (s, a) being produced on observed optimality

Inverse RL in CAl graphical model

p(8t+1 |3t> at)

S0 /5—1\ > P(O¢lst, ar) = exp(rg(se, ar))
p(ag|st) @ (7|0 = 1) -
p(7) exp(z r(se, at))
@ @ @

- Maximum likelihood estimation!
(Find r, that maximizes the likelihood of (s, a) being produced on observed optimality

max]E’TND* [log p(7'| OO:T — 1)] (Find optimality CPD that best explains observed data)
¢

Maximum likelihood optimality estimation

p(7|O0.r = 1) %) exp() (s, ar))

t=0

Independent of reward

ffp T) EXP Zt () (Staa't))dSO:TdaO:T

Hard to estimate — partition function (Z)

4

max E:p+ [log p(T|Op.7 = 1)

Difficult to compute analytically, but it's gradient has a nice form!

Maximum likelihood optimality estimation

exp(Py—q (51, ar))
ffp T)eXpP Zt o T(8t,a¢))dso.rdao.T

p(7|Oo.r =1) =

maXETND [logp(ﬂ@o T = 1)]

@ _
—E,.p- |log (exp Zr¢ st,at))> —log Z

t=0

- _
=K, p= Z "“qs(Sta at)| —log Z
| t=0 _

Easy to compute Hard to compute

Let’s take the gradient

mq?XIETND* log p(7|OQp.7 = 1)]

T
L(9) =Ermn- [Z ro(se at>] ~log 7
t=0

T

Z Vre(se, ar)

t=0

V¢£(¢) = ETND* — V¢ log Z

Vglog Z = %ngZ z = /P(T) exp(r(7))dr

Vo L(p) =E;p- [Z V¢r¢(8t,at)] % p(7) exp(ry(7))WV ore(T)dT

t=0

Notice this is exactly the soft optimality posterior
T
(7|01 = 1) oc p(7) exp(D r(st,at))
t=0

Let’s take the gradient

T

L(¢) =E,p= [Z r¢(st,at)] —logZ

t=0

1

>~ Vars(sia)| = [p)explro(m)Vare(rdr

t=0

v¢£(¢) — ETND*

Notice this is exactly the soft optimality posterior
T

p(7|Oo.r = 1) o< p(1) exp(}_ 7(st,at))

t=0

T
Z Vre(se,ar)

t=0

V¢£(Q§) — ETND* —]E’TNp(TIO();T:l)

Z Vs (st, at)]

t=0

Push up gradients along experts Push down gradients along soft optimal
policy under current reward

Computable, with RL in the inner loop

IRLV2 — Maximum Entropy Inverse RL

-5 [PO expra(r) Vars(ridr

T
Vs L(¢p) =Erp= [Z Vgre(se, ar)

t=0

T
Z Vore(st, at)

t=0

V¢£(¢) —]ETND*

Z Vs7e (5t a,t)]

t=0

- ETNp(TKQo;T:l)

Push up gradients along experts Push down gradients along soft optimal
policy under current reward

Update on ¢ Update 1 to optimal using current g,

IRL v2 — Max-Ent IRL — Put it together

Maximum Entropy

> A b(st, at)]
—Ep,, (r) [Z SRCHE atT)]

Vwﬁ - Eﬂ-*

4)

Com pare to expert traces

T Tt

re(s,a) = w! ¢ (s, a)

Linear

s ~N
Propose a reward function |
re(s,a)
_ Y

Known dynamics

B

Optimize policy against

- J

re(s,a)

- J

IRL v2 —Max-Entropy Inverse RL (Pseudocode)

1. Start with a random policy myand weight vector w
—— 2. Find the “soft” optimal policy under w — P, (7)
3. Take a gradient step onw

Vol =E;-

27t¢(3t7 @t)

— Ky, 0 [Z Vt¢(3t77 GZ)]
¢

L 4. Repeat

|-| > Output the optimal reward function w*

Max-Ent IRL in Action

L ecture Outline

Why Imitation? + Problem formulation

l

IRLv1 - max margin planning

|

IRLv2 - max entropy IRL

|

IRLv3 — partial policy optimization

|

IRLv4 — adversarial IRL

Ok but no way this could work?

¢ Il Il Il BN NN N N

Maximum Entropy f \

l I

max H(p(r) -, N R OO
p\T . I
gt]E,p(,r) [¢(S’ CL)] ~ EW* [¢(S7 a)] PI’OpOSE a reward function < I\ Llnear I

[
| Known dynam|CS|

L se

Compare to expert traces Optlmlze policy agalnst
T T re(s,a)
_ Y _ Y

Linear Rewards = Neural Net Rewards

Max-ent IRL allows us to go from linear rewards to arbitrary neural network rewards

||||||

Linear Max-Ent IRL max K«
w

ZwTvtgb(St,at)] — log/T [exp (Zwaytqb(St,at))] dr
V
Zv ro(st, at] log/T [exp (Z:ytrgést,at))} dr

Non-Linear Max-Ent IRL maxE

Can simply replace, w with arbitrary 6 and use autodiff!

Avoiding Complete Policy Optimization

4)

Optimize policy against

re(s,a)
\ J

+—— Assumes dynamics are known so we can just do (fast) planning

What happens when dynamics are unknown!

E,-

ZVtVQTQ(Sta at):|
t

—Ep,(m) [Z 7' Vere(st, at)w
L .

« What if we only improved the policy a little bit

Biased!

Requires complete “soft” policy optimization

Avoiding Complete Policy Optimization

Importance sampling to the rescuel!

Epe) [F(2)] = By [@ <w>]

q()
Importance
[Z”yth“e(St, a/t):| Sampling E, - Z’)/tVQTQ(St,CLt):|
¢ > -
w (T
—E,. {Z ’YtVQTQ(St,CLt)} —E, pq((T)) Z’}/tVQT@(St,CLt):|
¢ t

exp(2_; 7o (5t a1))

Ht7Te<at|St)

Can transfer significantly more from iteration to iteration rather than doing full nested optimization

IRLv4 — Guided Cost Learning

Gradient Step on Reward

Ere | > 7'Voro(s:, at)] ~ ™ re(s,a)
t .
o) t Propose a reward function | Neural network
E Z’Y Vore(se, az)
a(r) 5 re(s,a)
- J
Gradient step on policy
4) 4)
Compare to expert traces Optimize policy against
T T r¢(37 a)

- J - J

IRLv4 — Guided Cost Learning

7z)

) THEEE ’ X
gt S == vt/ ‘Demoyi (of 20)

L ecture Outline

Why Imitation? + Problem formulation

l

IRLv1 - max margin planning

|

IRLv2 - max entropy IRL

|

IRLv3 - partial policy optimization

|

IRLv4 — adversarial IRL

Connecting Maximum-Entropy RL to GANs

Generator

Discriminator

=)

Looks like a game

1. Start with a random policy Ty and weight vector w
—— 2. Take a step on “soft” optimal policy under w — p., (7)
3. Take a gradient step on w

V@E —]Eﬂ-*

Z ’}/tVQ’rg(St, CLt) — Eq
t

p;“(g) Et: Y'Vore(st, at)

L 4. Repeat

|-| > Output the optimal reward function w*

Recasting GAIL as an IRL method

For a particular parameterization of the discriminator, GAIL recovers a reward

Max-Ent Inverse RL AlL

pw(T) /
N ZV VW(S“‘“)] With some massaging

. ;’ytVQTQ(St,CLt)] i < > i K [Dw (7)] +

Push up demos, push down policy Push up real data, push down generated

DQ(T) —

2 exp(rg(7))
% exp(rg(7)) + imo(at|st)

GAIL (which is just a GAN), recovers Max-Ent IRL

In practice, often use GAIL and just log D as reward

1ON

iNn Act

ial IRL

Adversar

L ecture Outline

Why Imitation? + Problem formulation

l

IRLv1 - max margin planning

|

IRLv2 - max entropy IRL

|

IRLv3 - partial policy optimization

|

IRLv4 - adversarial IRL

Class Structure

14

/—[Imitation Learning]\
/

4 Model-free Reinforcement Learning

Policy Gradient

ADP

Model-based Reinforcement Learning

J _

<

Unifying Perspectives on RL and IRL]/

Exploration

Frontiers

Inverse Reinforcement Learning Learning across tasks

