Reinforcement Learning Spring 2024 Abhishek Gupta TAs: Patrick Yin, Qiuyu Chen #### Class Structure ### Past lecture outline Control as Inference - Formulation Variational Inference Control as Inference to Derive Policy Gradient Control as Inference to Derive Q-learning Control as Inference to Derive Model-Based RL ### Using Probabilistic Graphical Models for Decision Making Introduce binary "optimality" variables – optimal if O=1, suboptimal if O=0 Agents are observed to be **optimal** # So what are we doing inference over? Use case 1: Derive soft RL algorithms Insight: Computing optimal policy \rightarrow posterior inference $$p(a_t|s_t, \mathcal{O}_{t:T} = 1)$$ "Given that you are acting optimally, what is the likelihood of a particular action at a state" #### Evidence Lower Bound: Best Posterior Intractable! View 1: Find best posterior $$D_{KL}(q_{\phi}(z|x)||p(z|x))$$ $$= D_{KL}(q(z|x)||p(z)) - \mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] + \log p(x)$$ Likelihood/prior known – posterior hard to compute Maximum likelihood Stay close to the prior $$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$$ Learn a tractable posterior q(z|x) with known likelihood and sampling # Lets revisit our original inference problem in control Approximate $p(a_t|s_t, \mathcal{O}_{t:T} = 1)$ by $q(a_t|s_t, \mathcal{O}_{t:T} = 1)$ $\max_{a} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$ $(\mathcal{O}_0,\mathcal{O}_1,\ldots,\mathcal{O}_T)$ Tractable techniques for posterior policy computation $(s_0, a_0, s_1, a_1, \dots, s_T, a_T)$ # Computing Evidence Lower Bound $$x \ (\mathcal{O}_{0}, \mathcal{O}_{1}, \dots, \mathcal{O}_{T}) \quad z \ (s_{0}, a_{0}, s_{1}, a_{1}, \dots, s_{T}, a_{T})$$ $$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$$ $$q(s_{0}, a_{0}, \dots, s_{T}, a_{T}|\mathcal{O}_{0}, \dots, \mathcal{O}_{T}) = p(s_{0}) \Pi_{t=0}^{T} p(s_{t+1}|s_{t}, a_{t}) q(a_{t}|s_{t})$$ $$\mathbb{E}_{x \sim p(x), z \sim q(z|x)} \left[\log p(x, z) - \log q(z|x) \right]$$ $$2) \qquad \mathbb{E}_{\substack{s_{0} \sim p(s_{0}) \\ a_{t} \sim q(a_{t}|s_{t}) \\ s_{t+1} \sim p(s_{t+1}|s_{t}, a_{t})}} \left[\log p(s_{0}, \dots, s_{T}, a_{0}, \dots, a_{T}, \mathcal{O}_{0}, \dots, \mathcal{O}_{T}) - \log q(s_{0}, a_{0}, \dots, s_{T}, a_{T}|\mathcal{O}_{0}, \dots, \mathcal{O}_{T}) \right]$$ $$3) \qquad \mathbb{E}_{\substack{s_{0} \sim p(s_{0}) \\ a_{t} \sim q(a_{t}|s_{t}) \\ s_{t+1} \sim p(s_{t+1}|s_{t}, a_{t})}}} \left[\left[\log p(s_{0}) + \sum_{t} \left[\log p(a_{t}|s_{t}) + \log p(s_{t+1}|s_{t}, a_{t}) + \log p(\mathcal{O}_{t}|s_{t}, a_{t}) \right] \right]$$ $$\left[\log p(s_{0}) + \sum_{t} \left[\log q(a_{t}|s_{t}) + \log p(s_{t+1}|s_{t}, a_{t}) \right] \right]$$ # Computing Evidence Lower Bound $$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$$ 3) $$\mathbb{E} \sup_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\left[\log p(s_0) + \sum_{t} \left[\log p(a_t|s_t) + \log p(s_{t+1}|s_t, a_t) + \log p(\mathcal{O}_t|s_t, a_t) \right] \right] - \left[\log p(s_0) + \sum_{t} \left[\log p(a_t|s_t) + \log p(s_t) + \log p(s_t) \right] \right] - \left[\log p(s_0) + \sum_{t} \left[\log p(s_t) + \log p(s_t) + \log p(s_t) \right] \right] - \left[\log p(s_0) + \sum_{t} \left[\log p(s_t) + \log p(s_t) + \log p(s_t) \right] \right] - \left[\log p(s_0) + \sum_{t} \left[\log p(s_t) + \log p(s_t) + \log p(s_t) \right] \right] - \left[\log p(s_0) + \sum_{t} \left[\log p(s_t) + \log p(s_t) + \log p(s_t) \right] \right] - \left[\log p(s_0) + \sum_{t} \left[\log p(s_t) + \log p(s_t) + \log p(s_t) \right] \right] - \left[\log p(s_0) + \sum_{t} \left[\log p(s_t) + \log p(s_t) + \log p(s_t) \right] \right] - \left[\log p(s_0) + \sum_{t} \left[\log p(s_t) + \log p(s_t) + \log p(s_t) \right] \right] - \left[\log p(s_0) + \sum_{t} \left[\log p(s_t) + \log p(s_t) + \log p(s_t) \right] \right] - \left[\log p(s_0) + \sum_{t} \left[\log p(s_t) + \log p(s_t) + \log p(s_t) \right] \right] - \left[\log p(s_0) + \log p(s_t) + \log p(s_t) \right]$$ $$\left[\log p(s_0) + \sum_{t} \left[\log q(a_t|s_t) + \log p(s_{t+1}|s_t, a_t)\right]\right]$$ 4) $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_{t} \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t) \right] p(\mathcal{O}_t|s_t, a_t) = \exp(r(s_t, a_t))$$ $$p(\mathcal{O}_t|s_t, a_t) = \exp(r(s_t, a_t))$$ 5) $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_t r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ Maximum entropy RL Gradient ascent = PG! ### Ok so what did we show? # Find approximate posterior q(z|x) by optimizing the ELBO $$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$$ $$x \qquad \qquad z$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad$$ $$q(s_0, a_0, \dots, s_T, a_T | \mathcal{O}_0, \dots, \mathcal{O}_T) = p(s_0) \prod_{t=0}^T p(s_{t+1} | s_t, a_t) q(a_t | s_t)$$ $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_{t} \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t) \right] = \mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_{t} r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ Maximize ELBO with SGD = policy gradient! #### Lecture outline Control as Inference to Derive Q-learning Control as Inference to Derive Model-Based RL Why inverse RL? + Problem formulation IRLv1 – max margin planning # Can we derive (soft) Q-learning from the ELBO? # Find approximate posterior q(z|x) by optimizing the ELBO $$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$$ $$x \qquad \qquad z$$ $$\downarrow \qquad \qquad \downarrow \qquad$$ $$q(s_0, a_0, \dots, s_T, a_T | \mathcal{O}_0, \dots, \mathcal{O}_T) = p(s_0) \prod_{t=0}^T p(s_{t+1} | s_t, a_t) q(a_t | s_t)$$ $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_{t} \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t) \right] = \mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_{t} r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ Maximize ELBO with DP = Soft Q learning! # Let's optimize the last step of the ELBO $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_t r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ #### Consider the last time step $$\begin{aligned} &\max \ \mathbb{E}_{s_T \sim q(s_T)} \left[\mathbb{E}_{a_T \sim q(a_T \mid s_T)} \left[r(s_T, a_T) - \log q(a_T \mid s_T) \right] \right] \\ &= \mathbb{E}_{s_T \sim q(s_T)} \left[\mathbb{E}_{a_T \sim q(a_T \mid s_T)} \left[\log \exp(r(s_T, a_T)) - \log q(a_T \mid s_T) \right] \right] \end{aligned} \\ &= \mathbb{E}_{s_T \sim q(s_T)} \left[\mathbb{E}_{a_T \sim q(a_T \mid s_T)} \left[\log \exp(r(s_T, a_T)) - \log \int \exp(r(s_T, a_T)) da_T - \log q(a_T \mid s_T) \right] + \log \int \exp(r(s_T, a_T)) da_T \right] \\ &= \mathbb{E}_{s_T \sim q(s_T)} \left[\mathbb{E}_{a_T \sim q(a_T \mid s_T)} \left[\log \frac{\exp(r(s_T, a_T))}{\int \exp(r(s_T, a_T)) da_T} - \log q(a_T \mid s_T) \right] \right] \end{aligned} \end{aligned} \\ &= \mathbb{E}_{s_T \sim q(s_T)} \left[\mathbb{E}_{a_T \sim q(a_T \mid s_T)} \left[\log \frac{\exp(r(s_T, a_T))}{\int \exp(r(s_T, a_T)) da_T} - \log q(a_T \mid s_T) \right] \right] \\ &= \mathbb{E}_{s_T \sim q(s_T)} \left[\mathbb{E}_{a_T \sim q(a_T \mid s_T)} \left[- \log \frac{q(a_T \mid s_T)}{\int \exp(r(s_T, a_T)) da_T} \right] \right] \\ &= \mathbb{E}_{s_T \sim q(s_T)} \left[-D_{KL}(q(a_T \mid s_T)) \left[\exp(r(s_T, a_T)) da_T \right] \right] \end{aligned}$$ (Definition of KL divergence) # Let's optimize the last step of the ELBO $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_t r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ #### Consider the last time step $$\max \ \mathbb{E}_{s_T \sim q(s_T)} \left[\mathbb{E}_{a_T \sim q(a_T|s_T)} \left[r(s_T, a_T) - \log q(a_T|s_T) \right] \right]$$ $$=\mathbb{E}_{s_T\sim q(s_T)}\left[-D_{KL}(q(a_T|s_T)||\frac{\exp(r(s_T,a_T))}{\int \exp(r(s_T,a_T))da_T})\right] \qquad \qquad \text{KL-divergence D(p, q) is always non negative and is minimized when p == q}$$ $$q(a_T|s_T) = \frac{\exp(r(s_T, a_T))}{\int \exp(r(s_T, a_T)) da_T}$$ #### Ok let's simplify $$Q(s_T, a_T) = r(s_T, a_T)$$ $$V(s_T) = \log \int \exp(r(s_T, a_T)) da_T$$ $$q(a_T|s_T) = \exp(Q(s_T, a_T) - V(s_T))$$ Optimal policy is proportional to exponential advantage (soft-max) # Let's optimize the last step of the ELBO $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_t r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ #### Consider the last time step $$= \mathbb{E}_{s_T \sim q(s_T)} \left[V(s_T) \right]$$ Simply the expected **value** $$q(a_T|s_T) = \exp(Q(s_T, a_T) - V(s_T))$$ Optimal policy is proportional to exponential advantage (soft-max) # Let's optimize the step before $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_t r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ #### Consider the second last time step $$\arg\max_{q} \mathbb{E}_{s_{T-1} \sim q(s_{T-1})} \left[\mathbb{E}_{a_{T-1} \sim q(a_{T-1}|s_{T-1})} \left[r(s_{T-1}, a_{T-1}) - \log q(a_{T-1}|s_{T-1}) + \mathbb{E}_{s_{T} \sim p(s_{T}|s_{T-1}, a_{T-1})} \left[r(s_{T}, a_{T}) - \log q(a_{T}|s_{T}) \right] \right] \right]$$ Exactly what we computed in the last step $$= \arg\max_{q} \mathbb{E}_{s_{T-1} \sim q(s_{T-1})} \left[\mathbb{E}_{a_{T-1} \sim q(a_{T-1}|s_{T-1})} \left[r(s_{T-1}, a_{T-1}) - \log q(a_{T-1}|s_{T-1}) + \mathbb{E}_{s_{T} \sim p(s_{T}|s_{T-1}, a_{T-1})} \left[V(s_{T}) \right] \right]$$ From the last slide Let us call this $Q(s_{T-1}, a_{T-1})$ $$Q(s_{T-1}, a_{T-1}) = r(s_{T-1}, a_{T-1}) + \mathbb{E}_{s_T \sim p(s_T \mid s_{T-1}, a_{T-1})} \left[V(s_T) \right]$$ (Looks like Bellman!) $$+ \arg \max_{q} \mathbb{E}_{s_{T-1} \sim q(s_{T-1})} \left[\mathbb{E}_{a_{T-1} \sim q(a_{T-1} \mid s_{T-1})} \left[Q(s_{T-1}, a_{T-1}) - \log q(a_{T-1} \mid s_{T-1}) \right] \right]$$ Looks a lot like the previous time-step # Let's optimize the step before $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_t r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ #### Consider the second last time step $$\arg\max_{q} \mathbb{E}_{s_{T-1} \sim q(s_{T-1})} \left[\mathbb{E}_{a_{T-1} \sim q(a_{T-1}|s_{T-1})} \left[Q(s_{T-1}, a_{T-1}) - \log q(a_{T-1}|s_{T-1}) \right] \right]$$ $$Q(s_{T-1}, a_{T-1}) = r(s_{T-1}, a_{T-1}) + \mathbb{E}_{s_T \sim p(s_T | s_{T-1}, a_{T-1})} [V(s_T)]$$ #### Referring back to the last time step math and pattern matching $$V(s_{T-1}) = \log \int \exp(Q(s_{T-1}, a_{T-1})) da_{T-1}$$ $$Q(s_{T-1}, a_{T-1}) = r(s_{T-1}, a_{T-1}) + \mathbb{E}_{s_T \sim p(s_T \mid s_{T-1}, a_{T-1})}[V(s_T)]$$ $$Q(s_{T-1}, a_{T-1}) = \exp(Q(s_{T-1}, a_{T-1}) - V(s_{T-1}))$$ Optimal policy is proportional to exponential advantage (soft-max) $$q(a_{T-1}|s_{T-1}) = \exp(Q(s_{T-1}, a_{T-1}) - V(s_{T-1}))$$ (soft-max) ### Let's make it recursive This suggests a recursive dynamic programming algorithm! $$Q(s_T, a_T) = r(s_T, a_T)$$ $$V(s_T) = \log \int \exp(r(s_T, a_T)) da_T$$ $$\longrightarrow \text{For t} = \text{T-1 to 1:}$$ $$Q_t(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} \left[V_{t+1}(s_{t+1}) \right] \qquad \text{(Bellman update)}$$ $$V_t(s_t) = \log \int \exp(Q(s_t, a_t)) da_t \qquad \text{(Soft-max)}$$ $$q(a_t|s_t) = \exp(Q_t(s_t, a_t) - V_t(s_t)) \qquad \text{(Soft-max)}$$ Very similar to the "soft" (entropy) Q-learning procedure from earlier lectures! # What does this suggest as an algorithm? #### Optimize a "soft" Bellman equation $$Q(s_{t}, a_{t}) \leftarrow r_{t} + \gamma \mathbb{E}_{s_{t+1} \sim p_{s}} \left[V(s_{t+1}) \right]$$ $$Q_{\text{soft}}(s_{t}, a_{t}) \leftarrow r_{t} + \gamma \mathbb{E}_{s_{t+1} \sim p_{s}} \left[V_{\text{soft}}(s_{t+1}) \right]$$ $$V(s_{t}) \leftarrow \max_{a} Q(s_{t}, a)$$ $$V_{\text{soft}}(s_{t}) \leftarrow \alpha \log \int_{\mathcal{A}} \exp \left(\frac{1}{\alpha} Q_{\text{soft}}(s_{t}, a') \right) da'$$ $$\pi(a|s_{t}) \leftarrow \arg \max_{a} Q(s_{t}, a)$$ $$\pi_{\text{soft}}(a|s_{t}) = \exp \left(\frac{1}{\alpha} (Q_{\text{soft}}(s_{t}, a) - V_{\text{soft}}(s_{t})) \right)$$ Go from max to "softmax" (imagine if α goes to 0, it becomes a max) Prevents premature collapse of exploration while smoothing out optimization landscape! # Why should we ever do soft-Q learning? #### Optimization benefits **Corollary 5.1.** (Iteration complexity with log barrier regularization) Let $\beta_{\lambda} := \frac{8\gamma}{(1-\gamma)^3} + \frac{2\lambda}{|\mathcal{S}|}$. Starting from any initial $\theta^{(0)}$, consider the updates (13) with $\lambda = \frac{\epsilon(1-\gamma)}{2\left\|\frac{d_{\rho}^{\pi^{\star}}}{\mu}\right\|_{\infty}}$ and $\eta = 1/\beta_{\lambda}$. Then for all starting state distributions ρ , we have $$\min_{t < T} \left\{ V^{\star}(\rho) - V^{(t)}(\rho) \right\} \leq \epsilon \quad \text{whenever} \quad T \geq \frac{320|\mathcal{S}|^2|\mathcal{A}|^2}{(1 - \gamma)^6 \, \epsilon^2} \left\| \frac{d_{\rho}^{\pi^{\star}}}{\mu} \right\|^2.$$ #### **Transfer** #### Deals better with misspecification ### Ok so what did we show? Find approximate posterior q(z|x) by optimizing the ELBO using dynamic programming $$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right] \\ \mathbb{E}_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_{t} \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t) \right] = \mathbb{E}_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_{t} r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ Can derive a "soft" dynamic programming Q-learning update For t = T-1 to 1: $$Q_t(s_t,a_t) = r(s_t,a_t) + \mathbb{E}_{s_{t+1} \sim p(s_{t+1}|s_t,a_t)} \left[V_{t+1}(s_{t+1}) \right] \tag{Bellman update}$$ $$V_t(s_t) = \log \int \exp(Q(s_t,a_t)) da_t \tag{Soft-max}$$ $$-q(a_t|s_t) = \exp(Q_t(s_t,a_t) - V_t(s_t)) \tag{Soft-max}$$ ### Lecture outline Control as Inference to Derive Q-learning Control as Inference to Derive Model-Based RL Why inverse RL? + Problem formulation IRLv1 – max margin planning # Let's back up from VI to max likelihood Let us assume we get a bunch of data of (s, a, s', r) from the true system p We will try to learn a surrogate model \widehat{p} to approximate p, use it for posterior inference # Model Learning via Maximum Likelihood Fitting \widehat{p} amounts to supervised learning on dynamics and rewards # Model Learning via Maximum Likelihood Fitting \widehat{p} amounts to supervised learning on dynamics and rewards How do we actually use this approximate model to obtain optimal actions? # Policy Extraction via Posterior Inference Key idea: pretend that approximate model \widehat{p} is the true model Just like in MFRL → perform posterior inference Certainty equivalence ← But pretend that the model were true ### Ok so how we do perform this inference? $$\hat{p}(a_t|s_t, \mathcal{O}_{t:T} = 1)$$ Idea 1: Variational inference in \widehat{p} Idea 2: Use Monte-Carlo Sampling for Inference Model-based policy optimization methods (Dyna ++) MPPI-style planning methods ### Equivalence between posterior inference and MPPI $$\hat{p}(a_t|s_t, \mathcal{O}_{t:T} = 1)$$ Let's expand out the nasty integrals with Bayes rule $$= \frac{\hat{p}(a_t, s_t, \mathcal{O}_{t:T} = 1)}{\hat{p}(s_t, \mathcal{O}_{t:T} = 1)}$$ $$= \frac{\int \int \cdots \int \hat{p}(a_t, s_t, a_{t+1}, s_{t+1}, \dots, a_T, s_T, \mathcal{O}_{t:T} = 1) ds_{t+1} da_{t+1} \dots ds_T da_T}{\hat{p}(s_t, \mathcal{O}_{t:T} = 1)}$$ $$\propto \int \int \cdots \int \hat{p}(a_t, s_t, a_{t+1}, s_{t+1}, \dots, a_T, s_T, \mathcal{O}_{t:T} = 1) ds_{t+1} da_{t+1} \dots ds_T da_T$$ ### Equivalence between posterior inference and MPPI $$\begin{split} \hat{p}(a_t|s_t,\mathcal{O}_{t:T} &= 1) \\ &\propto \int \int \cdots \int \hat{p}(a_t,s_t,a_{t+1},s_{t+1},\ldots,a_T,s_T,\mathcal{O}_{t:T} = 1) ds_{t+1} da_{t+1} \ldots ds_T da_T \\ &\propto \int \int \cdots \int \hat{p}(s_0) \Pi_t \Bigg[\hat{p}(s_{t+1}|s_t,a_t) p(a_t|s_t) p(\mathcal{O}_t|s_t,a_t) \Bigg] ds_{t+1} da_{t+1} \ldots ds_T da_T \end{split}$$ $$\propto \int \int \cdots \int \hat{p}(s_0) \Pi_t \left[\hat{p}(s_{t+1}|s_t, a_t) p(a_t|s_t) \right] \exp \left[\sum_t r(s_t, a_t) \right] ds_{t+1} da_{t+1} \dots ds_T da_T$$ Substituting optimality definition $p(\mathcal{O}_t|s_t, a_t) = \exp(r(s_t, a_t))$ $$\propto \mathbb{E} \sum_{\substack{s_0 \sim \hat{p}(s_0) \\ a_t \sim \hat{p}(a_t|s_t)}} \left[\exp \left[\sum_t r(s_t, a_t) \right] \right]$$ Just using definition of expectation ### Equivalence between posterior inference and MPPI $$\hat{p}(a_t|s_t, \mathcal{O}_{t:T} = 1)$$ $$\propto \mathbb{E} \sum_{\substack{s_0 \sim \hat{p}(s_0) \\ a_t \sim \hat{p}(a_t|s_t) \\ s_{t+1} \sim \hat{p}(s_{t+1}|s_t, a_t)}} \left[\exp \left[\sum_t r(s_t, a_t) \right] \right]$$ Taking a bunch of samples through model -> choose actions proportional to the expected sum of rewards Can keep repeating with updated action prior $$\begin{array}{c|c} & \times \mathbb{E} & \\ & s_0 \sim \hat{p}(s_0) \\ & a_t \sim \hat{p}(a_t|s_t) \\ & s_{t+1} \sim \hat{p}(s_{t+1}|s_t,a_t) \end{array} \end{array} \left[\exp \left[\sum_t r(s_t,a_t) \right] \right]$$ Can be thought of as a sampling-based Monte-Carlo approximation to posterior ### Ok so what did we show? Step 1: Learn model via min KL (supervised learning) $$\max_{\hat{p}} \mathbb{E}_{p(s_0,...,s_T,a_0,...,a_T,\mathcal{O}_0,...,\mathcal{O}_T)} \left[\log \hat{p}(s_0) + \sum_{t} \left[\log \hat{p}(s_{t+1}|s_t,a_t) + \log \hat{p}(\mathcal{O}_t|s_t,a_t) \right] \right]$$ Step 2: Obtain posterior actions via Monte-Carlo approximation (approx MPPI) $$\sum_{\substack{s_0 \sim \hat{p}(s_0) \\ a_t \sim \hat{p}(a_t|s_t) \\ s_{t+1} \sim \hat{p}(s_{t+1}|s_t, a_t)}} \left[\exp \left[\sum_t r(s_t, a_t) \right] \right]$$ ### Lecture outline Control as Inference to Derive Q-learning Control as Inference to Derive Model-Based RL Why inverse RL? + Problem formulation IRLv1 – max margin planning ### Let's revisit the premise of reinforcement learning We studied a bunch of different algorithms to solve this **Model-based RL** **Policy gradients** $$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$ Actor-critic or $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t, a_t)}} \left[\sum_t r(s_t, a_t) + \mathcal{H}(q(\cdot|s_t)) \right]$$ But they all operate under the same assumption: reward is known! # Reinforcement Learning requires Task Specification Does not magically appear in most settings Has to be manually specified \rightarrow can we do better? #### Manual state estimation/perception #### Complex reward specification | Name | Reward | Heroes | Description | |--------------------------|--------|--------|------------------------------------------------------------| | Win | 5 | Team | | | Hero Death | -1 | Solo | | | Courier Death | -2 | Team | | | XP Gained | 0.002 | Solo | | | Gold Gained | 0.006 | Solo | For each unit of gold gained. Reward is not lost | | | | | when the gold is spent or lost. | | Gold Spent | 0.0006 | Solo | Per unit of gold spent on items without using | | | | | courier. | | Health Changed | 2 | Solo | Measured as a fraction of hero's max health. [‡] | | Mana Changed | 0.75 | Solo | Measured as a fraction of hero's max mana. | | Killed Hero | -0.6 | Solo | For killing an enemy hero. The gold and expe- | | | | | rience reward is very high, so this reduces the | | | | | total reward for killing enemies. | | Last Hit | -0.16 | Solo | The gold and experience reward is very high, so | | | | | this reduces the total reward for last hit to ~ 0.4 . | | Deny | 0.15 | Solo | | | Gained Aegis | 5 | Team | | | Ancient HP Change | 5 | Team | Measured as a fraction of ancient's max health. | | Megas Unlocked | 4 | Team | | | T1 Tower* | 2.25 | Team | | | T2 Tower* | 3 | Team | | | T3 Tower* | 4.5 | Team | | | T4 Tower* | 2.25 | Team | | | Shrine* | 2.25 | Team | | | Barracks* | 6 | Team | | | Lane Assign [†] | -0.15 | Solo | Per second in wrong lane. | ^{*} For buildings, two-thirds of the reward is earned linearly as the building loses health, and one-third is earned as a lump sum when it dies. See item O.2. ¹ Hero's health is quartically interpolated between 0 (dead) and 1 (full health); health at fraction x of full health is worth $(x+1-(1-x)^4)/2$. This function was not tuned; it was set once and then untouched for the duration of the project. # Learning from Demonstrations Avoid manual reward specification by learning from demos of optimal behavior # But haven't we already learned from demonstrations? #### <u>Imitation learning via Behavior Cloning (L2)</u> $$\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$$ #### Main difference between BC and IRL: - 1. BC learns policies, IRL learns rewards - 2. BC assumes no environment access, IRL typically assumes either known model or sampling access Why does this matter? # Zooming out – why do we care about imitation? Imitation learning is all about generalization Generalization across states Generalization across dynamics Covariate shift is just a manifestation of generalization What if learning something else generalized better than policies? # Zooming out – why do we care about imitation? #### Rewards may be simpler \rightarrow better generalization #### **Occam's Razor** "When faced with two equally good hypotheses, always choose the simpler." PAC-Bayes Bounds $$R(h_S) \le \frac{1}{m} \Big(\log |\mathcal{H}| + \log \frac{1}{\delta} \Big).$$ Smaller (yet sufficient) hypothesis class, better generalization Policy – fairly complex Reward – 1 when goal is reached, 0 otherwise Reward **can** be much simpler ### Cross-Embodiment/Dynamics Transfer Rewards may allow for cross dynamics transfer Can all share the same reward, even with different dynamics! Policies and Q/V functions entangle dynamics, rewards do not # Addressing Compounding Error Reward can avoid covariate shift issues with forward KL **Imitation Learning via BC** Reinforcement Learning with Inferred Reward $$\max_{\theta} \mathbb{E}_{(x,y)\sim \mathcal{D}} \left[\log \hat{p}_{\theta}(y|x) \right]$$ $$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$ Sampling from expert $$D_{\mathrm{KL}}(p^*||p_{\theta})$$ Sampling from policy What we care about $\longrightarrow D_{\mathrm{KL}}(p_{\theta}||p^{*})$ ## Learning Rewards from Human Data Is this even a well-defined problem? ### How can we learn rewards? We must make more assumptions on the expert provided data $$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_{t}, a_{t}) \right]$$ $$D_{\text{KL}}(\pi \mid\mid \pi^{*}) \leq \epsilon$$ Experts are assumed to be "noisily" optimal ### Why is this "inverse" reinforcement learning? RL: Rewards generate trajectories IRL: Expert trajectories generate rewards Is this well defined? ### IRL problem statement + assumptions #### Reinforcement Learning State: Known **Action: Known** Transition Dynamics: Unknown but can sample Reward: Known Expert policy: Unknown Expert traces: **Unknown** #### **Inverse Reinforcement Learning** State: Known **Action: Known** Transition Dynamics: Unknown but can sample Reward: **Unknown** Expert policy: Unknown Expert traces: **Known** Find r that **explains** the demonstrator behavior as noisily optimal Inverse RL Reward $r_{ heta}(s,a)$ Reinforcement Learning Policy $\pi(a|s)$ New dynamics/state # Inverse RL Applications # Inverse RL Applications ### Why is this hard? Find r that **explains** the demonstrator behavior as noisily optimal Reward Function $r_{\theta}(s,a)$ Challenging for a variety of reasons: - 1. Inherently underspecified - 2. R and π both unknown - 3. Difficult optimization with T unknown. - 4. Distributions/comparison metrics unknown Can be parameterized by arbitrary function approximator ### Underspecification in Reward Functions Rewards are inherently underspecified \rightarrow many rewards can give you the same optimal policy **Theorem 1** Let any S, A, γ , and any shaping reward function $F: S \times A \times S \mapsto \mathbb{R}$ be given. We say F is a **potential-based** shaping function if there exists a real-valued function $\Phi: S \mapsto \mathbb{R}$ such that for all $s \in S - \{s_0\}, a \in A, s' \in S$, $$F(s, a, s') = \gamma \Phi(s') - \Phi(s), \tag{2}$$ (where $S - \{s_0\} = S$ if $\gamma < 1$). Then, that F is a potential-based shaping function is a necessary and sufficient condition for it to guarantee consistency with the optimal policy (when learning from $M' = (S, A, T, \gamma, R + F)$ rather than from $M = (S, A, T, \gamma, R)$), in the following sense: ### Original reward #### Reshaped reward $$r_{\text{shaped}}(s, a, s') = r(s, a, s') + \gamma \phi(s') - \phi(s)$$ $$Q = r(s, a, s') + \gamma r(s', a', s'') + \gamma^2 r(s'', a'', s''') + \dots$$ $$Q = r(s, a, s') + \gamma \phi(s') - \phi(s) + \gamma (r(s', a', s'') + \gamma \phi(s'') - \phi(s')) + \gamma^2 (r(s'', a'', s''') + \gamma \phi(s''') - \phi(s'')) + \dots$$ Unbiased policy optimization! ### Lecture outline Control as Inference to Derive Q-learning Control as Inference to Derive Model-Based RL Why inverse RL? + Problem formulation IRLv1 – max margin planning ### A Formula for Inverse Reinforcement Learning ### IRL v0 – Assumptions ### IRL v0 – What is a good reward function? A good reward would evaluate optimal data higher than all other data $$V_r^{\pi^*}(s) \ge V_r^{\pi}(s) \ \forall \pi, \forall s$$ High reward Find w* such that $$r(s, a) = w^{*T} \phi(s, a)$$ $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t r(s_t, a_t) \right] \ge \mathbb{E}_{\pi} \left[\sum_{t} \gamma^t r(s_t, a_t) \right], \quad \forall \pi$$ $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t w^{*T} \phi(s_t, a_t) \right] \ge \mathbb{E}_{\pi} \left[\sum_{t} \gamma^t w^{*T} \phi(s_t, a_t) \right], \quad \forall \pi$$ $$w^{*T} \mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \phi(s_t, a_t) \right] \ge w^{*T} \mathbb{E}_{\pi} \left[\sum_{t} \gamma^t \phi(s_t, a_t) \right], \quad \forall \pi$$ $$\mu(\pi^*, \phi)$$ $$\mu(\pi, \phi)$$ Underdefined, $w^* = 0$ trivially satisfies! $\mu(\pi,\phi)$ ### IRL v0 – What is a good reward function? ### How do we tackle ambiguity? $$w^{*T} \mathbb{E}_{\pi^*} \left[\phi(s, a) \right] \ge w^{*T} \mathbb{E}_{\pi^*} \left[\phi(s, a) \right] \quad \forall \pi, \forall s$$ $\max_{w,m} m$ s.t $$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + m, \forall \pi \in \Pi$$ Find rewards which maximize the gap between the expert and all other policies ### IRL v1 – Max Margin Feature Matching ### Choose w such that "margin" is maximized $\max m$ s.t $$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + m, \forall \pi \in \Pi$$ Looks a lot like an SVM! $$\min \|w\|_2$$ s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + 1, \forall \pi \in \Pi$ What might the issues be \rightarrow - 1. Uniform gap across all π , π^* - 2. Noisily optimal may compromise the optimization # IRL v1 – (Fancy) Max Margin Feature Matching ### Maximum margin → Structured Max-Margin + Slack $$\min \|w\|_2$$ s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + 1, \forall \pi \in \Pi$ Bigger for more different policies $$\min \|w\|_2 + C\zeta \qquad \downarrow$$ s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \Pi$ Slack allows for noisy optimality ### IRL v1 – Max Margin Feature Matching ### IRL v1 – Max Margin Feature Matching - 1. Start with a random policy π_0 - 2. Find the w that optimizes $$\min_{w,\zeta} \|w\|_2 + C\zeta$$ s.t $$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \{\pi_0, \pi_1, \dots, \pi_i\}$$ 3. Solve for the optimal policy against $r_{\phi}(s, a) = w^{(i)^T} \phi(s, a)$ $$\pi_{i+1} \to \operatorname{Opt}(r_{\phi}(s,a),T)$$ 4. Add to constraint set and repeat Output the optimal reward function w* # Max Margin Feature Matching in Action ### Lecture outline Control as Inference to Derive Q-learning Control as Inference to Derive Model-Based RL Why inverse RL? + Problem formulation IRLv1 – max margin planning # IRL v1 – Why this may not be enough? min $$||w||_2 + C\zeta$$ s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \Pi$ May not be able to deal with scenario where true margin is quite small for some policies Not clear if this is a good way to deal with suboptimality Constrained optimization is tough to optimize for non-linear functions What if we had a "softer" notion of margin? ### We have talked about "soft" optimality before! We derived max-ent RL as maximum likelihood on optimality (lower bound) wrt policy $$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$$ Control as inference $$\mathbb{E} \sum_{\substack{s_0 \sim p(s_0) \\ a_t \sim q(a_t|s_t) \\ s_{t+1} \sim p(s_{t+1}|s_t|a_t)}} \left[\sum_t \log p(\mathcal{O}_t|s_t, a_t) - \log q(a_t|s_t) \right]$$ Li & Todorov '06 Ziebart '08 Can we invert this to do inverse RL with a softer notion of margin? ### Let's revisit the graphical model $$p(\tau)$$ Uninformed behavior according to prior/dynamics $$p(\tau|\mathcal{O}_{0:T}=1)$$ Soft optimal behavior conditioned on optimality We were trying to find $p(a_t|s_t,\mathcal{O}_{t:T}=1)$ given reward ### Inverse RL in CAI graphical model Now we are given (s, a) from optimal, we need to find the reward function that best explains the data \rightarrow Maximum likelihood estimation! (Find r, that maximizes the likelihood of (s, a) being produced on observed optimality ### Inverse RL in CAI graphical model \rightarrow Maximum likelihood estimation! (Find r, that maximizes the likelihood of (s, a) being produced on observed optimality $$\max_{\sigma}\mathbb{E}_{ au\sim\mathcal{D}^*}\left[\log p(au|\mathcal{O}_{0:T}=1) ight]$$ (Find optimality CPD that best explains observed data) ### Maximum likelihood optimality estimation $$p(\tau|\mathcal{O}_{0:T}=1) \propto p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t))$$ Independent of reward $$= \frac{\exp(\sum_{t=0}^{T} r(s_t, a_t))}{\int \int p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t)) ds_{0:T} da_{0:T}}$$ Hard to estimate – partition function (Z) $$\max_{\phi} \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log p(\tau | \mathcal{O}_{0:T} = 1) \right]$$ Difficult to compute analytically, but it's gradient has a nice form! ### Maximum likelihood optimality estimation $$p(\tau|\mathcal{O}_{0:T} = 1) = \frac{\exp(\sum_{t=0}^{T} r(s_t, a_t))}{\int \int p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t)) ds_{0:T} da_{0:T}}$$ $$\max_{\phi} \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log p(\tau | \mathcal{O}_{0:T} = 1) \right]$$ $$= \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log \left(\exp(\sum_{t=0}^T r_{\phi}(s_t, a_t)) \right) - \log Z \right]$$ $$= \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T r_{\phi}(s_t, a_t) \right] - \log Z$$ Easy to compute Hard to compute ### Maximum likelihood optimality estimation $$p(\tau|\mathcal{O}_{0:T} = 1) = \frac{\exp(\sum_{t=0}^{T} r(s_t, a_t))}{\int \int p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t)) ds_{0:T} da_{0:T}}$$ $$\max_{\phi} \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log p(\tau | \mathcal{O}_{0:T} = 1) \right]$$ $$= \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log \left(\exp(\sum_{t=0}^T r_{\phi}(s_t, a_t)) \right) - \log Z \right]$$ $$= \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T r_{\phi}(s_t, a_t) \right] - \log Z$$ Easy to compute Hard to compute # Let's take the gradient $$\max_{\phi} \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\log p(\tau | \mathcal{O}_{0:T} = 1) \right]$$ $$\mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T r_{\phi}(s_t, a_t) \right] - \log Z$$ $$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \nabla_{\phi} \log Z$$ $$\nabla_{\phi} \log Z = \frac{1}{Z} \nabla_{\phi} Z$$ $$Z = \int p(\tau) \exp(r(\tau)) d\tau$$ $$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \frac{1}{Z} \int p(\tau) \exp(r_{\phi}(\tau)) \nabla_{\phi} r_{\phi}(\tau) d\tau$$ Notice this is exactly the soft optimality posterior $$p(\tau|\mathcal{O}_{0:T} = 1) \propto p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t))$$ # Let's take the gradient $$\mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T r_{\phi}(s_t, a_t) \right] - \log Z$$ $$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \frac{1}{Z} \int p(\tau) \exp(r_{\phi}(\tau)) \nabla_{\phi} r_{\phi}(\tau) d\tau$$ Notice this is exactly the soft optimality posterior $$p(\tau|\mathcal{O}_{0:T} = 1) \propto p(\tau) \exp(\sum_{t=0}^{T} r(s_t, a_t))$$ $$\nabla_{\phi}\mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^T \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \mathbb{E}_{\tau \sim p(\tau \mid \mathcal{O}_{0:T} = 1)} \left[\sum_{t=0}^T \nabla_{\phi} r_{\phi}(s_t, a_t) \right]$$ Push up gradients along experts Push down gradients along soft optimal policy under current reward Computable, with RL in the inner loop ### Ok so what does this mean? $$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \frac{1}{Z} \int p(\tau) \exp(r_{\phi}(\tau)) \nabla_{\phi} r_{\phi}(\tau) d\tau$$ $$\nabla_{\phi} \mathcal{L}(\phi) = \mathbb{E}_{\tau \sim \mathcal{D}^*} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right] - \mathbb{E}_{\tau \sim p(\tau \mid \mathcal{O}_{0:T} = 1)} \left[\sum_{t=0}^{T} \nabla_{\phi} r_{\phi}(s_t, a_t) \right]$$ Push up gradients along experts Push down gradients along soft optimal policy under current reward Update on φ Update π to optimal using current r_{Φ} ### Alternative intuition Why do we even need the margin in the first place? $$V_r^{\pi^*}(s) \geq V_r^{\pi}(s) \ \forall \pi, \forall s \ \longleftarrow$$ underdefined Unclear how to value one suboptimal trajectory vs other \rightarrow be maximally uniform! $$\max_{p(\tau)} \ \mathcal{H}(p(\tau)) \longrightarrow \text{Maximize entropy}$$ $$\text{s.t} \quad \mathbb{E}_{p(\tau)}[\phi(s,a)] \approx \mathbb{E}_{\pi^*}[\phi(s,a)]$$ $$\longrightarrow \text{While matching features}$$ ### IRL v2 – Max-Ent IRL – Put it together #### **Maximum Entropy** ## IRL v2 – Max-Entropy Inverse RL (Pseudocode) - 1. Start with a random policy π_0 and weight vector w - → 2. Find the "soft" optimal policy under w $p_w(au)$ - 3. Take a gradient step on w $$\nabla_w \mathcal{L} = \mathbb{E}_{\pi^*} \left[\sum_t \gamma^t \phi(s_t, a_t) \right] - \mathbb{E}_{p_w(\tau)} \left[\sum_t \gamma^t \phi(s_t^{\tau}, a_t^{\tau}) \right]$$ 4. Repeat #### Max-Ent IRL in Action #### Lecture Outline Why Imitation? + Problem formulation IRLv1 – max margin planning IRLv2 – max entropy IRL IRLv3 – partial policy optimization IRLv4 – adversarial IRL # Ok but no way this could work? #### Linear Rewards -> Neural Net Rewards Max-ent IRL allows us to go from linear rewards to arbitrary neural network rewards Can simply replace, w with arbitrary θ and use autodiff! # Avoiding Complete Policy Optimization Optimize policy against $r_{\phi}(s,a)$ $$r_{\phi}(s,a)$$ Assumes dynamics are known so we can just do (fast) planning What happens when dynamics are unknown! $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] \qquad \qquad \text{What if we only } \underline{\text{improved}} \text{ the policy a little bit} \\ -\mathbb{E}_{p_w(\tau)} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] \qquad \qquad \qquad \text{Biased!}$$ Requires complete "soft" policy optimization # Avoiding Complete Policy Optimization Importance sampling to the rescue! $$\mathbb{E}_{p(x)}\left[f(x)\right] = \mathbb{E}_{q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$ $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ $$-\mathbb{E}_{p_w(\tau)} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ $$-\mathbb{E}_{q} \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ $$\xrightarrow{\exp(\sum_{t} r_{\theta}(s_t, a_t))} \frac{\exp(\sum_{t} r_{\theta}(s_t, a_t))}{\prod_{t} \pi_{\theta}(a_t | s_t)}$$ Can transfer significantly more from iteration to iteration rather than doing full nested optimization # IRLv4 – Guided Cost Learning # IRLv4 – Guided Cost Learning #### Lecture Outline **Why Imitation? + Problem formulation** IRLv1 – max margin planning IRLv2 – max entropy IRL IRLv3 – partial policy optimization IRLv4 – adversarial IRL ### Connecting Maximum-Entropy RL to GANs #### Looks like a game - 1. Start with a random policy π_0 and weight vector w - ightarrow 2. Take a step on "soft" optimal policy under w $p_w(au)$ - 3. Take a gradient step on w $$\nabla_{\theta} \mathcal{L} = \mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] - \mathbb{E}_q \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ 4. Repeat Output the optimal reward function w* # Recasting GAIL as an IRL method For a particular parameterization of the discriminator, GAIL recovers a reward #### Max-Ent Inverse RL $$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ $$- \mathbb{E}_{q} \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$ Push up demos, push down policy With some massaging Push up real data, push down generated $$D_{\theta}(\tau) = \frac{\frac{1}{Z} \exp(r_{\theta}(\tau))}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + \Pi_{t} \pi_{\theta}(a_{t}|s_{t})}$$ GAIL (which is just a GAN), recovers Max-Ent IRL In practice, often use GAIL and just log D as reward ## Adversarial IRL in Action #### Lecture Outline Why Imitation? + Problem formulation IRLv1 – max margin planning IRLv2 – max entropy IRL IRLv3 – partial policy optimization **IRLv4 – adversarial IRL** ### Some perspectives on IRL vs Imitation #### **Imitation Learning** - + simple, easy to implement - + no additional interaction required - compounding error - Multimodality - generalization - + can help with covariate shift - Needs environment access - Hard to implement/train - Often works worse from images Inverse RL Choose depending on the application #### Class Structure