Reinforcement Learning
Spring 2024

Abhishek Gupta
TAs: Patrick Yin, Qiuyu Chen

Class Structure

14

/—[Imitation Learning]\
(

4 Model-free Reinforcement Learning

Policy Gradient

ADP

Model-based Reinforcement Learning

\—[Unifying Perspectives on RL and IRL]/

Explorationl

Frontiers

Learning from Prior Data Learning across tasks

Past lecture outline

Control as Inference - Formulation

Variational Inference

1

Control as Inference to Derive Policy Gradient

1

Control as Inference to Derive Q-learning

l

Control as Inference to Derive Model-Based RL

Using Probabilistic Graphical Models for Decision Making

p(O¢|s¢,a:) = exp(r(sg, at))

Rewards must be negative
(subtract max reward WLOG)

Introduce binary “optimality” variables — optimal if O=1, suboptimal if O=0

Agents are observed to be optimal

S0 what are we doing inference over?

St11|St, at)

p(
S0 /8—1\ ~
p(at|st) @ @ p(7]O0.r = 1) -
@ p(7) exp(z r(se, at))

p(ot |3t7 at)

Use case 1: Insight: Computing optimal policy = posterior inference

Derive soft RL algorithms p(at ‘Stv Or.r = 1)

“Given that you are acting optimally, what is the
likelihood of a particular action at a state”

Fvidence Lower Bound: Best Posterior

@ View 1: Find best posterior
p(z|z) = PEP() Dicr(as(]2)|p(22))

p(x)

— Dic(a(z[2)[|p(2)) = Eanqofa) llog p(a]2)] + log pla)

Y Intractable!
@ Likelihood/prior known — posterior hard to compute

Maximum likelihood Stay close to the prior

Learn a tractable posterior q(z|x) with known likelihood and sampling

Lets revisit our original inference problem in control

Optimal Policy = Posterior Inference

p(at|se, Opr = 1)
_ p(a'tv Opr = 1‘315)
p(Ot:T — 1’575)

_ f f B fp(a’tiT7 Onr = L, St:T)dSH—l;TdCLH_l:T

N f f e fp(a’t:Ta Ot:T — 1, StZT)dSt+1:Tdaft:T

ApprOXimate p(a’t‘st7 OtIT —]-) by Q(at’St, Ot:T — 1)
& K K | — D
Variational MaxX Lz~ p(x) [z~q(z|T) logp(z|z)] KL(Q(Z|CE‘)Hp(z))}

q

Inference , T Tractable techniques for >
a,: i posterior policy computation $
(007017"’7OT) (80761/0781,0/1’...78’1—’7&’1")

Computing Evidence Lower Bound

X (007017°°'7OT) Z(SO7a07817a17"'7ST7aT)

Exrvp(x),zwq(z|x) [1ng(33, Z) o log Q(Z’x)]

E so~p(50) logp(so,...,s7,a0,...,ar,0¢,...,0r)—
atNQ(at|8t)
st+1P(set1]se,ar) lOg Q(807 ag, .. .,9T, aT‘007 ce ey OT)‘

E so~p(s0) ”108;17(30) + Z logp(at|s:) + log p(st+1]st, at) + log p(Orst, at)]] —
3) ar~q(at|st) t

str1~p(se+1]se,ar)

llogp(so) + Z log g(a¢|s:) +1ogp(sit1|se, ar)] ”

Computing Evidence Lower Bound

3)

4)

)

maXEpr(:c) [Ezwq(z|x) [10gp(£|2)] o DKL(q(Z‘x)Hp(z))}

q

E so~p(so) |:|:
at~q(at|st)

St+1~p(Str1|se,at)

E

so~p(so)
atNQ(at|3t)
8t+1NP(St+1|St,CLt)

K

so~p(so)
CLtNQ(CLt |3t)
St+1 Np(8t+1 |3t ,at)

Set to uniform
log/p(s/o) T Z log p(at|s:) + log
t

p(/31+/1’5t7 CLt) + logp(ot‘sta a't)] :| R

WSQ) + Z [1085 Q<at‘5t) T logp%st, at)] :|:|

Z log p(O¢|st, at) — log g(az|st)
t

Z r(se, ar) +Hig(:|se))

t

p(O4lse, ar) = exp(r(se, ar))

Maximum entropy RL

Gradient ascent = PG!

Ok so what did we show?

Find approximate posterior q(z|x) by
optimizing the ELBO

man Ea:wp(x) [Ezwq(zh:) [logp(zc]z)] T DKL (q(z\x)Hp(Z)ﬂ

E somp(so) [ZlOgP(Ot’St,at) —logq(at]st)] = E somp(so) ZT(Stvat) + H(q(-|st))
ar~q(at|st) t at~q(at|st) t
St41~p(St+1]s¢,a1) st+1~p(St+1|8t,a1)

Maximize ELBO with SGD = policy gradient!

L ecture outline

Control as Inference to Derive Q-learning

l

Control as Inference to Derive Model-Based RL

l

Why inverse RL? + Problem formulation

l

IRLv1 — max margin planning

~ Can we derive (soft) Q-learning from the ELBO?

Find approximate posterior q(z|x) by
optimizing the ELBO

man Ea:wp(x) [Ezwq(zh:) [logp(zc]z)] T DKL (q(z\x)Hp(Z)ﬂ

ll
=

so~p(so) Z’r(staat) +H(Q(|St))

ar~q(at|st) ¢
St+1NP(St+1 \St,at)

E so~p(s0) [Zlogp((’)t!st,at) — log Q(at’é’t)]
t

CLtNCI(at |3t)
St+1~p(St+1]st,at)

Maximize ELBO with DP = Soft Q learning!

Let's optimize the last step of the ELBO

E so~p(so0) [ZT(St,CLt) +H(Q('|St))]

ar~q(at|st) /
st41~p(se+1]st,at)

Consider the last time step

max Esqu(sT) :Eaqu(aT|sT) [T(STa aT) — log Q(aT|ST)H

(log-exp)
R g-exp

sT~q(sT) :Eaqu(aT|sT) [lOg eXp(T(STv CLT)) _ 1Og Q(aT‘ST)H

= Bsrrg(sr) [EaT~q<aTsT> [logexp(T(SmaT)) —log / exp(r(st, ar))dar —IOgQ(aT\ST)] +log / exp(T(ST,aT))daT]

(Add subtract to normalize)
exp(r(st,ar))

[exp(r(sr,ar))dar

= ESTNQ(ST) [ECLTNQ(CLT|ST) llog — log q(CLTlST)]]

q(ar|sT) exp(r(st,ar))
= ESTNC](ST) [ECLTNQ(GTST) [log - exp(r(st,ar))]] - ESTNQ(ST) [_DKL(Q(GT|ST)H f eXP(T(ST, aT))daT)
exp(r(st,ar))dar

(Definition of KL divergence)

Let's optimize the last step of the ELBO

E so~p(so0) [ZT(St,CLt) +H(Q('|St))]

at~q(at|st) f
St+1Np(8t+1 |3t ,at)

Consider the last time step

max Esqu(sT) [EQTNq(aﬂsT) r(sT,ar) — log Q(aT|ST)H

exp(r(st,ar))] KL-divergence D(p, q) is always non

:]E als —D . . o« o .
sT~q(sT) [xr(a(ar|sT)l] [exp(r(sT,ar))dar negative and is minimized when p==q

~ exp(r(st,ar))
a(ar|sr) = [exp(r(st,ar))dar

Ok let's simplify

Q(st,ar) = r(st,ar) :> g(ar|st) = exp(Q(sr,ar) — V(sr))

Vi(sr) = log/exp(r(sT, ar))dar Optimal policy is proportional to exponential advantage
(soft-max)

Let's optimize the last step of the ELBO

E so~p(so) [ZT(St,CLt) +H(Q('|St))]

at~q(ac|se) t
st+1~p(St+1]st,at)

Consider the last time step

max ESTNQ(ST) [Eaqu(aTlsT) [T(ST7 a’T) o log Q(CLT‘ST)H

= - expirisr; ar)) / dded back
= Esrng(sr) [DKL(q<aT|ST)Hfexp('r(sT,aT))daT) + log exp(r(s?,aT))daT +——{added back)

Zero on optimal q Simply the value V(sy)

— ESTNQ(ST) [V(ST)] Q(OJT’ST) — eXp(Q(ST7 CLT) o V(ST))

Simply the expected value Optimal policy is proportional to exponential advantage
(soft-max)

Let's optimize the step before

E so~p(so) Zr(8t7a’t) +H(Q(‘St))

atNQ(at|3t) t
st+1~p(St41]|st,at)

Consider the second last time step

arg méiX EST—lNQ(ST—l)

ECLT—lNQ(aT—1|ST—1) [T(ST—M aT—l) - log Q(CLT_l |8T—1) + ESTNP(ST|8T—1,GT_1) [T(8T7 CLT) - log q(aT|ST)]]]

ar~q(ar|sT)

Exactly what we computed in the last step

—rarg man EST—lNQ(ST—l) EaT—qu(aT—l\ST_l) [T(STlv aT—1> — log q(aT—1|ST—1) +]ESTNP(ST|3T—17GT—1) [V(ST>]
1 T From the last slide
Let us call this Q(s.;, at.q)
Q(sr—1,ar—1) = r(s7—1,07-1) + Egpoip(srlsr_r.ar_1) [V (5T)] (Looks like Bellman!)
—argmax By, | q(sr 1) [Bar_i~glar_1]sr_1) [Q(ST_1, ar_1) —logqlar_1 IST_1)]] Looks a lot like the previous time-step
q

Let's optimize the step before

E somp(so) [Zr(st,at) +%(Q(°|8t))]

ar~q(as|st) /
st+1~p(St41]|st,at)

Consider the second last time step

arg méxx EST_l,\,q(ST_l)

EaT_qu(aT_1|ST_1) [Q(ST—17 a’T—l) T log Q(a’T_]- ’ST_]-)]]

Q(sr—1,ar—1) = r(s7—1,a7-1) + Espop(srlsr_1.ar_1) [V (5T)]

Referring back to the last time step math and pattern matching

V(sr—1) = 1Og/GXP(Q(ST—l,aT—1))daT—1 qlar—1|s7—1) = exp(Q(s7—1,ar—1) — V(s7-1))

Optimal policy is proportional to exponential advantage

—15 —-1) — —7—+Es~ss_1a_1v
Q(sr—1,ar-1) = r(s7-1,a7-1) + Esrop(srisr_i,ar_1) [V(57)] (soft-max)

L et’'s make it recursive

This suggests a recursive dynamic programming algorithm!

Q(st,ar) =7r(sr,ar)

Visr) = log/exp(r(sT,aT))daT

» Fort=T-1to1:
Qt(st? at) — T(Sta at) T E3t+1Np(8t_|_1|8t,at) [W+1(St+1)] (Bellman update)
Vi(st) = 1Og/eXp(Q(st,at))dat (Soft-max)
q(at|s:) = exp(Qe(se, ar) — Vi(st)) (Soft-max)

Very similar to the “soft” (entropy) Q-learning procedure from earlier lectures!

What does this suggest as an algorithm?

Optimize a "soft” Bellman equation

Q(st,at) < ¢ + 7E8t+1~ps [V (st41)] Qsoft(5t7 at) T 7E8t+1Nps [‘/SOft(St-l-l)]
V(st) + max Q(s¢, a) Vot (8¢) alog/ exp <;Qsoft(3t,a’)>da/
a A

1
m(alsy) < arg max Q(s¢,a) Tsoft (@]St) = exp (a(Qsoft(Sta a) — Vsoft(St))>

N _—

Go from max to “softmax” (imagine if a goes to 0, it becomes a max)

Prevents premature collapse of exploration while smoothing out optimization landscape!

Why should we ever do soft-Q learning?

Optimization benefits Transfer

Corollary 5.1. (Iteration complexity with log barrier regularization) Let 5 := (1—577)—3 + % Start-
ing from any initial 09, consider the updates (13) with A = <952 andn = 1 /Bx. Then for all
2

7r
4%

o

starting state distributions p, we have
2

320|S)?| A2
(1—n)0e

71.*
&

i *(p) — V® < >
I&lj{l{V (P —VY9(p)} <€ whenever T > .

Deals better with misspecification

Original Dynamics Perturbed Dynamics
* *
,\‘ ~
—
— —— Standard RL MaxEnt RL * goal —

Ok so what did we show?

Find approximate posterior q(z|x) by optimizing the ELBO using dynamic programming

man Emwp(a:) [Ezwq(z|m) [10gp(33|2)] _ DKL(Q(ZLCE) | |p(Z))}

B somp(so) [Zlogp(@\st;at) —logQ(at\St)] = B snptn [ZT(Sta at) + H(Q('St))]
at~q(at|st) n ar~q(at|st) t
3t+1Np(5t+1|Staat) St_|_1fvp(8t+1|8t,at)

Can derive a “soft” dynamic programming Q-learning update

— Fort=T-1to1:

Qt(St, CLt) — ’I“(St, at> + E3t+1NP(St+1 |5¢,a4) [‘/t—l—l (St_|_1)] (Bellman update)

Vi(ss) = 1Og/eXp(Q(St,at))dat (Soft-max)

q(at|s:) = exp(Qe(se, ar) — Vi(st)) (Soft-max)

L ecture outline

Control as Inference to Derive Q-learning

1

Control as Inference to Derive Model-Based RL

l

Why inverse RL? + Problem formulation

l

IRLv1 — max margin planning

Let's back up from VI to max likelihood

p(8t+1 |3t> at)

S0 /5_1\ > p(ot‘sta at) — eXP(T(Sta at))

plag)s:) @ p(7|Oo.r = 1) .
p(7) exp(z r(se, at))

@ '@ @

Let us assume we get a bunch of data of (s, a, s, r) from the true system p

We will try to learn a surrogate model p to approximate p, use it for posterior inference

Model Learning via Maximum Likelihood

n%inDKL(p(so,...,ST,CLO,...,aT,OO,...,C’)T)Hﬁ(so,...,sT,ao,...,aT,(’)O,...,(’)T)

l Definition of KLD
mﬁa’xEp(SO,...,ST,CLO,...,CLT,OO,...,OT) [lOgﬁ(So, c ey ST, AQ, ..., AT, 007 U OT)]

l Expansion of joint

mﬁaXEp(so s7,a0,..,a1,00,...,O) llogﬁ(80)+2[logﬁ(8t+1St,at)+logﬁ((9tst,at)]
t

Model learning Reward learning

Fitting p amounts to supervised learning on dynamics and rewards

Model Learning via Maximum Likelihood

Approximate model

Fitting p amounts to supervised learning on dynamics and rewards

How do we actually use this approximate model to obtain optimal actions?

Policy Extraction via Posterior Inference

Approximate model

Certainty equivalence <

Key idea: pretend that approximate
model p'is the true model

p(at|se, Opr = 1)

Just like in MFRL =
perform posterior inference

But pretend that the model were true

Ok so how we do perform this inference?

ﬁ(@t‘sta Oy = 1)

d

A %/’

3
N\

@él}% M

Model-based policy optimization methods (Dyna ++) MPPI-style planning methods

Idea 1: Variational inferenceinp Idea 2: Use Monte-Carlo Sampling for Inference

Fquivalence between posterior inference and MPPI

ﬁ(at‘sta Oy = 1)

Let’s expand out the nasty integrals with Bayes rule
ﬁ(ata St Ot:T — 1)
ﬁ(sta Ot:T — 1)

[pa, sty appr, Seq1s - - ar, 8T, Opr = 1)dsepidagyr - . . dspdar
ﬁ(staot:T —]-)

X // . /ﬁ(at, Sty At11,Sta1,--- a7, ST, Opr = 1)dsii1dagiq ... dspdar

Fquivalence between posterior inference and MPPJ

pla¢|sg, Opr = 1)
X // .- /ﬁ(at, Sty At4+1,5 St+1,---50a17,5T, Ot:T — 1)d3t+1dat+1 c. dSTdCLT

Dynamics Action prior Optimality
s [[[ptsom
[[[itom,

P(ser1lst, ar)plas|se)p(Oslse, at) | dsir1dasyy - . . dspdar

P(St+1]s¢, at)p(at|st)] exp [Z (¢, at)] dsii1dagiq .. .dspdar

!
Substituting optimality definition p(O:|s¢, a;) = exp(r(s¢, at))

ox so~p(s0) CXp Z r(st, at) Just using definition of expectation
ar~p(at|st) t
St+1~P(St+1]s¢,at)

Fquivalence between posterior inference and MPPI

ﬁ(at‘sty Oy = 1)

Zr(st,at)H

t

x K so~p(so) |:eXp
ar~p(at|st)

st+1~P(St+1]st,at)

Taking a bunch of samples through model -
choose actions proportional to the expected sum of rewards

Can keep repeating with ~x K so~p(s0) {GXP {Z r(st, at)} }

updated action prior > at~p(ag]se) t
st+1~P(st+1]5¢,a1)

Can be thought of as a sampling-based Monte-Carlo approximation to posterior

Ok so what did we show?

Step 2: Obtain posterior actions via Monte-Carlo approximation (approx MPPI)

_x K so~p(s0) [eXp [Z"“(St,at)]

at Nﬁ(at|8t)
st+1~P(St+1]s¢,a¢

t

L ecture outline

Control as Inference to Derive Q-learning

1

Control as Inference to Derive Model-Based RL

l

Why inverse RL? + Problem formulation

l

IRLv1 — max margin planning

Let’s revisit the premise of reinforcement learning

¥

:[Agent}
state| |reward action We studied a bunch of different
S R, A, algorithms to solve this
E Rt+l 4
- :
< Environment

Model-based RL Policy gradients

Actor-critic

E [Zr@t,at) + H(q<.|st)>] But they all operate under the same assumption:

reward is known!

so~p(so)
atNQ(Gt |8t)
St+1 Np(8t+1 \St ,at)

Reinforcement Learning requires Task Specification

state reward action

Manual state estimation/perception
:[Agent
-

. | Environment
\ Complex reward specification

v Name Reward | Heroes | Description
Win 5 Team
. . . Hero Death -1 Solo
Does not magically appear in most settings Cogirbutn | 2| T
XP Gained 0.002 Solo
Gold Gained 0.006 Solo | For each unit of gold gained. Reward is not lost
when the gold is spent or lost.
Gold Spent 0.0006 Solo | Per unit of gold spent on items without using
courier.
Health Changed 2 Solo | Measured as a fraction of hero’s max health.
Mana Changed 0.75 Solo | Measured as a fraction of hero’s max mana.
Killed Hero -0.6 Solo | For killing an enemy hero. The gold and expe-

rience reward is very high, so this reduces the
total reward for killing enemies.

Last Hit -0.16 Solo | The gold and experience reward is very high, so
this reduces the total reward for last hit to ~ 0.4.

. ° Deny 0.15 Solo

Has to be manually specified e (=
u y p Ancient HP Change 5 Team | Measured as a fraction of ancient’s max health.

Megas Unlocked 4 Team

T1 Tower™ 2.25 Team

T2 Tower" 3 Team

T3 Tower™ 4.5 Team

T4 Tower” 2.25 Team

Shrine” 2.25 Team

Barracks” 6 Team

9 Ca n We d O b ett e r? Lane Assign' -0.15 | Solo | Per second in wrong lane.

* For buildings, two-thirds of the reward is earned linearly as the building loses health, and
one-third is earned as a lump sum when it dies.

1 See item 0.2.

 Hero’s health is quartically interpolated between 0 (dead) and 1 (full health); health at
fraction @ of full health is worth (z + 1 — (1 —z)*) /2. This function was not tuned; it was
set once and then untouched for the duration of the project.

Table 6: Shaped Reward Weights

Learning from Demonstrations

Avoid manual reward specification by learning from demos of optimal behavior

- > " Agent ———
o A state reward action
1 1 \
D = {807a07317a17'"9ST7aT}7j:1 S’ R’ Ar
1 i Rt+1 (
Demos of expert behavior = S i
— U < l Environment]<
4)
Infer rewards from demonstrations of
Inverse Reinforcement optimal behavior
Leammg -> Optimal behavior optimizes some
_) reward via RL, so the RL process must be

"inverted” to find the reward

But haven't we already learned from demonstrations?

Imitation learning via Behavior Cloning (L2)

arg max E (s« a*)~p log mo(a™|s™)] Main difference between BC and IRL:

— froining tr 1. BClearns policies, IRL learns rewards
2. BC assumes no environment access, IRL
typically assumes either known model or
sampling access

Why does this matter?

/ooming out — why do we care about imitation?

Imitation learning is all about generalization

Generalization across states Generalization across dynamics

,.
e

([
’I
© \ O 4

[

Covariate shift is just a manifestation of generalization

What if learning something else generalized better than policies?

Zooming out — why do we care about imitation?

Rewards may be simpler - better generalization

Occam’s Razor
PAC-Bayes Bounds

B
/
' R(hs) < 1(1 5| +1 1)
—| lo og — |.
s) = g g 5
Smaller (yet sufficient) hypothesis
“When faced with two equally good hypotheses, always CIaSS, better genera“zatiOn
choose the simpler.”
|
* P—
Policy - fairly complex
Reward - 1 when goal is reached, 0 otherwise
— I Reward can be much simpler
=
I

Cross-Embodiment/Dynamics Transtfer

Rewards may allow for cross dynamics transfer

o

o gl
) 4

” S

Can all share the same reward, even with different dynamics!

4

Policies and Q/V functions entangle dynamics, rewards do not

Addressing Compounding Error

Reward can avoid covariate shift issues with forward KL

Imitation Learning via BC Reinforcement Learning with Inferred Reward
- _
L t=0 _
Sampling from expert Sampling from policy

Dx1,(p™||ps) What we care about >»Dxr(pol|lp™)

Learning Rewards from Human Data

4)

Imitation Learning | 7T

\ J
-
- - -
:{Agent)ﬁ
-
reward - -
-
K, ” -
i

| R,
- ,
L S l Environment]4

Is this even a well-defined problem?

-
-
-

action
A

-

Inverse RL

\

maX Erer, [

t=0

Mﬂ -
-

Reward

Staat]

How can we learn rewards?

We must make more assumptions on the expert provided data

4)
T

maxETNm [Zr St, Q)
t=0

g J

Din(r || 77) <e Og

Experts are assumed to be “noisily” optimal

Why is this “inverse” reinforcement learning?

’_l Agent l
state | |reward action
S, | IR A

E Rt+1 (

& :

<] Environment }47
\

RL: Rewards generate trajectories |IRL: Expert trajectories generate rewards

G G
G G

Is this well defined?

IRL problem statement + assumptions

Reinforcement Learning

State: Known
Action: Known

Transition Dynamics: Unknown but can sample

Reward: Known

Expert policy: Unknown
Expert traces: Unknown

Inverse Reinforcement Learning

State: Known

Action: Known

Transition Dynamics: Unknown but can sample
Reward: Unknown

Expert policy: Unknown

Expert traces: Known

Find r that explains the demonstrator behavior as noisily optimal

&.

Inverse RL

Reward
ro(s,a)

4)

Reinforcement Policy

-

Learning W(G‘S)
\ J

New dynamics/state

Inverse RL Applications

Velodyne laser Applanix INS
Riegl laser SICK LMS laser

:-.».H-*ﬂ u kb

g odbdd T U Wi
aBm::i
&+

Bosch Radar

DMI)
IBEO laser SICK LDRS laser

Inverse RL Applications

Why is this hard?

Find r that explains the demonstrator behavior as noisily optimal

‘fm.

Challenging for a variety of reasons:

r ~N 1. Inherently underspecified
2. Rand m both unknown
R, @ Inverse RL 3. Difficult optimization with T unknown.
L G y 4. Distributions/comparison metrics unknown

Reward Function
ro(s,a)

Can be parameterized by arbitrary function approximator

Underspecification in Reward Functions

Rewards are inherently underspecified > many rewards can give you the same optimal policy

',| Agent l Original reward

/
state reward action T(S7 CL, S)
S K A,

R Reshaped reward
245,*1 Enwronment]<— Tshaped(S, a, 3’) _ T(S, a, S/) 4 ng(sl) B ¢(3)

\.

Theorem 1 Let any S, A, 7, and any shaping reward p PR o oo
function F : S x A x S — R be given. We say F Q=r(s,a,8)+yr(s,a,s")+yr(s",a",87)+ ...
is o potential-based shaping function if there exists

a real-valued function ® : S — R such that for all

s€S —{so},a€ A,s €S, Q:’F(S,CL,S/)“"Y (Sl)_¢(8)+

Feoa,s) =02 = 20, 2 (s ”) + 7N(") = K)+
(where S — {so} = S if v < 1). Then, that F 2 "1 " _B\ " o
is a potential-based shaping function is a necessary ! (T(S &3)+ ’Y(ﬁ(S) (8)) T

and sufficient condition for it to guarantee consis-

tency with the optimal policy (when learning from

M' = (S,A,T,7,R + F) rather than from M = Unbiased policy optimization!
(S,A,T,v,R)), in the following sense:

L ecture outline

Control as Inference to Derive Q-learning

1

Control as Inference to Derive Model-Based RL

l

Why inverse RL? + Problem formulation

l

IRLv1 — max margin planning

A Formula for Inverse Reinforcement Learning

4)\
Com pare to expert traces
T T
_ J

How do we instantiate?

#\&

s ~N
Propose a reward function
re(s,a)
_ y
-
_

Optimize policy against

re(s,a)

~

J

IRL vO — Assumptions

4 ™ re(s,a) = w' ¢(s, a)
Propose a reward function | Linear
re(s,a)
_ J

Known dynamics

— L B

Compare to expert traces Optimize policy against
T T r¢(37 a)
- / - /

777 ——

IRL vO — What is a good reward function?

A good reward would evaluate optimal data higher than all other data

V™ (s) > V7™ (s) Vr,Vs

Low reward

a

High reward

Find

E,-

E,-

T
w* " E -

Z ’Vt/r(stv at)
t

Z ’ytw*Tgb(Sta at) Z ET(‘
t i

w* such that (s, a) = w** ¢(s, a)
thr(st, at)] , Vm
'

Z ’th*Tqb(Stv at)]) v
t

> Ky

Z /Vt(b(sh G,t) Z w*TEW
t i

Z Vt(b(sta at)]) v
t

pw(m*, @) pu(m, @)

Underdefined, w* = 0 trivially satisfies!

IRL vO — What is a good reward function?

How do we tackle ambiguity?

W Ere [6(s,0)] > w Exe [6(s,a)] ¥, Vs

4

st wiy™ >wly™ +m,Vrell

max m
w,m

A

Positively sampled
labels

Separating
Hyperplane

Negatively sampled
labels

|

Find rewards which maximize the gap between the expert and all other policies

IRL v1 — Max Margin Feature Matching

Choose w such that “margin” is maximized

maxim

st wly™ >wly™ +m,Vr ell

Looks a lot like an SVM! ﬂ

min [|uw];

s.t ’wTu”* > wl ™ +1,¥r e 11

What might the issues be =
1. Uniform gap across all i, m*
2. Noisily optimal may compromise the optimization

IRL v1 — (Fancy) Max Margin Feature Matching

Maximum margin > Structured Max-Margin + Slack

min ||w||2

st wly™ >wly™+1,Vr ell

Bigger for more different policies
min |||z + C¢ |
st wly™ >wly™ + D(m, 7)) — ¢, Vr eIl

Slack allows for noisy optimality

IRL v1 — Max Margin Feature Matching

min [|w||2 + C¢

st wly™ >wly™ + D(r,n*) — ¢, Vr el

Solve Max-Margin Planning

-

_

\

Com pare to expert traces

T Tt

s ~N
Propose a reward function |
re(s,a)
_ Y

re(s,a) = w! ¢ (s, a)

Linear

Known dynamics

B

Optimize policy against

J

re(s,a)

- J

IRL v1 — Max Margin Feature Matching

1. Start with a random policy m,
— 2. Find the w that optimizes

mi?Hsz + C(¢
st wl ™ >wly™ + D(m,7*) = (,Vm € {mg,71,...,7;}

3. Solve for the optimal policy against 7(s,a) = w®" ¢(s, a)
Ti+1 — Opt(re(s,a),T)

—— 4. Add to constraint set and repeat

ﬂ > Output the optimal reward function w*

Max Margin Feature Matching in Action

L ecture outline

Control as Inference to Derive Q-learning

1

Control as Inference to Derive Model-Based RL

l

Why inverse RL? + Problem formulation

l

IRLv1 — max margin planning

IRL v1 — Why this may not be

enough?

min ||wl|o + C¢

st wly™ >wl'y™ + D(n,n*) — (,¥r el

May not be able to deal with scenario where
true margin is quite small for some policies

Not clear if this is a good way
to deal with suboptimality

Constrained optimization is tough to optimize
for non-linear functions

What if we had a "softer” notion of margin?

We have talked about “soft” optimality before!

We derived max-ent RL as maximum likelihood on optimality (lower bound) wrt policy

m?XEpr(x) [EZNq(z|x) logp(z|z)] — DKL(Q(ZM)HP(Z))}

Control as inference
E s0~p(s0) Zlogp((')tfst, at) — log g(a|st)
t

atNCI(at |3t)
St+1 NP(St+1 |St ,at)

< 2 Nz 2
Li & Todorov ‘06 Ziebart ‘08

Can we invert this to do inverse RL with a softer notion of margin?

Let's revisit the graphical model

p(8t+1 |3t> at)

S0 /5_1\ ” p(O¢lst, ar) = exp(r(st, ar))
p(a|st) @ @ @ p(7|Oo.r = 1) -
p(7) exp(z r(se, at))
)

p(T) p(T|OO:T —)
Uninformed behavior according to :> Soft optimal behavior conditioned on
prior/dynamics optimality

We were trying to find p(at ‘St, Ot:T — 1) given reward

Inverse RL in CAl graphical model

p(8t+1 |3t> at)

S0 /5_1\ > p(ot‘sta at) — eXP(T(Sta at))

plag)s:) @ p(7|Oo.r = 1) .
p(7) exp(z r(se, at))

@ '@ @

Now we are given (s, a) from optimal, we need to find the reward function that best
explains the data

- Maximum likelihood estimation!
(Find r, that maximizes the likelihood of (s, a) being produced on observed optimality

Inverse RL in CAl graphical model

p(8t+1 |3t> at)

S0 /5_1\ > p(ot‘sta at) — eXP(T(Sta at))

plag)s:) @ p(7|Oo.r = 1) .
p(7) exp(z r(se, at))

@ '@ @

- Maximum likelihood estimation!
(Find r, that maximizes the likelihood of (s, a) being produced on observed optimality

max]E’TND* [log p(7'| OO:T — 1)] (Find optimality CPD that best explains observed data)
¢

Maximum likelihood optimality estimation

p(7|O0.r = 1) %) exp() (s, ar))

t=0

Independent of reward

ffp T) EXP Zt () (Staa't))dSO:TdaO:T

Hard to estimate — partition function (Z)

4

max E:p+ [log p(T|Op.7 = 1)

Difficult to compute analytically, but it's gradient has a nice form!

Maximum likelihood optimality estimation

exp(Py—q (51, ar))
ffp T)eXpP Zt o T(8t,a¢))dso.rdao.T

p(7|Oo.r =1) =

maXETND [logp(ﬂ@o T = 1)]

@ _
—E,.p- |log (exp Zr¢ st,at))> —log Z

t=0

- _
=K, p= Z "“qs(Sta at)| —log Z
| t=0 _

Easy to compute Hard to compute

Maximum likelihood optimality estimation

exp(Py—q (51, ar))
ffp T)eXpP Zt o T(8t,a¢))dso.rdao.T

p(7|Oo.r =1) =

maXETND [logp(ﬂ@o T = 1)]

@ _
—E,.p- |log (exp Zr¢ st,at))> —log Z

t=0

- _
=K, p= Z "“qs(Sta at)| —log Z
| t=0 _

Easy to compute Hard to compute

Let’s take the gradient

mq?XIETND* log p(7|OQp.7 = 1)]

T
L(9) =Ermn- [Z ro(se at>] ~log 7
t=0

T

Z Vre(se, ar)

t=0

V¢£(¢) = ETND* — V¢ log Z

Vglog Z = %ngZ z = /P(T) exp(r(7))dr

Vo L(p) =E;p- [Z V¢r¢(8t,at)] % p(7) exp(ry(7))WV ore(T)dT

t=0

Notice this is exactly the soft optimality posterior
T
(7|01 = 1) oc p(7) exp(D r(st,at))
t=0

Let’s take the gradient

T

L(¢) =E,p= [Z r¢(st,at)] —logZ

t=0

1

>~ Vars(sia)| = [p)explro(m)Vare(rdr

t=0

v¢£(¢) — ETND*

Notice this is exactly the soft optimality posterior
T

p(7|Oo.r = 1) o< p(1) exp(}_ 7(st,at))

t=0

T
Z Vre(se,ar)

t=0

V¢£(Q§) — ETND* —]E’TNp(TIO();T:l)

Z Vs (st, at)]

t=0

Push up gradients along experts Push down gradients along soft optimal
policy under current reward

Computable, with RL in the inner loop

Ok so what does this mean?

-5 [PO expra(r) Vars(ridr

T
Vs L(¢p) =Erp= [Z Vgre(se, ar)

t=0

T
V¢£(¢) = ETND* Z V¢T¢(St, CLt>

t=0

Z Vs7e (5t a,t)]

t=0

- ETNp(TKQo;T:l)

Push up gradients along experts Push down gradients along soft optimal
policy under current reward

Update on ¢ Update 1 to optimal using current g,

Alternative intuition

Why do we even need the margin in the first place?

v (s) > V7™(s) Vr,Vs - underdefined

Tr

Unclear how to value one suboptimal trajectory vs other = be maximally uniform!

Hl(aii H(p(T)) — Maximize entropy
p\T

S.1]E’p(T) [¢(S7 CL)] ~ EW* [¢(57 a)]

While matching features

IRL v2 — Max-Ent IRL — Put it together

Maximum Entropy

> A b(st, at)]
—Ep,, (r) [Z SRCHE atT)]

Vwﬁ - Eﬂ-*

4)

Com pare to expert traces

T Tt

re(s,a) = w! ¢ (s, a)

Linear

s ~N
Propose a reward function |
re(s,a)
_ Y

Known dynamics

B

Optimize policy against

- J

re(s,a)

- J

IRL v2 —Max-Entropy Inverse RL (Pseudocode)

1. Start with a random policy myand weight vector w
—— 2. Find the “soft” optimal policy under w — P, (7)
3. Take a gradient step onw

Vol =E;-

27t¢(3t7 @t)

— Ky, 0 [Z Vt¢(3t77 GZ)]
¢

L 4. Repeat

|-| > Output the optimal reward function w*

Max-Ent IRL in Action

L ecture Outline

Why Imitation? + Problem formulation

l

IRLv1 - max margin planning

l

IRLv2 - max entropy IRL

l

IRLv3 — partial policy optimization

|

IRLv4 — adversarial IRL

Ok but no way this could work?

¢ Il Il Il BN NN N N

Maximum Entropy f \

l I

max H(p(r) -, N R OO
p\T . I
gt]E,p(,r) [¢(S’ CL)] ~ EW* [¢(S7 a)] PI’OpOSE a reward function < I\ Llnear I

[
| Known dynam|CS|

L se

Compare to expert traces Optlmlze policy agalnst
T T re(s,a)
_ Y _ Y

Linear Rewards = Neural Net Rewards

Max-ent IRL allows us to go from linear rewards to arbitrary neural network rewards

||||||

Linear Max-Ent IRL max K«
w

ZwTvtgb(St,at)] — log/T [exp (Zwaytqb(St,at))] dr
V
Zv ro(st, at] log/T [exp (Z:ytrgést,at))} dr

Non-Linear Max-Ent IRL maxE

Can simply replace, w with arbitrary 6 and use autodiff!

Avoiding Complete Policy Optimization

4)

Optimize policy against

re(s,a)
\ J

+—— Assumes dynamics are known so we can just do (fast) planning

What happens when dynamics are unknown!

E,-

ZVtVQTQ(Sta at):|
t

—Ep,(m) [Z 7' Vere(st, at)w
L .

« What if we only improved the policy a little bit

Biased!

Requires complete “soft” policy optimization

Avoiding Complete Policy Optimization

Importance sampling to the rescuel!

Epe) [F(2)] = By [@ <w>]

q()
Importance
[Z”yth“e(St, a/t):| Sampling E, - Z’)/tVQTQ(St,CLt):|
¢ > -
w (T
—E,. {Z ’YtVQTQ(St,CLt)} —E, pq((T)) Z’}/tVQT@(St,CLt):|
¢ t

exp(2_; 7o (5t a1))

Ht7Te<at|St)

Can transfer significantly more from iteration to iteration rather than doing full nested optimization

IRLv4 — Guided Cost Learning

Gradient Step on Reward

Ere | > 7'Voro(s:, at)] ~ ™ re(s,a)
t .
o) t Propose a reward function | Neural network
E Z’Y Vore(se, az)
a(r) 5 re(s,a)
- J
Gradient step on policy
4) 4)
Compare to expert traces Optimize policy against
T T r¢(37 a)

- J - J

IRLv4 — Guided Cost Learning

7z)

) THEEE ’ X
gt S == vt/ ‘Demoyi (of 20)

L ecture Outline

Why Imitation? + Problem formulation

l

IRLv1 - max margin planning

l

IRLv2 - max entropy IRL

l

IRLv3 - partial policy optimization

l

IRLv4 — adversarial IRL

Connecting Maximum-Entropy RL to GANs

Generator

Discriminator

=)

Looks like a game

1. Start with a random policy Ty and weight vector w
—— 2. Take a step on “soft” optimal policy under w — p., (7)
3. Take a gradient step on w

V@E —]Eﬂ-*

Z ’}/tVQ’rg(St, CLt) — Eq
t

p;“(g) Et: Y'Vore(st, at)

L 4. Repeat

|-| > Output the optimal reward function w*

Recasting GAIL as an IRL method

For a particular parameterization of the discriminator, GAIL recovers a reward

Max-Ent Inverse RL AlL

pw(T) /
N ZV VW(S“‘“)] With some massaging

. ;’ytVQTQ(St,CLt)] i < > i K [Dw (7)] +

Push up demos, push down policy Push up real data, push down generated

DQ(T) —

2 exp(rg(7))
% exp(rg(7)) + imo(at|st)

GAIL (which is just a GAN), recovers Max-Ent IRL

In practice, often use GAIL and just log D as reward

1ON

iNn Act

ial IRL

Adversar

L ecture Outline

Why Imitation? + Problem formulation

l

IRLv1 - max margin planning

l

IRLv2 - max entropy IRL

l

IRLv3 - partial policy optimization

l

IRLv4 - adversarial IRL

Some perspectives on IRL vs Imitation

Imitation Learning Inverse RL
+ simple, easy to implement + potential for generalization
+ no additional interaction required + can help with covariate shift
- compounding error - Needs environment access
- Multimodality - Hard to implement/train
- generalization - Often works worse from images

~N 7

Choose depending on the application

Class Structure

14

/—[Imitation Learning]\
(

4 Model-free Reinforcement Learning

Policy Gradient

ADP

Model-based
Reinforcement Learning

J -

\\[Unifying Perspectives on RL and IRL

>

Explorationl

Frontiers

Learning from Prior Data

Learning across tasks

